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1 Introduction

Extreme value theory has emerged as one of the most important statistical disciplines for
the applied sciences. Extreme value techniques are also becoming widely used in many
other disciplines. For example, for portfolio adjustment in the insurance industry; for risk
assessment on financial markets; and for traffic prediction in telecommunications. Here
we do some basic data analysis in extreme value theory.

In Section 1, we introduce the extreme value model which represents the basis of extreme
value theory. We analyze an example base on daily maximum winter temperature (degrees
centigrade) from 1945 through 1995 for Sept-Iles, Quebec. Then we talked about threshold
model with data analysis of hourly precipitation for Denver, Colorado in the month of July
from 1949 to 1990 in Section 2. Finally, we append all the figure in Section 3.

2 Extreme value distribution

2.1 Asymptotic models

The extreme value model focuses on the statistical behavior of

Mn = max{X1, X2, . . . , Xn},

where X1, X2, . . . , Xn are independent random variables with identical distribution F .
Analogous to central limit theorem, it can be shown that there exist constants an > 0, bn
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such that
Pr

{
Mn − bn

an
< x

}
= (F (anx+ bn))n

converges to some H(x) as n→∞.

The Extremal Types Theorem (Fisher-Tippett) asserts that if nondegenerate H exists, it
belongs to one of the following families:

I : H(x) = exp {−e−x}, −∞ < x <∞ (Gumbel)

II : H(x) = exp {−x−α}, x > 0; [H(x) = 0, x ≤ 0] (Frechet)

II : H(x) = exp {−|x|α}, x < 0; [H(x) = 0, x ≥ 0] (Weibull).

Here, α > 0 in Frechet and Weibull distributions.

The three types can be combined into a single family, known as the Generalized Extreme
Value (GEV) Distribution

H(x) = exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ

+

}
, (2.1)

where µ, σ > 0 and ξ are location, scale and shape parameters respectively. It is straight-
forward to check that the type II and type III classes of extreme value distribution corre-
spond respectively to the class ξ > 0 and ξ < 0. The subset of the GEV family with ξ = 0
is interpreted as the limit of (2.1) as ξ → 0, leading to the Gumbel family.

2.2 Example: Daily Maximum Winter Temperature at Sept-Iles

This analysis is based on the series of daily maximum winter temperature at Sept-Iles,
Quebec over the period 1945-1995, as described in Figure 1. From Figure 1 it seems
reasonable to assume the data is stationary over the observation period, so we model the
data as independent observations from the GEV distribution.

Using maximum likelihood estimation, we get the estimates of parameters (standard errors
in parentheses):

µ̂ = 18.20(0.50) σ̂ = 3.13(0.36) ξ̂ = −0.14(0.12).

Figure 2 shows the profile log-likelihood for ξ, from which a 95% confidence interval for ξ
is obtained as (−0.1396,−0.1395) which doesn’t cover 0. Therefore, the shape parameter
ξ is different from 0 at the 5% significance level.

2



Estimates and confidence intervals for return levels are obtained by Figure 3. The confi-
dence intervals for 10-year, 50-year, 100-year, 150-year return levels are respectively

(22.88, 26.50), (25.58, 33.38), (26.37, 36.73), (28.00, 50.17).

The various diagnostic plots for assessing the accuracy of the GEV model are shown in
Figure 4. Both the probability plot and the quantile plot show the reasonability of the
GEV fit. The return level curve asymptotes to a finite level as a consequence of the
negative estimate of ξ. Finally, the correspond density estimate seems consistent with the
histogram of the data. Consequently, all four diagnostics plots support the fitted GEV
model.

3 Exceedances over thresholds

3.1 Threshold models

Let X1, X2, . . . , Xn be independent random variables with identical distribution F . It is
natural to regard as extreme events those of the Xi that exceed some high threshold.
Denoting an arbitrary element in the Xi sequence by X. Consider the distribution of X
conditionally on exceeding some high threshold u by the conditional distribution

Pr{X < u+ y|X > u} =
F (u+ y)− F (u)

1− F (u)
, y > 0.

Since, in practical application, F is unknown, we need to approximate the conditional
distribution with high threshold.

The main result is the following theorem.

Theorem 3.1. Let X1, X2, . . . , Xn be independent random variables with identical distri-
bution F . Define

Mn = max{X1, X2, . . . , Xn}.

Suppose, for large n,
P (Mn < x) ≈ H(x),

where H is the generalized extreme value distribution defined by (2.1). Then,
for large enough u, the distribution function of X − u, conditional on X > u, is approxi-
mately

G(y, σ, ξ) = 1−
(

1 +
ξy

σ

)−1/ξ

+

.

G(y, σ, ξ) is called the generalized Pareto Distribution(GPD).
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3.2 Example: Hourly precipitation for Denver

The example is about hourly precipitation (mm) for Denver, Colorado in the month of
July from 1949 to 1990. Figure 5, 6 and 7 show the scatter plots of precipitation against
hour, day, and year respectively.

It is important to choose the appropriate thresholds. If the threshold is chosen too high,
then there are not enough exceedances over the threshold to obtain good estimators of
the extreme value parameters, and consequently, the variances of the estimators are high.
Conversely, if the threshold is too low, the GPD may not be good fit to the excesses over
the threshold and there will be bias in the estimations. Figure 8 (mean excess plot) and
Figure 9 (parameter stability plot) suggest a threshold u = 0.395. Maximum likelihood
estimates (standard errors in parentheses) in this case are

σ̂ = 0.29(0.064) ξ̂ = −0.08(0.157).

The profile log-likelihood for ξ is shown in Figure 10. Figure 11 gives the diagnostics for
the GDP fit.

Often, threshold excesses are not independent. For example, a hot day is likely to be
followed by another hot day. In such situation, we employ a declustering scheme to filter
out a set of approximately independent threshold excesses. The threshold excesses in
Figure 5 (scatter plots of precipitation against hour) appears dependent. We calculate
the daily maximum precipitation for each day in each year. Consider a GPD fit to the
aggregated daily maximum precipitation data, and obtain the fitted parameter values
(standard errors in parentheses):

σ̂ = 0.32(0.070) ξ̂ = −0.12(0.152).

The profile log-likelihood for ξ is shown in Figure 12. Figure 13 gives the diagnostics for
the GDP fit.

Decluster the original precipitation with ‘declustering parameter’ r = 1 and refit the newly
declustered data to the GPD. The fitted parameters values (standard errors in parentheses)
are:

σ̂ = 0.31(0.068) ξ̂ = −0.10(0.154).

Figure 14 gives the diagnostics for the GDP fit.

There’s no big difference between the three fitted models, which may imply that the
exceedances above the threshold u = 0.395 can be regarded independent. The diagnostics
show that GDP fit is reasonable here.
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4 Appendix

Figure 1: Daily maximum winter temperature at Sept-Iles, Quebec over the period 1945-
1995.
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Figure 2: Profile likelihood for ξ in the Sept-Iles example.
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Figure 3: Profile likelihood for 10-year, 50-year, 100-year, 150-year return level in the
Sept-Iles example.
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Figure 4: Diagnostic plots for GEV fit to the Sept-Iles example.
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Figure 5: Scatterplot of precipitation agaist hour.
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Figure 6: Scatterplot of precipitation agaist day.
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Figure 7: Scatterplot of precipitation agaist year.
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Figure 8: Mean excess plot for Denver example.
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Figure 9: Parameter stability plot for Denver example.
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Figure 10: Profile likelihood for ξ in the Denver example.
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Figure 11: Diagnostic plots for GEV fit to the Denver example.
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Figure 12: Profile likelihood for ξ for the aggregated Denver data.
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Figure 13: Diagnostic plots for GEV fit to the aggregated Denver example.
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Figure 14: Diagnostic plots for GEV fit to the declustered Denver example.

18


