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Already familiar with R?

Advanced (potentially useful) topics:

e Reading and Writing NetCDF file formats:
http://www.image.ucar.edu/Software/Netcdf/

e A Climate Related Precipitation Example for Colorado:
http://www.image.ucar.edu/ " nychka/FrontrangePrecip/



R preliminaries

Assuming R is installed on your computer...

[n linux, unix, and Mac (terminal/xterm) the directory in which R
is opened is (by default) the current working directory. In Windows
(Mac GUI?), the working directory is usually in one spot, but can be
changed (tricky).

Open an R workspace:
Type R at the command prompt (linux/unix, Mac terminal /xterm)
or double click on R’s icon (Windows, Mac GUI).

getwd () # Find out which directory is the current working directory.



R preliminaries

Assigning vectors and matrices to objects:

# Assign a vector containing the numbers -1, 4 and O to an
object called ’x’
x <—c(-1, 4, 0)

# Assign a 3 X 2 matrix with column vectors: 2, 1, 5 and
# 3, 7, 9 to an object called ’y’.
y < — cbind( c( 2, 1, 5), c(3, 7, 9))

# Write ’x’ and ’y’ out to the screen.
X

Y



R preliminaries

Saving a workspace and exiting

# To save a workspace without exiting R.
save.image ()

# To exit R while also saving the workspace.
q(llyesll)

# Exit R without saving the workspace.
q(”no"

# Or, interactively...

qO)



R preliminaries

Subsetting vectors:

# Look at only the 3-rd element of ’x’.
x [3]

# Look at the first two elements of ’x’.
x[1:2]

# The first and third.
x[c(1,3)]

# Everything but the second element.
x [-2]



R preliminaries

Subsetting matrices:

# Look at the first row of ’y’.
y[1,]

# Assign the first column of ’y’ to a vector called ’y1’.
# Similarly for the 2nd column.

yl < — y[,1]

y2 < — y[,2]

# Assign a "missing value" to the second row, first column
# element of ’y’.
y[2,1] < — NA



R preliminaries

Logicals and Missing Values:

# Do ’x’ and/or ’y’ have any missing values?
any( is.na( x))
any( is.na( y))

# Replace any missing values 1in ’y’ with -999.0.
yl[ is.na( y)] <— -999.0

# Which elements of ’x’ are equal to 07
X::



R preliminaries

Contributed packages

# Install some useful packages. Need only do once.

install.packages( c("fields", # A spatial stats package.
"evd", # An EVA package.
"evdbayes", # Bayesian EVA package.
"ismev", # Another EVA package.
"maps", # For adding maps to plots.

"SpatialExtremes")

# Now load them into R. Must do for each new session.
library( fields)

library( evd)

library( evdbayes)

library( ismev)

library( SpatialExtremes)



R preliminaries

See hierarchy of loaded packages:
search()

# Detach the ’SpatialExtremes’ package.
detach(pos=2)

See how to reference a contributed package:

citation("fields")



R preliminaries

Simulate some random fields
From the help file for the fields function sim.rf
help( sim.rf)

#Simulate a Gaussian random field with an exponential

# covariance function, range parameter = 2.0 and the

# domain is [0,5] x[0,5] evaluating the field at a 100 x 100
# grid.

grid < — list( x= seq( 0,5,,100), y= seq(0,5,,100))

obj < — Exp.image.cov( grid=grid, theta=.5, setup=TRUE)
look < — sim.rf( obj)

# Now simulate another ...
look2 < — sim.rf( obj)



R preliminaries

Plotting the simulated fields

# setup the plotting device to have two plots side-by-side
set.panel(2,1)

# Image plot with a color scale.

image.plot( grid$x, grid$y, look)
title("simulated gaussian field")

image.plot( grid$x, grid$y, look2)
title("another (independent) realization ...")



R preliminaries

Basics of plotting in R:

e [irst must open a device on which to plot.

— Most plotting commands (e.g., plot) open a device (that you
can see) if one is not already open. If a device is open, it will
write over the current plot.

— X11() will also open a device that you can see.

— To create a file with the plot(s), use postscript, jpeg, png,
or pdf (before calling the plotting routines. Use dev.off () to
close the device and create the file.

e plot and many other plotting functions use the par values to de-
fine various characteristics (e.g., margins, plotting symbols, char-
acter sizes, etc.). Type help( plot) and help( par) for more
information.



R preliminaries

Simple plot example.

plot( 1:10, z <- rnorm(10), type="1", xlab="", ylab="z",
main="Std Normal Random Sample")

points( 1:10, z, col="red", pch="s", cex=2)

lines( 1:10, rnorm(10), col="blue", 1lwd=2, 1ty=2)

# Make a standard normal qqg-plot of ’z’.
qqnorm( z)

# Shut off the device.
dev.off ()



Background on Extreme Value Analysis (EVA)

Motivation

Sums, averages and proportions (Normality)

e Central Limit Theorem (CLT)

e Limiting distribution of binomial distribution
Extremes

e Normal distribution inappropriate
e Bulk of data may be misleading

e Eixtremes are often rare, so often not enough data



Background on Extreme Value Analysis (EVA)

Simulations

# Simulate a sample of 1000 from a Unif(0,1) distribution.
U < — runif( 1000)
hist( U)

# Simulate a sample of 1000 from a N(0,1) distribution.
Z < — rnorm( 1000)
hist( Z)

# Simulate a sample of 1000 from a Gumbel distribution.
M < — rgev( 1000)
hist( M)



Background on Extreme Value Analysis (EVA)

Simulations

# Simulate 1000 maxima from samples of size 30 from
# the normal distribution.

Zmax < — matrix( NA, 30, 1000)

dim( Zmax)

for( i in 1:1000) Zmax[,i] < — rnorm( 30)
Zmax < — apply( Zmax, 2, max)

dim( Zmax)

class( Zmax)

length( Zmax)

class( Zmax)

hist( Zmax, breaks="FD", col="blue")



Background on Extreme Value Analysis (EVA)

Simulations

# Simulate maxima from samples of size 30 from
# the Unif(0,1) distribution.

Umax <- matrix( NA, 30, 1000)

for( 1 in 1:1000) Umax[,i] < — runif( 30)
Umax < — apply( Umax, 2, max)

hist( Umax, breaks="FD", col="blue")

# Simulate 1000 maxima from samples of size 30 from
# the Fréchet distribution.
Fmax < — matrix( NA, 30, 1000)
for( i in 1:1000) Fmax[,i] < — rgev( 30,

loc=2, scale=2.5, shape=0.5)
Fmax < — apply( Fmax, 2, max, finite=TRUE, na.rm=TRUE)
hist( Fmax, breaks="FD", col="blue")



Background on Extreme Value Analysis (EVA)

Simulations Last one

# Simulate 1000 maxima from samples of size 30 from
# the exponential distribution.

Emax <- matrix( NA, 30, 1000)

for( i in 1:1000) Emax[,i] <- rexp( 30)

Emax <- apply( Emax, 2, max)

# This time, compare with samples from the
# exponential distribution.

par ( mfrow=c(1,2))

hist( Emax, breaks="FD", col="blue")

hist( rexp(1000), breaks="FD", col="blue")



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Let Xq,...,X,, be a sequence of independent and identically dis-
tributed (iid) random variables with common distribution function,
F'. Want to know the distribution of

M, = max{ Xy, ..., X, }.

Example: X, ..., X, could represent hourly precipitation, daily ozone
concentrations, daily average temperature, etc. Interest for now is in
maxima of these processes over particular blocks of time.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

[f interest is in the minimum over blocks of data (e.g., monthly mini-
mum temperature), then note that

min{ Xy, ..., X,} = —max{—X1,..., - X}

Therefore, we can focus on the maxima.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.

Pr{M, < z} = Pr{X; <z ..., X, <z}

indep. Pr{X; <z} x -+ x Pr{X, < 2}

ident. dist. .
= {F@E)"



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.

Pr{M, < z} = Pr{X; <z ...,X, <z}

indep. Pr{X; <z} x -+ x Pr{X, < 2}

ident. dist. .
= {F@E)"

But! If F' is not known, this is not very helpful because small dis-
crepancies in the estimate of F' can lead to large discrepancies for
F".



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.
Pr{M, < z} = Pr{X; <z ...,X, <z}

indep. Pr{X; <z} x -+ x Pr{X, < 2}

ident. dist. .
= {F@E)"

But! If F'is not known, this is not very helpful because small dis-
crepancies in the estimate of F' can lead to large discrepancies for

Fm.
Need another strategy!



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

[f there exist sequences of constants {a, > 0} and {b,} such that
Mn - bn
Pr{— < z} — G(2) as n — 00,
an

where GG is a non-degenerate distribution function, then G belongs to
one of the following three types.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

[. Gumbel

e e[ ()]} soeian

[I. Fréchet

0, z < b,

Gle) = { exp {— (ZT_b)_a} oz > b

G(z) = { exp {— [ ()]}, = <0,

1, z2>b

[T1. Weibull

with parameters a, b and a > 0.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

The three types can be written as a single family of distributions,
known as the generalized extreme value (GEV) distribution.

G2 eXp{_ 1+ (Z;”)L%},

where y, = max{y,0}, —oo < u,§ < oo and o > 0.




Background on Extreme Value Analysis (EVA)

GEV distribution

Three parameters: location (i), scale (o) and shape (&).
1. £ = 0 (Gumbel type, limit as & — 0)
2. & > 0 (Fréchet type)
3. & < 0 (Weibull type)



Background on Extreme Value Analysis (EVA)

Gumbel type

e Light tail

e Domain of attraction for many common distributions
(e.g., normal, lognormal, exponential, gamma)

Gumbel

0.5

0.4

par
0.3

0.2

0.1

0.0




Background on Extreme Value Analysis (EVA)

Fréchet type

e Heavy tail
o £\ X" = o0 for r > 1/€ (i.e., infinite variance if & > 1/2)

e Of interest for precipitation, streamflow, economic impacts

Frechet

par
0.0 0.1 0.2 0.3 04 05 0.6




Background on Extreme Value Analysis (EVA)

Weibull type

e Bounded upper tail at u — %

e Of interest for temperature, wind speed, sea level

Weibull

par
02 03 04 05

0.1

0.0




Background on Extreme Value Analysis (EVA)

Normal vs. GEV

## The probability of exceeding increasingly high values
## (as they double).

# Normal

pnorm( c(1,2,4,8,16,32), lower.tail=FALSE)

# Gumbel
pgev( ¢(1,2,4,8,16,32), lower.tail=FALSE)

# Fréchet
pgev( c(1,2,4,8,16,32), shape=0.5, lower.tail=FALSE)

# Weibull (note bounded upper taill)
pgev( ¢(1,2,4,8,16,32), shape=-0.5, lower.tail=FALSE)



Background on Extreme Value Analysis (EVA)

Normal vs. GEV

# Find Pr{X <z} for X =0,...,20.
cdfNorm < — pnorm( 0:20)

cdfGum < — pgev( 0:20)

cdfFrech < — pgev( 0:20, shape=0.5)
cdfWeib < — pgev( 0:20, shape=-0.5)

# Now find Pr{X =z} for X =0,...,20.
pdfNorm < — dnorm( 0:20)

pdfGum < — dgev( 0:20)

pdfFrech < — dgev( 0:20, shape=0.5)
pdfWeib < — dgev( 0:20, shape=-0.5)



Background on Extreme Value Analysis (EVA)

Normal vs. GEV

par ( mfrow=c(2,1), mar=c(5,4,0.5,0.5))

plot( 0:20, cdfNorm, ylim=c(0,1), type="1", xaxt="n",
col="blue", lwd=2, xlab="", ylab="F(x)")

lines( 0:20, cdfGum, col="green", lty=2, lwd=2)

lines( 0:20, cdfFrech, col="red", lwd=2)

lines( 0:20, cdfWeib, col="orange", lwd=2)

legend( 10, 0.05,
legend=c("Normal", "Gumbel", "Frechet", "Weibull"),
col=c("blue", "green", "red", "orange"),
l1ty=c(1,2,1,1), bty="n", lwd=2)



Background on Extreme Value Analysis (EVA)

Normal vs. GEV

plot( 0:20, pdfNorm, ylim=c(0,1), typ="1", col="blue",
lwd=2, xlab="x", ylab="f (x)™)

lines( 0:20, pdfGum, col="green", lty=2, lwd=2)

lines( 0:20, pdfFrech, col="red", lwd=2)

lines( 0:20, pdfWeib, col="orange", lwd=2)



Example

Fort Collins, Colorado daily precipitation amount
http://ccc.atmos.colostate.edu/"odie/rain.html

e Time series of daily precipitation amount (in), 1900-1999.
e Semi-arid region.

e Marked annual cycle in precipitation
(wettest in late spring/early summer, driest in winter).

e No obvious long-term trend.

e Recent flood, 28 July 1997.
(substantial damage to Colorado State University)



Example

Fort Collins, Colorado precipitation

Fort Collins daily precipitation
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Example

Fort Collins, Colorado precipitation
Annual Maxima

Fort Collins annual maximum daily precipitation
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Example

Fort Collins, Colorado precipitation

How often is such an extreme expected?

e Assume no long-term trend emerges.
e Using annual maxima removes effects of annual trend in analysis.

e Annual Maxima fit to GEV.

# Fit Fort Collins annual maximum precipitation to GEV.
fit < — gev.fit( ftcanmax$Prec/100)

# Check the quality of the fit.
gev.diag( fit)



Example

Fort Collins, Colorado precipitation

Fit looks good (from diagnostic plots).

Parameter  Estimate (Std. Error)

Location ()  1.347 (0.617)
Scale (o) 0.533 (0.488)
Shape () 0.174 (0.092)




Example

Fort Collins, Colorado precipitation

# Is the shape parameter really not zero?

# Perform likelihood ratio test against Gumbel type.
fit0 < — gum.fit( ftcanmax$Prec/100)

Dev < — 2x(fitO$nllh - fit$nllh)

pchisq( Dev, 1, lower.tail=FALSE)

Likelihood ratio test for & = 0 rejects hypothesis of Gumbel type
(p-value = 0.038).



Example

Fort Collins, Colorado precipitation

95% Confidence intervals for £, using profile likelihood, are:
(0.009, 0.369).

-105

-106

-108 -107

Profile Log-likelihood

-109

Use gev.profxi and locator(2)
to find ClI’s.

-110

-111

-0.1 0.0 0.1 0.2 0.3 0.4

Shape Parameter



Example

Fort Collins, Colorado precipitation
Return Levels

# Currently must assign the class "gev.fit" to the

# fitted object, ’fit,’ 1n order to use the "extRemes"
# function, ’return.level’.

class( fit) < — "gev.fit"

fit.rl < — return.level( fit)

Return | Estimated Return | 95% CI

Period | Level (in)
10 2.81 (2.41, 3.21)
100 5.10 7(3.35, 6.84)




Example

Fort Collins, Colorado precipitation
Return Levels

CI's from return.level are based on the delta method, which as-
sumes normality for the return levels. For longer return periods (e.g.,
beyond the range of the data), this assumption may not be valid. Can
check by looking at the profile likelihood.

gev.prof ( fit, m=100, xlow=2, xup=8)

Highly skewed! Using locator(2), a better approximation for the
(95%) 100-year return level CI is about (3.9, 8.0).



Example

Fort Collins, Colorado precipitation
Probability of annual maximum precipitation at least as large as that
during the 28 July 1997 flood (i.e., Pr{max(X) > 1.54 in.}).

# Using the ’pgev’ function from the "evd" package.
pgev( 1.54, loc=fit$mle[1],

scale=fit$mle[2],

shape=fit$mle[3],

lower.tail=FALSE)

pgev( 4.6, loc=fit$mle[1],
scale=fit$mle[2],
shape=fit$mle[3],
lower.tail=FALSE)



Peaks Over Thresholds (POT) Approach

Let X4, Xo,... be an iid sequence of random variables, again with
marginal distribution, F'. Interest is now in the conditional probabil-
ity of X's exceeding a certain value, given that X already exceeds a
sufficiently large threshold, u.

1— F(u+y)
1 — F(u)

Pr{X >u+y|X > u} = yy >0

Once again, if we know F', then the above probability can be com-
puted. Generally not the case in practice, so we turn to a broadly
applicable approximation.



Peaks Over Thresholds (POT) Approach

If Pr{max{Xy,..., X,} <z} = G(z), where

G2 eXp{_ 1+ (zgﬂ)ll/ﬁ}

for some pu, & and o > 0, then for sufficiently large u, the distribution

(X — u|X > ul, is approximately the generalized Pareto distribution
(GPD). Namely,

—1/¢

9/ +

with ¢ = o+ &(u — p) (o, £ and p as in G(z) above).




Peaks Over Thresholds (POT) Approach

GPD
e Pareto type (£ > 0) o
heavy tal ° — Pareto (xi>0)
0 | —— Beta (xi<0) !
e Beta type (£ < 0) o Exponential (xi=0)
bounded above at <
U — 0-/5 %5
e Exponential type (£ = 0) °
light tail s
3|
o ||




Peaks Over Thresholds (POT) Approach

Hurricane damage
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Peaks Over Thresholds (POT) Approach

Hurricane damage

GPD
o Likelihood ratio test for
¢ =0 (p-value= 0.018)
95% CI for shape
g S . parameter using
° profile likelihood.
5 | 0.05 < & < 1.56

10 20 30 40 50 60 70



Peaks Over Thresholds (POT) Approach

Choosing a threshold

Variance/bias trade-off

Low threshold allows for more data (low variance).

Theoretical justification for GPD requires a high threshold (low bias).

gpd.fitrange( damage$Dam, 2, 7)




Peaks Over Thresholds (POT) Approach

Dependence above threshold

Often, threshold excesses are not independent. For example, a hot
day is likely to be followed by another hot day:.

Various procedures to handle dependence.

e Model the dependence.
e De-clustering (e.g., runs de-clustering).

e Resampling to estimate standard errors
(avoid tossing out information about extremes).



Peaks Over Thresholds (POT) Approach

Dependence above threshold

Phoenix airport
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Peaks Over Thresholds (POT) Approach

Dependence above threshold

# Fit without de-clustering.
phx.fit0 < — gpd.fit( -Tphap$MinT, -73)

# With runs de-clustering (r=1).

phx.dc < — dclust( -Tphap$MinT, u=-73, r=1,
cluster.by=Tphap$Year)

phxdc.fit0 < — gpd.fit( phx.dc$xdat.dc, -73)



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses

Event is a threshold excess (i.e., X > u).

Frequency of occurrence of an event (rate parameter), A > 0.
Pr{no events in [0,T]} = e

Mean number of events in [0,T] = AT

GPD for excess over threshold (intensity).



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Relation of parameters of GEV(u,0,£) to
parameters of point process (A,0".&).

e Shape parameter, &, identical.
o log \ = —%k)g (14 ¢=4)
o 0" =0+ &u—p

More detail: Time scaling constant, h. For example, for annual max-
imum of daily data, h ~ 1/365.25. Change of time scale, h, for
GEV(u,0,£) to b/

/= (B and wﬁ;{(ﬂ [1 (lf;)f”



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Two ways to estimate PP parameters

e Orthogonal approach (estimate frequency and intensity separately).

Convenilent to estimate.

Difficult to interpret in presence of covariates.
e GEV re-parameterization (estimate both simultaneously).

More difficult to estimate.

Interpretable even with covariates.



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Orthogonal Approach

< No. X; > 0.395
A = 365.25 - — No. X, ~ 10.6 per year

A

6 7 0.323, € ~ 0.212



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Point Process

[~ 1.384
& = 0.533
£ ~0.213




Risk Communication Under Stationarity

Unchanging climate

Return level, z,, is the value associated with the return period,
1/p. That is, z, is the level expected to be exceeded on average
once every 1/p years.

That is, Return level, z,, with 1/p-year return period is
2 =F"(1-p)
For example, p = 0.01 corresponds to the 100-year return period.

Easy to obtain from GEV and GP distributions (stationary case).



Risk Communication Under Stationarity

Unchanging climate

For example, GEV return level is given by

GEV pdf

0.3

0.2

0.1

0.0

o)
Zp:/l—g

Return level with (1/p)-year return period

[1— (= log(1—p))]"*

Similar for GPD, but must take A
into account.



Risk Communication Under Stationarity

Unchanging climate

Compare previous GPD fits (with and without de-clustering). Must
first assign the class name, “gpd.fit" to each so that the extRemes
function, return.level, will know whether the objects refer to a

GEV or GPD fit.

# Without de-clustering.
class( phx.fit0) < — "gpd.fit"
return.level ( phx.fit0, make.plot=FALSE)

# With de-clustering.
class( phxdc.fit0) < — "gpd.fit"
return.level ( phxdc.fit0, make.plot=FALSE)



Non-Stationarity

Sources

e Trends:
climate change: trends in frequency and intensity of extreme weather
events.

e Cycles:
Annual and/or diurnal cycles often present in meteorological
variables.

e Other.



Non-Stationarity

Theory

No general theory for non-stationary case.
Only limited results under restrictive conditions.

Can introduce covariates in the distribution parameters.



Non-Stationarity

Phoenix minimum temperature

Phoenix summer minimum temperature
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Non-Stationarity

Phoenix minimum temperature

Recall: min{Xy,..., X} = —max{—Xq,..., =X, }.

Assume summer minimum temperature in year t = 1,2, ... has GEV
distribution with:

pu(t) = po + pur - t

logo(t) =09+ 01t

§(t) = ¢



Non-Stationarity

Phoenix minimum temperature
Note: To convert back to min{ Xy, ..., X,},

change sign of location parameters. But note that model is

Pr{-X <z} =Pr{X > -2} =1—- F(—x).

[(t) =~ 66.170 + 0.196t
log 6(t) ~ 1.338 — 0.000¢

£~ —0.21
Likelihood ratio test

for 1 = 0 (p-value < 107°),
for o1 = 0 (p-value ~ 0.366).



Non-Stationarity

Phoenix minimum temperature
Model Checking. Found the best model from a range of models,
but is it a good representation of the data? Transform data to a

common distribution, and check the qg-plot.

1. Non-stationary GEV to exponential

. —1/E(1)
S )+

2. Non-stationary GEV to Gumbel (used by ismev/extRemes

a0 (5

Er —



Non-Stationarity

Phoenix minimum temperature

Model Checking. Found the best model from a range of models,

but is it a good representation of the data? Transform data to a
common distribution, and check the qg-plot.

Q—-Q Plot (Gumbel Scale): Phoenix Min Temp

Empirical




Non-Stationarity

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

Let X4, ..., X, bethe winter maximum temperatures, and 2, ..., Z,
the associated Arctic Oscillation (AO) winter index. Given Z = z,
assume conditional distribution of winter maximum temperature is
GEV with parameters

p(2) = po + 1 - 2

logo(z) =09+ 012

§(z) =€



Non-Stationarity

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

f(z) = 1526 + 1.175 - 2
log(z) =0.984 —0.044 - 2

£(z) = —0.186

Likelihood ratio test for p; = 0 (p-value < 0.001)
Likelihood ratio test for o3 = 0 (p-value & 0.635)



Non-Stationarity

Cyeclic variation

Fort Collins, Colorado precipitation
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Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation Orthogonal approach. First fit
annual cycle to Poisson rate parameter (T = 365.25):

. 2wt 27t
log A(t) = Ao+ Arsin (T) + A9 cos (7)

Giving

: ot ot
log A(t) ~ —3.72 + 0.22sin (%) — 0.85 cos (%)

Likelihood ratio test for Ay = Ay = 0 (p-value = 0).



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation Orthogonal approach. Next fit
GPD with annual cycle in scale parameter.

0go”(t) = og +oysin | — 03 08 | —
Giving
ot ot
log &*(t) &~ —1.24 + 0.09sin (%) —0.30 cos (%)

Likelihood ratio test for of = g%y = 0 (p-value < 10_5)



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

Annual cycle in location and scale parameters of the
GEV re-parameterization approach point process model with
t=1,2,...,and T"= 365.25.

p(t) = po + psin (2“) + f49 COS (2;3’5)

logo(t) = op + o1 sin (2ﬂ) + 02 Co8 (Q;t)

§(t) = ¢



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

fi(t) ~ 1.281 — 0.085sin (Z) — 0.806 cos ()

log 6-(t) ~ —0.847 — 0.123sin () — 0.602 cos ()

AN

&~ 0.182

Likelihood ratio test for p; = gy = 0 (p-value = 0).
Likelihood ratio test for o1 = g9 = 0 (p-value ~ 0).



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

Residual quantile Plot (Exptl. Scale)

empirical




Risk Communication (Under Non-Stationarity)

Return period/level does not make sense anymore because of chang-
ing distribution (e.g., with time). Often, one uses an “effective" re-
turn period/level instead. That is, compute several return levels for
varying probabilities over time. Can also determine a single return
period/level assuming temporal independence.

1 n
1 — — = Pr{max(Xy,..., X,) <z} = Epz',

where
i = 1—%%_1/& ,for y; > 0,
' 1 , otherwise

where y; = 1 + %(Zm — 1), and (p;, 04, &;) are the parametrs of the
point process model for observation 2. Can be easily solved for z,,
(using numerical methods). Difficulty is in calculating the uncertainty
(See Coles, 2001, chapter 7).
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