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Computational Techniques for Spatial Logistic Regression 

 

 Certain health outcomes depend on environmental factors that vary geographically (e.g. 

pollutants), and Epidemiological studies accounting for spatial variability are becoming 

increasingly popular.  Often, the outcome measured is binary (e.g. whether or not a certain 

disease is diagnosed).  Logistic regression with a built-in spatial function is useful for assessing 

risk at an individual level.  However, large sample sizes can lead to computational difficulties.  

Here, we give a synopsis of various computational techniques for spatial logistic regression 

discussed in Paciorek, 20071. 

 The general model considered is one where the response, Yi, is a Bernoulli variable with 

corresponding probability pi.  For example, pi may represent the probability that individual i is 

diagnosed with a certain disease.  It is assumed that pi depends on a vector of covariates xi (e.g. 

age, sex or other demographic variables), and a location si in two-dimensional space.  The logit 

of pi is represented as a standard linear model of the covariates xi, plus a function g of the 

spatial location, parameterized by θ: 

 

 

Paciorek focuses on various forms and estimation techniques for the smooth spatial function, g. 

1.) Generalized Linear Mixed Models (GLMM) 

 One approach is to treat the spatial function g as a random effect in a GLMM, gs = Zu.  If 

we assume Cov(u) = 𝜎𝑢
2𝑰, then Cov(Zu) = 𝜎𝑢

2𝒁𝒁𝒕, so that the matrix Z defines the spatial 

covariance structure.  It is suggested to construct Z based on the Matern covariance: 

 

 

where τ is the distance between two spatial locations. 

 To reduce the computational burden, one could build the covariance structure based on 

a set of pre-specified knot locations κk, k=1,…,K, with K < n.   Z is then constructed as                     

𝒁 =  𝝍𝜴−1/2 , where  



𝝍 = (𝐶(  𝒔𝒊 − 𝒌𝒌  )𝒊=𝟏,…,𝒏;𝒌=𝟏,…,𝑲, and 

𝜴 = (𝐶(  𝒌𝒊 − 𝒌𝒋  )𝒊=𝟏,…,𝒌;𝒋=𝟏,…,𝑲  . 

If one fixes ρ and ν in advance, estimation of 𝜎𝑢
2 is computationally manageable and several 

IWLS procedures exist for fitting such a GLMM.  Kamman and Wand2 suggest taking ν = 1.5 and  

                          .  This simplifies model estimation, but as gs is only parameterized by 𝜎𝑢
2, fixing 

ρ and ν sacrifices model flexibility. 
 

2.) Bayesian GLMM 

Another approach, similar to (1), also takes a random effect model gs = Zu but gives a 

prior distribution 𝒖 ~ 𝑵(𝟎, 𝜎𝑢
2𝑰) for the basis coefficients.  The model can then be fit via MCMC.  

In practice, on could include ρ and ν of the Matern covariance in the MCMC.  However, in this case 

recalculating the covariance matrix at each iteration can be computationally difficult. 

3.) Bayesian Spectral Basis (SB) 

Another approach uses basis functions and the spectral representation of a Gaussian 

Process (GP).  Here, the function g is approximates on a grid, s#, of size K=k1 X k2.  Again we 

represent g as 𝒈𝑠# = 𝒁𝒖,  but here we let Z be a matrix of orthogonal SB functions, while u is a 

vector of complex-valued basis coefficients, 𝑢𝑚 = 𝑎𝑚 + 𝑏𝑚 .  The Fourier basis is suggested for 

the matrix Z. 

Let the basis coefficients a and b have the prior distribution  

 

 
Then, the diagonal covariance matrix of the coefficients 𝛴𝜃can be constructed based on the spectral 
density of a GP covariance function.  For the Matern covariance, the spectral density, evaluated at 
frequency ω, is  
 

 

 

For m=(m1, m2), let 𝑉 𝑎𝑚1,𝑚2 = 𝑉 𝑏𝑚1,𝑚2 =
1

2
𝑓(𝜔𝑚1

1 , 𝜔𝑚2
2 ). 

Each observation location is then mapped to its nearest grid location through a 

transformation P, and then multiplied by σ, the standard deviation of the process: 𝒈𝑠 = 𝜎𝑷𝒈𝒔#.  

Model parameters 𝜎, ρ and ν are given prior distributions and estimated via MCMC.  The matrix Z 

need not be formed at each iteration, and the operation Zu can be done quickly using Fast Fourier 

Transforms, which helps computational efficiency. 



Application 

The methods discussed are applied to individual-level leukemia and brain cancer data in 

Kaohsiung,  Taiwan.  The metropolitan area contains four petroleum/petrochemical complexes, raising 

concern over possible adverse health effects.  Individuals are geocoded to the location where they have 

resided for the longest time.  The leukemia analysis contains 787 individuals, of whom 206 have been 

diagnosed with leukemia.  The brain cancer analysis contains 576 individuals, of which 165 have been 

diagnosed with brain cancer. 

A map of geocoded addresses is shown in Figure 1.   Open circles correspond to cases, while 

closed circles correspond to controls.  The boundaries of the four petrochemical complexes are given by 

a thick black line.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 gives the posterior mean probability of being a case for each grid cell using the spectral 

basis method (3).   Estimates for both are generally lower in the Northern region, further from the 

petrochemical complexes, and higher in the South. 

Figure 1: Location of cases and controls for (a) leukemia and (b) brain cancer 



 

Figure 2: Posterior probability of a case for (a) leukemia and (b) brain cancer 

A measure of deviance is used to evaluate various spatial models, including those described in (1) (PL-

PQL) and (3) (SB).  The model ‘Null’ corresponds to a non-spatial model.  Results are given in Table 1 

Table 1: Deviance for various spatial models, and a nonspatial model ('null') 

 

Note that the Null model beats all other models for the leukemia data, and model differences are 

negligible among the brain cancer data.  In fact, the null hypothesis that risk is constant spatially cannot 

be rejected in either case.  This may reflect the absence of a true spatial effect, or an insufficient sample 

size. 
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