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First, an illustration of a climate-data application of principal

components regression (PCR)

We have proxy data from tree rings for the period 1400–1980

(70 tree rings in total, only first 14 smoothed series shown in

plot)

We also have observational data on global temperature anomalies

since about 1850 (we only actually use the data 1902–1980).

Question: how best to combine the two, to reconstruct global

temperatures back to 1400?
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We could regress the observed temperatures 1902–1980 on the

70 proxies, then use the fitted regression coefficients to recon-

struct temperatures backwards in time.

However, a regression including 70 variables based on 79 obser-

vations is doubtful....
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Proposed New Method

1. Calculate principal components analysis (PCA) of proxies.

2. For given K ≥ 1, regress true global temperature anomaly yt
on first K PCs for 1902–1980:

yt = β0 +
K∑
k=1

βkukt + εt

3. Form reconstructed ŷt for 1400–1980:

ŷt = β̂0 +
K∑
k=1

β̂kukt

4. Also compute weighted 25-year tapered MAs from ŷt, and
90% prediction intervals by the standard method used to
compute prediction intervals from linear regression

5. Repeated for K = 1,2,5,10,20,70.
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Six reconstructions of historical temperature anomalies

with pointwise 90% prediction intervals

7



1400 1500 1600 1700 1800 1900 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

K=5

Year

R
ec

on
st

ru
ct

ed
 T

em
pe

ra
tu

re

Reconstruction K=5 with directly measured temperatures
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The original “hockey stick curve” (IPCC, 2001), based on Mann-

Bradley-Hughes (1998, 1999)
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First PC recalculated, scaled and centered to 1902–1980
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Second PC recalculated, scaled and centered to 1902–1980
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Summary

1. Taking just the first PC (K = 1) seems useless — recon-

struction has very small variance

2. However, even K = 2 is much better and shows a clear

“hockey stick” shape

3. Results similar for K = 2,5,10. For K = 20,50 there is

evidence that the regression is overfitting in 1902–1980

4. Analysis doesn’t (yet) account for autocorrelation

5. For a more comprehensive analysis of a different dataset, see

Li, Nychka and Ammann (Tellus 59A, 591–598, 2007)
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Detection and Attribution

Basic idea: How can we measure the agreement between an ar-

tificially generated climate signal from a climate model, and real

data as measured by surface observation stations or satellites?

Both observations and model data aggregated into both the ob-

servational and model-generated data are aggregated into grid

cells, but several thousand of them.

• Example: Use 5o latitude and longitude grid cells, implying

36 latitude classifications (from 90oN to 90oS), and similarly

72 longitude increments, giving a total of 2,592 grid cells.
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Use ` to denote the number of grid cells. One common kind

of study is to generate m possible “response patterns” xk, k =

1, ...,m using the climate model, each one an `-dimensional time

series corresponding to the response to one particular kind of

forcing factor. For example, x1 may be the response due to the

increase in carbon dioxide, x2 the response due to changes in

sulfate aerosols, x3 the response due to change in solar forcing,

x4 the response due to volcanic eruptions. Assuming that the

observed climate signal is a linear combination of the components

due to different forcing factors, this suggests a model of the form

y = Xβ + u,

where y is `×1, X = (x1 ... xm ) is a `×m matrix consisting of

all the modeled responses to forcing factors, and β is the vector

of coefficients which we are trying to estimate.
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Here β1 could be the main component of interest (the greenhouse

gas effect), while the full family of regression coefficients β1, β2, ...

is needed to determine the influence of all the components.

We say that the greenhouse gas signal is detected if we can

calculate an estimate and standard error for β1, that lead to

rejection of the null hypothesis H0 : β1 = 0.

Given that we have detected a signal, we then estimate all the

coefficients β1, β2, ... to attribute the observed climate change to

the different components.
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If the residual vector u has covariance matrix CN , then the opti-

mal generalized least squares (GLS) estimator of β is

β̂ = (XTC−1
N X)−1XTC−1

N y, (1)

and

Var{β̂} = (XTC−1
N X)−1. (2)

The crucial difficulty is that CN is unknown and therefore we

need some reliable method of estimating it.

One way of deriving (1) and (2) from the standard ordinary least

squares (OLS) regression equations is to define a matrix P so

that PCNP
T = I`, and then to write the regression equation in

the form Py = PXβ + Pu where the covariance matrix of Pu is

I`. The OLS estimator for β is then β̂ = (XTPTPX)−1XTPTPy

with covariance (XTPTPX)−1. But if P and CN are invertible

we will have PTP = C−1
N , which leads to (1) and (2).
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Usual approach in climate studies: take model observations from

runs of the GCM in stationary conditions without forcing factors,

typically 1,000–2,000 years long. With observations YN from N

years’ of unforced model runs centered to 0 mean, estimate

ĈN =
1

n
YNY

T
N . (3)

Difficulty with (3): typically ` > n and so ĈN is a singular ma-

trix. Even though this in itself is not a fatal objection, e.g.

valid versions of (1) and (2) can be given involving generalized

inverses, the real difficulty is that with so many degrees of free-

dom in the covariance function, the low-amplitude components

of covariance are not reliably estimated, and therefore, any direct

attempt to apply (2) by substituting ĈN for CN will give poor

estimates for β̂ and innaccurate estimates of uncertainty.
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Solution: define a κ×` transformation matrix P (κ) corresponding

to the κ largest EOFs (or principal components) of YN , so that

P (κ)ĈNP
(κ)T = Iκ, and then define the OLS regression equation

P (κ)y = P (κ)Xβ + P (κ)u,

which leads to an estimator

β̃ = (XTP (κ)TP (κ)X)−1XTP (κ)TP (κ)y (4)

and estimated covariance

(XTP (κ)TP (κ)X)−1. (5)
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Refinements (Allen and Tett 1999)

1. Estimate of covariance likely underestimate, alternative

V̂ar{β̃} = (XT Ĉ−1
N1
X)−1XT Ĉ−1

N1
CN2

C−1
N1
X(XT Ĉ−1

N1
X)−1

ĈN1
estimate of CN from EOF construction, ĈN2

indepen-

dent estimate from separate run of the climate model.

2. Correct for serial correlation

3. Effect of random variation in X?

4. How to choose κ? Proposed residual test

r2 = (y −Xβ̃)T Ĉ−1
N (y −Xβ̃) ∼ χ2

κ−m,

Rejection of r2 taken as indication that κ is too large.
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• Human influence on climate has been detected in surface air

temperature, sea level pressure, tropopause height, ocean

heat content, etc.....but not, so far, precipitation.

• Models predict...

– Anthropogenic forcing implies increase in global mean pre-

cipitation

– Increasing at high latitudes

– Decreasing at sub-tropical latitudes

• We compare increases in land precipitation with changes in

14 climate models.
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Trends over two periods

• 1925–1999

• 1950–1999

Focus on 40oS–70oN

Climate models:

• ANT (27 simulations from 8 models), anthropogenic signals
only (GHGs+aerosols)

• ALL (50 simulations from 10 models), includes volcanic, solar

• NAT4 (15 simulations from 4 models), natural external forc-
ing only

Also look at ANT4, ALL4 (same as ANT, ALL but restricted to
same 4 models as are in NAT4)
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Methods

Analyzed trends in annual zonal mean precipitation anomalies

relative to 1961–1990. Trends in observed and simulated pre-

cipitation compared using “optimal fingerprint” methodology.

Linear trends from observations and averages of multi-model

simulations exhibit “important areas of consistency” in spatial

distribution of precipitation change. But

• Inconsistency on 20–40oN

• High level of uncertainty
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• Estimated combined effects of anthropogenic and natural

forcings by regressing observed trends on ahtnropogenic trends

• Response to ALL or ANT was detected in observed trends,

but not response to ANT alone.

• To separate contribution from ANT and NAT, need “two-

signal attribution analysis”

– Response to anthropogenic forcing separable from that

due to natural forcings and internal variability

– The two responses “can be reliably separated”, though

the Allen-Tett for internal residual consistency failed (un-

derestimate of internal variability?)
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Detection of anthropogenic influence is robust...

• Little uncertainty about sign of trend

• Robust to different constructions of dataset (e.g. gridding,

treatment of missing observations)

• Robust to use of signal patterns from subsets of models

• Consistent with “our understanding of mechanisms”

but...

• Internal variability estimate is smaller than variability esti-

mated from observations

• Discrepancy in magnitude of changes (generally, models un-

derestimate observed trends)
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Methods (Allen and Stott 2003)

y =
m∑
i=1

xiβi + u = Xβ + u,

CN = E{uuT}.

Prewhitening matrix P (κ× n), E{PuuTPT} = Iκ.

Estimate β̃ minimizes

r2(β̃) = (PXβ̃ − Py)T (PXβ̃ − Py)

= ũTPTP ũ,

β̃ = (XTPTPX)−1XTPTPy = Fy.

Rows of F are “distinguishing fingerprints”. Also

r2
min ∼ χ2

κ−m.
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If we ignore uncertainty in estimate of noise variance,

β̃ ∼ N [β, V (β̃)],

V (β̃) = (XTPTPX)−1.

Equivalently,

(β̃ − β)T (XTPPTX)(β̃ − β) ∼ χ2
m.

Use to construct joint confidence intervals for β.

Also compute (one-dimensional) confidence interval for any linear

function cTβ.
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Accounting for uncertainty in estimated noise patterns

Estimation of P based on a set of noise realizations Ŷ1.

Take a second independent sample Ŷ2.

• v columns of Ŷ2 not independent

• DF based on Ŷ2 is v2 < v.

• Typically use overlapping segments, but set v2 to be 1.5
times the number of nonoverlapping segments

V̂ (β̃) =
FT Ŷ2ŶT2 F

v2
,

(β̃ − β)T V̂ (β̃)−1(β̃ − β) ∼ mFm,v2,

r2
min =

κ∑
i=1

(P ũũTPT )i,i
(P Ŷ2ŶT2 PT )i,i/v2

∼ (κ−m)Fκ−m,v2.

Final distributional result approximate.
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Total Least Squares

Early regression-based approaches to detection and attribution
(e.g. Hegerl et al. (1996), Allen and Tett (1999)) relied on
standard regression equations of the form

Y =
m∑
j=1

βjXj + η (6)

where Y is the observational record (e.g. a vector of trend in
temperature means), X1, ..., Xm are the signals from m climate
models, and η is an error term.

Instead of ordinary least squares, Allen and Stott (2003) pro-
posed to fit (6) by total least squares, which allows for errors
in the Xj’s as well as Y . Technique extended by Huntingford,
Stott, Allen and Lambert (2006).

We reformulate this based on a classical (non-Bayesian) treat-
ment of the errors in variables problem (Gleser 1981).
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Gleser’s formulation of errors in variables (EIV)

xi =

(
xi1
xi2

)
=

(
ui1
ui2

)
+

(
ei1
ei2

)
, (7)

xi1 and xi2 observations of dimensions p and r respectively, ui1
and ui2 are true unobserved signals, ei1 and ei2 noise with co-

variances σ2Ip and σ2Ir. Also

ui2 = Bui1. (8)

MLE: choose B and ui1, ..., uin to minimize

Q =
1

2σ2

∑
i

(xi1 − ui1)T (xi1 − ui1) +
1

2

∑
i

(xi2 −Bui1)T (xi2 −Bui1).

(9)
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Computing the MLE

Choose B to minimize

Q̃ =
1

2σ2

∑
i

(xi2 −Bxi1)T (Ir +BBT )−1(xi2 −Bxi1). (10)

(also called generalized least squares by Gleser)
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Distribution Theory

Assume estimator B̂n based on n observations, U1 the p×n matrix
whose columns are ui1, ..., uin.

[Assumption A:] ei are i.i.d. random vectors with mean 0 and
common covariance matrix σ2Ip+r

[Assumption C:] ∆ = limn→∞ n−1U1U
T
1 exists, positive definite.

[Assumption E:] The cross-moments of the common distribu-
tion of the ei are identical, up to and including moments
of order 4, to the corresponding moments of the multivari-
ate normal distribution with the same mean and covariance
matrix.

Then the elements of the n1/2(B̂ − B) have an asymptotic rp-
dimensional normal distribution with mean 0 and the covariance
between the (i, j) and (i′, j′) elements is given by σ2[σ2∆−1(Ip+
BTB)−1∆−1 + ∆−1]jj′ · [Ir +BBT ]ii′.
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Application to Climate I

Identify xi2 with Y (single observation, dimension r)

Identify xi1 with (X1, ..., Xm)T (dimension rm). Also

B =
(
β1Ir β2Ir . . . βmIr

)
. (11)

GLSE chooses β1, ..., βm to minimize

S =
(Y −

∑
j βjXj)

T (Y −
∑
j βjXj)

1 +
∑
β2
j

. (12)

Equivalent to Allen and Stott (2003). In principle, we could use

Gleser’s theory to approximate the asymptotic (co-)variances of

the estimators. However, here n = 1...
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Application to Climate II

Apply Gleser’s formulation to individual years. Assume an EOF
rotation applied so that xi2 is r-dimensional observation for year
i, xi1 is rm-dimensional vector of model runs for year i. Assume:

xi2 = ui2 + ei2 (r × 1),

xi1 = ui1 + ei1 (p× 1),

ei2 ∼ independent with mean 0 and covariance matrix σ2Ir,

ei1 ∼ independent with mean 0 and covariance matrix σ2Ip,

ui2 = Bui1 where B =
(
β1Ir β2Ir . . . βmIr

)
.

GLSE chooses β1, ..., βp to minimize

Q̃ =
1

2σ2

∑
i

(Yi −
∑
j βjXij)

T (Yi −
∑
j βjXij)

1 +
∑
β2
j

. (13)

or let B be completely arbitrary??? (Needs rm < n, so we really
would have to use a low-order EOF decomposition for this.)
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Comments / Caveats

• Gleser’s theorem not directly applicable for various reasons,

but could adapt.

• Covariance matrix C now needed for individual years, not

linear trends.

• Could also examine whether forced model runs are consistent

with estimated covariances.

• As presently formulated, doesn’t allow for (temporal) auto-

correlation.
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