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First, an illustration of a climate-data application of principal
components regression (PCR)

We have proxy data from tree rings for the period 1400—1980
(70 tree rings in total, only first 14 smoothed series shown in

plot)

We also have observational data on global temperature anomalies
since about 1850 (we only actually use the data 1902—-1980).

Question: how best to combine the two, to reconstruct global
temperatures back to 14007
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Global Temperature Anomalies
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We could regress the observed temperatures 1902—1980 on the
70 proxies, then use the fitted regression coefficients to recon-
struct temperatures backwards in time.

However, a regression including 70 variables based on 79 obser-
vations is doubtful....



Proposed New Method
. Calculate principal components analysis (PCA) of proxies.

. For given K > 1, regress true global temperature anomaly yy
on first K PCs for 1902—1980:

K
vy = Bo+ > Brug + e
k=1
. Form reconstructed y; for 1400—1980:
—~ K —~
gt = Bo+ D Brum
k=1

. Also compute weighted 25-year tapered MAs from g;, and
90% prediction intervals by the standard method used to
compute prediction intervals from linear regression

. Repeated for K =1,2,5,10, 20, 70.
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Six reconstructions of historical temperature anomalies
with pointwise 90% prediction intervals
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MOHTHERN HEMISPHERE

Data from tharmomatars (red) and from tras rings,
coralz, ice cores and historical records (blua).
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The original “hockey stick curve” (IPCC, 2001), based on Mann-

Bradley-Hughes (1998, 1999)



First PC, Centered to 1902-1980
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First PC recalculated, scaled and centered to 1902—1980
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Second PC, Centered to 1902-1980
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Second PC recalculated, scaled and centered to 1902—1980
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Summary

. Taking just the first PC (K = 1) seems useless — recon-
struction has very small variance

. However, even K = 2 is much better and shows a clear
“hockey stick” shape

. Results similar for K = 2,5,10. For K = 20,50 there is
evidence that the regression is overfitting in 1902—1980

. Analysis doesn’'t (yet) account for autocorrelation

. For a more comprehensive analysis of a different dataset, see
Li, Nychka and Ammann (Tellus 59A, 591-598, 2007)

12



Detection and Attribution

Basic idea: How can we measure the agreement between an ar-
tificially generated climate signal from a climate model, and real
data as measured by surface observation stations or satellites?

Both observations and model data aggregated into both the ob-
servational and model-generated data are aggregated into grid
cells, but several thousand of them.

e Example: Use 5° latitude and longitude grid cells, implying
36 latitude classifications (from 90°N to 90°S), and similarly
72 longitude increments, giving a total of 2,592 grid cells.

13



Use ¢ to denote the number of grid cells. One common kind
of study is to generate m possible *“response patterns’ z., k£ =
1,...,m using the climate model, each one an /-dimensional time
series corresponding to the response to one particular kind of
forcing factor. For example, 1 may be the response due to the
inCrease in carbon dioxide, x> the response due to changes in
sulfate aerosols, x3 the response due to change in solar forcing,
x4 the response due to volcanic eruptions. Assuming that the
observed climate signal is a linear combination of the components
due to different forcing factors, this suggests a model of the form

y = X5+ u,

whereyislx1l, X = (x1 ... xm)iSafxm matrix consisting of
all the modeled responses to forcing factors, and 3 is the vector
of coefficients which we are trying to estimate.
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Here 31 could be the main component of interest (the greenhouse
gas effect), while the full family of regression coefficients 31, 5o, ...
is needed to determine the influence of all the components.

We say that the greenhouse gas signal is detected if we can
calculate an estimate and standard error for (31, that lead to
rejection of the null hypothesis Hgp: (B1 = 0.

Given that we have detected a signal, we then estimate all the

coefficients 31, 8o, ... to attribute the observed climate change to
the different components.
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If the residual vector u has covariance matrix Cp;, then the opti-
mal generalized least squares (GLS) estimator of 3 is

8 = XToytx)txToyty, (1)
and
Var{3} = (xToytx)~1. (2)

The crucial difficulty is that Cpy is unknown and therefore we
need some reliable method of estimating it.

One way of deriving (1) and (2) from the standard ordinary least
squares (OLS) regression equations is to define a matrix P so
that PCny P! = I,, and then to write the regression equation in
the form Py = PX(3 4+ Pu where the covariance matrix of Pu is
Iy. The OLS estimator for g is then = (X! PTpPX)~1Xx1T Pl py
with covariance (X1PTpX)~1. But if P and Cy are invertible
we will have PTP = C3!, which leads to (1) and (2).
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Usual approach in climate studies: take model observations from
runs of the GCM in stationary conditions without forcing factors,
typically 1,000—2,000 years long. With observations Yy from N
years' of unforced model runs centered to O mean, estimate

N 1
Oy = =“YNYR. (3)
n

Difficulty with (3): typically £ > n and so Cp is a singular ma-
trix. Even though this in itself is not a fatal objection, e.q.
valid versions of (1) and (2) can be given involving generalized
inverses, the real difficulty is that with so many degrees of free-
dom in the covariance function, the low-amplitude components
of covariance are not reliably estimated, and therefore, any direct
attempt to apply (2) by substituting Cn for Cn will give poor
estimates for # and innaccurate estimates of uncertainty.
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Solution: define a k x ¢ transformation matrix P(%) corresponding
to the k largest EOFs (or principal components) of Yy, so that

P(”)C*NP("?)T — I, and then define the OLS regression equation
PRy = pW) x5 4 plE)y,
which leads to an estimator
5= (xTp! po) x)=1xTp)! ps), (4)
and estimated covariance

(XT P’ pr) x)-1. (5)
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Refinements (Allen and Tett 1999)

. Estimate of covariance likely underestimate, alternative
S E TA—1yv\—1vTA—1 —1 TA—1v\—1

C‘Nl estimate of Cy from EOF construction, C’NQ indepen-
dent estimate from separate run of the climate model.

. Correct for serial correlation

. Effect of random variation in X7

. How to choose k7 Proposed residual test

r2 = (y— XB)TC oy — XB) ~ x2_,n,

Rejection of r2 taken as indication that & is too large.
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Detection of human influence on twentieth-century

precipitation trends

Xuebin Zhang', Francis W. Zwiers', Gabriele C. Hegerl’, F. Hugo Lambert”, Nathan P. Gillett®, Susan Solomon®,

Peter A. Stott® & Toru Nozawa’

Human influence on climate has been detected in surface air
temperature ', sea level pressure®, free atmospheric temperature’,
tropopause height® and ocean heat content’. Human-induced
changes have not, however, previously been detected in precipita-
tion at the global scale'™ %, partly because changes in precipitation
in different regions cancel each other out and thereby reduce the
strength of the global average signal™". Models suggest that
anthropogenic forcing should have caused a small increase in
global mean precipitation and a latitudinal redistribution of pre-
cipitation, increasing precipitation at high latitudes, decreasing
precipitation at sub-tropical latitudes™'*"*, and possibly changing
the distribution of precipitation within the tropics by shifting the
position of the Intertropical Convergence Zone™. Here we com-
pare observed changes in land precipitation during the twentieth
century averaged over latitudinal bands with changes simulated by
fourteen climate models. We show that anthropogenic forcing has
had a detectable influence on observed changes in average precip-
itation within latitudinal bands, and that these changes cannot be
explained by internal climate variability or natural forcing. We
estimate that anthropogenic forcing contributed significantly to
observed increases in precipitation in the Northerm Hemisphere
mid-latitudes, drying in the Northern Hemisphere subtropics and
tropics, and moistening in the Southern Hemisphere subtropics
and deep tropics. The observed changes, which are larger than
estimated from model simulations, may have already had signifi-
cant effects on ecosystems, agriculture and human health in
regions that are sensitive to changes in precipitation, such as the
Sahel.

centres directly. We considered three groups of twentieth-century
simulations. One group (ANT) includes 27 simulations conducted
with 8 models forced with estimates of historical anthropogenic for-
cing only, including greenhouse gases and sulphate aerosols. A sec-
ond group (ALL) includes 50 simulations conducted with 10 models
forced with estimates of both historical anthropogenic and natural
external forcing, including volcanic aerosols and solar irradiance
change. A third group (NAT4) indudes 15 simulations conducted
with 4 models forced with natural external fordng only. Slightly
different configurations of historical forcing were used by different
modelling centres”. The make-up of each group and the number of
simulations used from each model is summarized in Supplementary

Table 1. Four modeds (ECHO-G, HadCM3, MIROC, PCM) contrib-

uted simulations to all three groups; the subsets of ANT and ALL
simulations from these models are referred to as ANT4 and ALLA
respectively.

Weanalysed trends in annual zonal mean predpitation anomalies
expressed relative to 1961-90. Trends in observed and simulated
precipitation were computed and compared quantitatively using
the ‘optimal fingerprint’ method®**, a regression procedure that
has been used in many previous detection studies’.

Linear precipitation trends from observations and the average of
multiple model simulations for 1925-1999 (Figs 1 and 2) exhibit
important areas of consistency in the spatial distribution of predp-
itation change. Both observations and models show that precipita-
tion increased in the Southern Hemisphere deep tropics and
subtropics, deareased in the Northern Hemisphere tropics and sub-
tropics, and increased in the Northern Hemisphere poleward of
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e Human influence on climate has been detected in surface air
temperature, sea level pressure, tropopause height, ocean
heat content, etc..... but not, so far, precipitation.

e Models predict...
— Anthropogenic forcing implies increase in global mean pre-
cipitation
— Increasing at high latitudes
— Decreasing at sub-tropical latitudes

e \We compare increases in land precipitation with changes in
14 climate models.
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fourteen climate models. We show that anthropogenic forcing has
had a detectable influence on observed changes in average precip-
itation within latitudinal bands, and that these changes cannot be
explained by internal climate variability or natural forcing. We

- T | - - - e

22



Trends over two periods
e 1925—-1999
e 1950—1999

Focus on 40°S—70°N

Climate models:

e ANT (27 simulations from 8 models), anthropogenic signals
only (GHGs+aerosols)

e ALL (50 simulations from 10 models), includes volcanic, solar

e NAT4 (15 simulations from 4 models), natural external forc-
ing only

Also look at ANT4, ALL4 (same as ANT, ALL but restricted to
same 4 models as are in NAT4)
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Methods

Analyzed trends in annual zonal mean precipitation anomalies
relative to 1961—-1990. Trends in observed and simulated pre-
Cipitation compared using “optimal fingerprint” methodology.

Linear trends from observations and averages of multi-model
simulations exhibit “important areas of consistency” in spatial
distribution of precipitation change. But

e Inconsistency on 20—40°N

e High level of uncertainty
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Figure 1| Comparison between observed (solid black) and simulated zonal
mean land precipitation trends for 1925-1999 (left) and 1950-1999
(right). Black dotted lines indicate the multi-model means from all available
models (ALL in a and d, ANT in b and e, and NAT as represented by
ALL-ANT inc and f), and black dashed-dotted lines those from the subset of

four models that simulated the response to each of the forcing scenarios
[ALL4, ANT4 and NAT4). The model -simulated range of trends is shaded.
Black dashed lines indicate ensemble means of ALL and ANT simulations
that have been scaled { SALL and SANT) tobest fit the observations based on
a one-signal analysis, Coloured lines indicate individual model mean trends.
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Figure 2 | 1925-1999 changes in observed and simulated precipitation
anomalies. Time series (left panel) of observed annual zonal mean
precipitation anomalies in 10° latitude bands { thin black trace) together with
ensemble mean annual zonal mean precipitation anomalies in the 50

available ALL simulations (thin blue trace). Straight dashed black and red
lines indicate the trends. Green (or yellow) shading identifies latitude bands

a0

=

with increasing (ordecreasing) trends in both observations and models; grey
shading indicates disagreement between observed and simulated trends. The
map (rght panel) indicates the different 10° latitude bands and whether
trends agree in sign. Areas with insufficient data are shown in white. Only
land precipitation data are used.
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e Estimated combined effects of anthropogenic and natural
forcings by regressing observed trends on ahtnropogenic trends

e Response to ALL or ANT was detected in observed trends,
but not response to ANT alone.

e [0 separate contribution from ANT and NAT, need ‘“two-
signal attribution analysis”
— Response to anthropogenic forcing separable from that
due to natural forcings and internal variability
— The two responses “can be reliably separated”, though
the Allen-Tett for internal residual consistency failed (un-
derestimate of internal variability?)
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Figure 3 | Results from detection and attribution analysis of zonal Fig. 1) The residual consistency test* passes except where indicated by open

precipitationanomalies. Scaling factorsand their 5-95% uncertainty ranges  circles (test passes after doubling the estimate of internal variability) or
are given {rom one-signal fingerprint detection analyses for ALL, ANT and  closed circles (indicating that the test does not pass even after doubling).
NAT4 forced signals as well as subsets of four models, ALL4 and ANT4 (left ~ Dashed error bars correspond to 5-95% uncertainty ranges when the model
panel) and from two-signal fingerprint detection analyses (right panel) for simulated variance is doubled.

ANT and NAT forced signals based on the ALL and ANT ensembles (see
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(a) all models (b) 4 models
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Supplementary Figure 7. Combined uncertainty ranges from 2-signal
attribution analysis. 90% uncertainty regions for NAT and ANT scaling factors for
the 1950-1999 trends are estimated jointly in a 2-way regression with signals
estimated as specified below. The error bars, which cross at the best estimates
of the scaling factors, indicate 5%-95% one-dimensional confidence limits. a) 2-
way regression with ALL and ANT signals estimated from all available
simulations, b) 2-way regression with ALL and ANT estimated from the four

GCMs that conducted separate ALL, ANT, and NAT simulations.
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Detection of anthropogenic influence is robust...
e Little uncertainty about sign of trend

e Robust to different constructions of dataset (e.g. gridding,
treatment of missing observations)

e Robust to use of signal patterns from subsets of models

e Consistent with “our understanding of mechanisms”

but...

e Internal variability estimate is smaller than variability esti-
mated from observations

e Discrepancy in magnitude of changes (generally, models un-
derestimate observed trends)
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Owerall, we find that anthropogenic forcing has had a detectable
and attributable influence on the latitudinal pattern of large-scale
precipitation change over the part of the twentieth century that we
were able to analyse. Our best estimate of the response to anthro-
pogenic forcing suggests (Fig. 1b) that anthropogenic forcing has
contributed approximately 50-85% (5-95% uncertainty) of the
observed 1925-1999 trend in annual total land precipitation between
40° N and 70° N {62 mm per century), 20—-40% of the observed drying
trend in the northern subtropics and tropics (07 to 30°N; a decrease of
98 mm per century ) and most (75-120%) of the moistening trend in
the southern tropics and subtropics (07 to 30°5; 82 mm per century).
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Methods (Allen and Stott 2003)

y = Y zfi+u = XB+u,
i=1

E{uu’}.

Cn

Prewhitening matrix P (k x n), E{Puu! PT} = I.

Estimate 5 minimizes

r?(B) = (PXB-Py)' (PXj - Py)
= ' pPlpq,
3 = (xX'Plpx) "xTPl'pPy = Fy.

Rows of F' are ‘"distinguishing fingerprints’. Also
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If we ignore uncertainty in estimate of noise variance,

3 ~ N[B,V(B)],
V(g = (x'plpx)—1

Equivalently,
B-)T(xXTPPTX)(B-B) ~ x4

Use to construct joint confidence intervals for G.

Also compute (one-dimensional) confidence interval for any linear
function ¢! 3.
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Accounting for uncertainty in estimated noise patterns

Estimation of P based on a set of noise realizations 371.

Take a second independent sample 372.
e v columns of ;)72 not independent
e DF based on )5 is vy < v.

e Typically use overlapping segments, but set v, to be 1.5

times the number of nonoverlapping segments

Vi) = ,
B-=B)"V(B BB ~ mFmu,,

K (Paal Pt )i.i

Tr2nin — Z ~ (’i_m)F/{—m,vg-

= (PYYAPTY, /oo
Final distributional result approximate.
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Total Least Squares

Early regression-based approaches to detection and attribution
(e.g. Hegerl et al. (1996), Allen and Tett (1999)) relied on
standard regression equations of the form

™m
Y = ) 8;X;+n (6)
J=1
where Y is the observational record (e.g. a vector of trend in
temperature means), Xi,..., X, are the signals from m climate
models, and n is an error term.

Instead of ordinary least squares, Allen and Stott (2003) pro-
posed to fit (6) by total least squares, which allows for errors
in the Xj’s as well as Y. Technique extended by Huntingford,
Stott, Allen and Lambert (2006).

We reformulate this based on a classical (non-Bayesian) treat-
ment of the errors in variables problem (Gleser 1981).
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Gleser’s formulation of errors in variables (EIV)

()= (2)(z) e
L42 Ug2 €i2

x;1 and x;» observations of dimensions p and r respectively, u;1
and u;o> are true unobserved signals, e;; and e;» noise with co-
variances oI, and o?I,. Also

uip = Buyy. (8)

MLE: choose B and u;q,...,u;, tO minimize

1 1
Q = ?Z(fvu — ;1) (21— win) + 52(%‘2 — Buy1) ' (zi0 — Bugy).
; ;

36
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Computing the MLE

Choose B to minimize

~

1
Q = @Z(wiz — Bxj1)! (I, + BBY) Y (250 — Bz;1). (10)

(also called generalized least squares by Gleser)
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Distribution Theory

Assume estimator B,, based on n observations, U1 the pxn matrix
whose columns are wu;1, ..., Ujp.

[Assumption A:] e; are i.i.d. random vectors with mean 0 and
common covariance matrix oI,

[Assumption C:] A = limp—oo n_lUlUlT exists, positive definite.

[Assumption E:] The cross-moments of the common distribu-
tion of the e; are identical, up to and including moments
of order 4, to the corresponding moments of the multivari-
ate normal distribution with the same mean and covariance
matrix.

Then the elements of the nl/2(B — B) have an asymptotic rp-
dimensional normal distribution with mean O and the covariance
between the (i,5) and (i, 4') elements is given by o?[c?A~1(I, +
B'B)" 1At 4+ A1l I+ BBT].
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Application to Climate 1
Identify x;» with Y (single observation, dimension r)

Identify z;1 with (X1,..., Xm)? (dimension rm). Also

B = (511} Bol, ... 5m1f,«). (11)

GLSE chooses 31, ..., 8m to minimize
(Y =3 8;X)1 (Y — X, 8iX5)
1+ 367 |

Equivalent to Allen and Stott (2003). In principle, we could use

Gleser’s theory to approximate the asymptotic (co-)variances of
the estimators. However, here n = 1...

S =

(12)
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Application to Climate 11

Apply Gleser’'s formulation to individual years. Assume an EOF
rotation applied so that x;5 is r-dimensional observation for year
1, x;1 1S rm-dimensional vector of model runs for year . Assume:

T2 uip +ejp  (rx 1),

i1 ui1 +ei1 (px 1),

e;o> ~ Independent with mean O and covariance matrix azlr,
e;1 ~ independent with mean 0 and covariance matrix o2,
wi» = Bu;; where B = ( B1I, Boly ... Bmly )

GLSE chooses 3y, ..., 8p to minimize

-1 (Y=Y 8X )T (Y - 5 8X55)
Q@ = 252 z@: 1+ Zﬂ? .

(13)

or let B be completely arbitrary??? (Needs rm < n, so we really
would have to use a low-order EOF decomposition for this.)
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Comments / Caveats

Gleser’'s theorem not directly applicable for various reasons,
but could adapt.

Covariance matrix C now needed for individual years, not
linear trends.

Could also examine whether forced model runs are consistent
with estimated covariances.

As presently formulated, doesn’t allow for (temporal) auto-
correlation.
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