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1. Background 

 

 We are already familiar with the background on extreme value theory. ��, ��  �  are 

independent random variables with the same probability distribution and let �� 	 
�� ��, ��, � , ���. Then there exist normalizing constants a� � 0 and b� such that 

 

� ������
�� � �� � ��� as n � ∞ 

 

where �  is a non-degenerate distribution function and has one of the three Extreme Value 

Distribution. The three types of EVD are written as a single family distribution and it is called as 

Generalized Extreme Value (GEV) distribution. 
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where 2. 	 
��32, 04 , %∞ 5 6 , 7 5 ∞  and σ � 0. 

 Using this notation of GEV distribution, we apply it to the data of non-stationarity with 

trends in Section 2. And it can be applied to the non-stationary case with cyclic variation in Section 3.  

 

 

2. Non-stationarity with Trends 
 

 The climate change in the environmental data has trends of extreme weather events through 

time. For example, maximum temperature or minimum temperature shows apparent trends over the 

time period. In this case non-stationary processes with changes through time are assumed. Thus using 

the notation of GEV6 , 9 , 7� it follows that the model for �:  in time ; 	 1, 2, �  has GEV 

distribution, 

 �:~ GEV6;�, 9;�, 7;�� 

 

                             where 6;� 	 6A ( 6� · ;  
                                   9;� 	 C�D 9A ( 9� · ;� 
                                   7;� 	 7. 
 

Non-stationarity can be expressed in terms of the location and scale parameter with trends and shape 

parameter.  

 

2.1 Data: Maximum Sea Levels at Fremantle 
 The annual maximum sea level data at Fremantle is discussed as one example for non-

stationary case with trends. From 1897 to 1989 the annual maximum sea level is observed at 

Fremantle, Western Australia. There is an increase in annual maximum sea levels through time as 

shown in Figure 1 (a).  



Figure 1 (a) Annual maximum sea levels at Fremantle, 1897-1989, (b) Linear regression fitting of 

year against maximum sea levels 

 

 To determine whether there exists linear trend, a linear regression of year against maximum 

sea levels is fitted. The lm function is used in R. The estimate of slope in year was 0.002 and the test 

for ‘slope=0’ was significant (p-value: 0.003). But the intercept estimate of linear regression is -1.899 

and the test for ‘intercept=0’ didn’t show a significant result (p-value: 0.091). In Figure 1(b), the 

dashed line indicates the linear line adjusted to the annual maximum sea levels. This result implies 

that it is reasonable to assume a linear trend for this data. 

 First we fit the GEV without any trend to compare with models including trends. Fitting the 

model without a trend in time we got the three parameters: 6̂ 	 1.482, 9I 	 0.141 and 7J 	 %0.217. 

The second model is GEV fit with linear trend in only location parameter and third one is with linear 

trend only in scale parameter. The last model is fitted with a trend in both location and scale parameter. 

The detail result of each fit is shown below: 

 

 

Model (GEV) 

 6̂A 

 6̂� 

 9IA 

 9I� 

 

7J 
 

NLLH 

without trend 1.482 0 0.141 0 -0.217 -43.567 

lin. in location 1.387 0.002 0.125 0 -0.129 -49.790 

lin in scale 1.493 0 -1.751 -0.006 -0.149 -44.824 

lin in loc & scale 1.397 0.002 -1.929 -0.004 -0.138 -50.570 

Table 1 Parameter Estimates and Negative Log Likelihood (NLLH) of GEV Fits 

 

 We get the result of likelihood ratio test from NLLH values in Table 1. For the test of 6� 	 0, 

we got the significant result (p-value: 0.0007) but the test for 9� 	 0 was not significant (p-value: 

0.2115). Thus the fitted model is 

 �:~ GEV6̂;�, 9I;�, 7J;�� 

 

                          where    6̂;� L 1.387 ( 0.002 · ;  
                                NOP 9I;� L 0.125 
                                   7J;� L %0.129. 
 

The diagnostic plots, Figure 2(b) shows better performance than the model without a trend (See 

Figure 2(a)). Thus we have a significant result suggesting that the model with linear trend in location 



explains more about the Fremantle data than the stationary model.  

 

Figure 2 (a) Diagnostic plots for model without a trend, (b) Diagnostic plots for model with linear 

trend in location parameter 

 

 

3. Non-stationarity with Cyclic Variation 

 

 In meteorological data lots of variables have annual, seasonal or diurnal cycles. In the 

modeling cyclic changes in threshold exceedance, it is useful to specify a model with different 

parameters in each cycle.  

 There are two approaches to analyze this sort of data. One thing is the orthogonal approach. 

First we fit an annual cycle to Poisson rate parameter. In detail, we make a binary vector where 1 

indicates an excess over threshold and 0 indicates an observation under threshold. Then we make two 

vectors containing the cyclic trend over time. Thus the model to obtain Poisson rate parameter is 

 

NOP S;� 	 SA ( S� TUV ��W:
X � ( S� YOT ��W:

X �. 

 

Then the Generalized Pareto distribution (GPD) is fitted with cycle in scale parameter. The cyclic 

model can be expressed by 

 

NOP 9Z;� 	 9AZ ( 9�Z TUV ��W:
X � ( 9�Z YOT ��W:

X �. 

 

 Another approach is using the point process model. We fit the point process model with the 

cyclic trend in location and scale and those location and scale parameter are obtained from GEV re-

parameterization. Three parameters can be expressed as 

 

6;� 	 6A ( 6� TUV [2\;
] ^ ( 6� YOT [2\;

] ^ 

NOP 9;� 	 9A ( 9� TUV [2\;
] ^ ( 9� YOT [2\;

] ^ 

7;� 	 7. 

 

 



3.1 Data: Denver Hourly Precipitation  
 Hourly precipitation (mm) is observed for Denver, Colorado in the month of July from 1949 

to 1990. In Figure 3 each plot shows hourly precipitation according to year (1949-1990) and hour (1-

24). The red line from those plots indicates a threshold, 0.395 which was reasonable as the result of 

previous study.  

 

Figure 3 Denver Hourly Precipitation (a) through year, (b) over hour 

 
 To find the cycle explaining hourly precipitation we fit the generalized linear model for each 

annual cycle and hourly cycle. Fitting annual cycle in Poisson rate parameter we got the parameter,  

 

NOP SJ;� 	 %6.682 % 0.433 TUV [2\;
] ^ ( 0.004 YOT [2\;

] ^  ,    ] 	 744 31 days c 24 hours� 

 

but the test for coefficients showed that those parameter estimates are not significant. Thus now we fit 

the hourly cycle instead. Using the glm with Poisson family we get 

 

NOP SJ;� 	 %8.131 % 2.888 TUV [2\;
] ^ % 0.024 YOT [2\;

] ^  ,   ] 	 24 hours� 

 

and the significant result was reported for the test of S� 	 0 (p-value< 0.001). It makes sense that 

only the vector with sin cycle has effects on hourly precipitation since we already showed high 

precipitation during 12PM-12AM than 1AM-12PM from Figure 3(b). From the GPD fitting with 

hourly cycle in scale parameter we got the following estimates, 

 

NOP σhZ;� 	 %2.660 % 1.877 TUV ��W:
X � ( 0.022 YOT ��W:

X �. 

 

For the test of parameter estimates, only 9� was significant (p-value=0.028).  

 Using the GEV re-parameterization approach, we got GEV model with hourly cycle in 

following parameters, 

 

6̂;� L %1.581 % 0.876 · TUV [2\;
] ^  



                                NOP 9I;� L %0.381 ( 0.031 · TUV ��W:
X � 

                                   7J;� L %0.243. 
 

In the likelihood ratio test for 6� 	 0, we got the significant result (p-value< 10�i) but the test for 9� 	 0 was not significant (p-value > 0.10). Thus we finally fit the model with hourly cycle in 

location parameter. Diagnostic plots for model with cycle are below:  

 

Figure 4 (a) Diagnostic plots for point process model without cycles, (b) Diagnostic plots for point 

process model with hourly cycle in location parameter 

 

 Diagnostic plots do not show better fitting than diagnostic plot for the model without cycles. 

It might be obtained better results from other possible cycle, for example day time cycle vs. night time 

cycle. 

 

 

4. Conclusion 
 

 As it is shown with two data analysis, those methods are very specialized for non-stationary 

extreme data. Also the general theory can not be extended for non-stationary series but the advantage 

is that we can interpret the trend with covariates. Thus it is useful to adopt to the pragmatic approach.  
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