
Point process methodology for on-line spatio-temporal dis-
ease surveillance

Peter Diggle, Barry Rowlingson and Ting-li Su

This paper concerns the development of on-line spatio-temporal disease
surveillance system for non-specific gastroenteric disease in the county of
Hampshire, UK. They applied point process methodology for the surveil-
lance purpose, in particular, using non-stationary log-Gaussian Cox pro-
cess to model spatio-temporal intensity, including deterministic compo-
nent for spatial and temporal variation in the normal disease pattern, and
an unobserved stochastic component for localized departure from normal
pattern. They give the methods for estimation and also the prediction of
potential anomalies, thus alert public health departement to take follow-
up action.

The model is a spatial temporal log-Gaussian Cox process model. Cox pro-
cess is a Poisson process with a varying intensity which is itself a stochastic
process, while log-Gaussian Cox process indicates that intensity process is
a log Gaussian process. Conditional on an unobserved stochastic process
R(x,t), cases form an inhomogeneous Poisson point process with intensity

λ(x, t) = λ0(x)µ0(t)R(x, t).

λ0(x) represents spatial variation in the intensity of reported cases. Sim-
ilarly, µ0(t) is temporal variation in the spatially averaged incidence rate.
Since λ0(x) is constrained to integrate to 1 over the region, µ0(t) represents
the time variation in the mean number of incident cases per day, and λ0(x)
is a probability density function for the spatial distribution of incidence
averaged over time. R(x, t) is the latent stationary, log-Gaussian stochas-
tic process, which is modelled as a stationary, unit-mean log-Gaussian
stochastic process,

R(x, t) = exp{S(x, t)},
where S(x, t) is a stationary Gaussian process with mean -0.5σ2, variance
σ2, which guarantees E[exp{S(x, t)}] = 1 for all x and t, and correlation
function

ρ(u, v) = Corr{S(x, t),S(x − u, t − v)} = r(u) exp(−v/θ).
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To fit the model, they need do estimation for λ0(x), µ0(t) and parameters
that determine Gaussian process S(x, t).

For spatial density λ0(x), an adaptive bandwidth kernel estimator

λ̂0(x) = n−1
n∑

i=1

h−2
i φ{(x − xi)/hi}

is used, where xi : i = 1, · · · ,n are the case-locations and φ(x) is a Gaussian
kernel. Because there are very severe variations in population density
across the county, the estimator allows a different value of the bandwidth
hi to be associated with each observed case location xi. hi = h0{λ̃0(xi)/g̃}−0.5.
The adaptive bandwidth is estimated by

λ̃0(xi) = n−1
n∑

i=1

h−2
0 φ{(x − xi)/h0},

and g̃ is the geometric mean of λ̃0(xi).

µ0(t) represents the unconditional expectation of the numbers of cases
on day t. Poisson log-linear regression model is fitted.

logµ0(t) = δd(t) + α1 cos(ωt) + β1 sin(ωt) + α2 cos(2ωt) + β2 sin(2ωt) + γt,

where d(t) is indicator for the day of the week, and ω = 2π/365 would
correspond to annual periodicity in incidence rates.

To estimate parameters of stochastic component S(x, t), they used moment-
based methods, assuming a separable correlation structure, ρ(u, v) = ρx(u)ρt(v),
and matching empirical and theoretical descriptors of the spatial temporal
covariance structure.

Consider the parameters of the spatial covariance structure of S(x, t), if
an exponential correlation function ρx(u) = exp(−|u|/φ) is used, then the
theoretical pair correlation g(u) = exp{σ2 exp(−|u|/φ)}, and the time aver-
aged kernel estimator

ĝ(u) =
1

2πuT|W|
T∑

t=1

n∑

i=1

∑

i, j

Kh(u − ‖xi − x j‖)w(xi, x j)

λ̂0(xi)µ̂0(t)λ̂0(x j)µ̂0(t)
.
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T is length of the study-period, and W is the study area. Because events
outside W are not recorded in the data, to avoid substantial negative bias
in λ̂0(x) near the boundary of the study region, wi j, Ripley’s edge-correcton
is applied, which equals the proportion of the circumference of the circle
with center xi and radius ri j which lies within W. K here is the Epanecnikov
kernel function. Minimization criterion for estimating σ2 and φ is

∫ u0

0
[{log ĝ(u)} − {log g(u)}]2du.

For the time component, temporal correlation is assumed an exponential
form ρt(v) = exp(−|v|/θ). To estimate the parameter θ, let Nt denote the
numbers of incident cases on day t, the theoretical and empirical descrip-
tors are

C(t, v;θ) = Cov(Nt,Nt−v) = µ0(t)1(v = 0) + {µ0(t)µ0(t − v)}

×
{∫

W

∫

W
λ0(x1)λ0(x2) exp[σ2 exp(−v/θ) exp(−u/φ)]dx1dx2 − 1

}
,

Ĉ(t, v) = NtNt−v − µ̂0(t)µ̂0(t − v).

Minimization criterion is
v0∑

v=1

n∑

t=v+1

{Ĉ(t, v) − C(t, v;θ)}2.

The fitted model is then used for prediction. First they generate a sample
from the predictive distribution of the surface S(x, t), hence (R(x,t)), con-
ditional on the observed spatio-temporal pattern of incident cases up to
and including time t on a fine grid of locations xk, k = 1, · · · ,m. Follows
that they calculate the predictive probability p(xk, t; c) = P{R(xk, t) > c|data},
c is a critical threshold value. A high predictive probability would suggest
some follow-up means may be required.

In conclusion, they illustrate how to estimate the normal pattern of spatial
temporal variations in the distribution of incident cases, and quickly iden-
tify any anomalous variations from the normal pattern. Widerly speaking,
statistical evidence can be combined with other form of evidence to trigger
earlier response to an emerging problem than typically achieved by current
surveillance systems.
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