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1. Introduction 
 
Numerical experiments based on atmosphere–ocean general circulation models (AOGCMs) are 
one of the primary tools in deriving projections for future climate change. This article mainly 
focus on combining present day observations, present day and future climate projections in a 
single highdimensional hierarchical Bayes model for future predictions. The data source is from 
the Coupled Model Intercomparison Project (CMIP) and consists of 9 AOGCMs on a 2.8 by 2.8 
degree grid under several different emission scenarios. The climate variables in this article are the 
average surface temperature and precipitation for the boreal winter (December, January and 
February, DJF) and boreal summer (June, July and August, JJA. 
 

2. Methods 
 
2.1 Random effects statistical model 
 
The main points come from a random effects statistical model. From N climate models, Xi denotes 
a vector of average temperatures representing current climate at a grid of points on the surface of 
the Earth for the ith model. Yi denotes the corresponding averages simulated at a future period 

under a specific scenario of climate change. Let i i iD Y X= − , then 

 i i iD Mθ ε= + , 

where M is a matrix of spatial basis functions and iθ  is a random effect whose expected value is 

the true difference in climate. iε  is assumed to be a mean zero spatial process which does not act 

in a single point but gradually spread influences all over the sphere. 
 
2.2 Climate model data 
 
As mentioned in the first section, the data are from 9 AOGCMs based on Coupled Model 
Intercomparison Project (CMIP). Here the variables that drive the climate are called forcings, such 
as greenhouse gases produced by human activities, changes in the sun’s energy or changes in land 
use. CMIP has the data from “control runs”, in which the forcing is considered as a constant at the 



current level. It also collects data from “transient runs”, where the forcing is under certain 
idealized scenario of global warming.  
Compared to temperature fields, the precipitation fields exhibit a different pattern. The spatial 
structures have smaller scales and the fields are more heterogeneous. Therefore, a log 
transformation is used to correct the shortcomings 
 
2.3 Hierarchical Bayes approach 
 
The temperature or log precipitation fields of the N = 9 models are stacked into vectors of length n, 
denoted as follows: 

 Xi = climatological field from control run of model i, 
 Yi = climatological field from transient run of model i. 

The difference is given by: Di = Yi − Xi , i = 1, . . . , N, which represents the climate change with 
respect to temperature or log precipitation.  
They use a standard hierarchical Bayes approach based on the following three levels: data, process, 
and priors. 
For the data level, the climate change is a decomposition of a large scale climate signal and small 
scale signals consisting of model bias and internal model variability. Hence,  

 i i i n i i iD = +  , [D  | ,  ] ( , ), > 0, 1, , ,
iid

i i i N i Nμ ε μ φ μ φ φΣ =∼ …  

where Nn is an n-dimensional normal density. ∑  is specified andφi are scale parameters. 
For the process level, μi, i=1,2,…,9 denote the large scale climate signals. They use a dimension 

reduction technique and assume that i iMμ θ= , where the given “design” matrix M contains p 

basis functions with p n� . The “true” large scale climate change pattern is denoted as Mϑ , 

and the iθ  are modeled as: 

 i i p i i[  | ,  ] ( , ), > 0, 1, , ,
iid

N i Nθ ϑ ψ ϑ ψ ψΩ =∼ …  

where iψ  are scale parameters. The correlation matrix Ω  might have arbitrary structure, and 

setting IΩ =  would be a reasonable choice. 
The last level puts priors on the process parameters: 
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where IΓ  denotes the inverse Gamma density and 1 5,ξ ξ…  are hyperparameters. 

 
2.4 Choice of basis functions 
 



Basis functions are used to construct the design matrix M. These functions need to be sufficiently 
flexible to represent the mean structure of the difference fields. They use a technique called 
spherical harmonic. In a mathematical manner, spherical harmonics are the angular portion of an 
orthogonal set of solutions to Laplace’s equation represented in a system of spherical coordinates. 
They are a generalization of a sin-cosine decomposition of a real valued function to the sphere. It 
is therefore natural 
to assume that the large scale signal is a linear combination of ps spherical harmonics. The 
spherical harmonics can be obtained with an iterative procedure and each additional level has 
smaller scales. In Fig. 5, he first spherical harmonics corresponds to the global mean (l=0), level l 
=1 consists of three single sin/cosine structures on the sphere and so on.  

 
Since these patterns based on land forms are not easily represented by spherical harmonics, they 
also use indicator basis functions linked to land forms and sea ice, see Fig.6. 
 
2.5 Correlation matrices and correlation function 
 
Assume thatεi are isotropic and stationary processes on the sphere. It means that covariance 
between these two points only depends only on the great circle distance θ. This assumption is 
supported on a global scale by exploratory graphical analysis with εi (Cressie 1993). 
They used Poisson kernel and exponential correlation function in this article. The formulas are as 
following:  
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2.6 Implementing a Gibbs sampler 
 
Given the model observations Di, the hierarchical modeling approach will construct the posterior 

distribution of Mϑ. The posterior can be sampled using a Markov chain Monte Carlo (MCMC) 



procedure known as the Gibbs sampler (Geman and Geman 1984; Gelfand and Smith 1990). The 
full conditionals are: 

 
 

3. Results 
 
The simulation parameters and hyperparameters for the simulations are listed in Table 2. Rangeτ

means the correlation range and s/n ratio means the signal/noise ratio. If more basis functions are 
included in M the resulting processes εi has a smaller spatial range. Figures 8 and 9 depict trace 
plots and kernel estimates of the posterior densities for the mean, the spherical harmonics, the 

NCEP climate observations and the land indicator fields given in Figs. 5 and 6 of the parameter ϑ. 

 

 



Figure 10, 11 and 12 show the patterns of some analysis of surface temperature and precipitation 
fields. Figure 10 gives the temperature change that occurs with at least 80% probability in 70 
years with 1% CO2 increase. Figure 11 shows the probability that the temperature change exceeds 
2◦C. Figure 12 gives the median precipitation change that occurs in 70 years with 1% CO2 
increase. 

 

 

 
 

4. Model checking and extensions 
 
Overall the realizations from the posterior look qualitatively similar to the actual model output. 
This agreement confirms the adequacy of the modeling approach. But there are some 
improvements that could be done. First, the covariance can be parameterized by modeling the 
range parameter and the signal to noise ratio in the Gibbs sampler. Second, since the new 
generation of model data for the Fourth Assessment Report (AR4) of the IPCC has several runs 
for different models, we can generate ensembles of runs and interpret them as multiple realizations 
of weather from the same climate. Third, there could be another approach which models the 
control and transient fields individually and linking them via a correlation structure. 
 


