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Optimal Signal Detection

This is based on Levine’s and Berliner’s (J. Clim 12, 564–574,
1999) reinterpretation of a series of papers by Hasselman, e.g.
J. Clim 6, 1957–1971 (1993) or Climate Dynamics 13, 601–611
(1997).

Suppose the observed climate signal Ψ satisfies

Ψ = ΨS + Ψ̃

interpreted as “signal+noise”. In practice, we usually assume
both Ψ and ΨS are in fact anomalies from some reference time
period. We also assume

• ΨS =
∑p
i=1 aigi where g1, ..., gp are p known signal patterns

and a1, ..., ap are unknown weights; also write ΨS = Ga.

• Ψ̃ is a vector of “errors” with mean 0 and covariance matrix
C.
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Optimal fingerprints (Hasselmann)

• di = fTi Ψ is “detector” (and fi is “fingerprint”)

• dS = (dS1 , ..., d
S
p ) = (fT1 Ψ, ..., fTp Ψ)

• Fingerprints fi constructed to maximize signal to noise ratio

ρ2(dS) = (dS)TD−1dS,

(i, j) entry of D is Cov(d̃i, d̃j) = Cov(fTi Ψ̃, fTj Ψ̃) = fTi Cfj.

• This optimization problem leads to f∗i = C−1gi, and hence

d∗ = GTC−1Ψ.

• Statistical significance of the signal determined through ρ2(d∗).
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Alternative formulation (Levine & Berliner)

• Regression equation

Ψ = Ga + Ψ̃

• GLS estimates â = (GTC−1G)−1GTC−1Ψ and hence Ψ̂
S

=

Gâ.

• Under Gaussian assumptions, â ∼ N [a, (GTC−1G)−1].

• Test H0 : a = 0 against Ha : a 6= 0: UMPI test of level α

rejects H0 if

T = ΨTC−1G(GTC−1G)−1GTC−1Ψ > χ2
p(1− α).

• But T = ΨT f∗(GTC−1G)−1(f∗)TΨ = ρ2(d∗). Therefore, the

two tests are equivalent.
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If C is unknown...

Use a sample estimate from historical data, but the χ2
p distribu-

tion may be a poor approximation unless sample size n is very

large.

Question: Is there an exact result, analogous to Hotelling’s T2?
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Attribution

Suppose we reject the null hypothesis of the previous section,
that there is no climate change signal above baseline. We cannot
immediately attribute the signal to any of g1, ..., gp. Instead:

• Two estimates — âM and âobs from climate model and ob-
servations

• Assume distributions âM ∼ N [aM , CM ] and âobs ∼ N [a, Cobs].
(N.B. Cobs = (GTC−1G)−1.)

• Test H0 : a = aM against H0 : a 6= aM

• Under H0 we have aobs − aM ∼ N [0, Cobs + CM ].

• Hence reject H0 if

(aobs − aM)T (Cobs + CM)−1(aobs − aM) > χ2
p(1− α).
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Issues

• C and CM unknown — estimate from climate model runs,

then construct consistency test using Hotelling’s T2 distribu-

tion (but not clear exactly how this works)

• Null and alternative hypotheses the wrong way round???

Usually one tries to control the probability of falsely rejecting

the null hypothesis, but that suggests the null and alternative

should be interchanged

• Test is usually performed only if initial “detection” test re-

jects a = 0. But that makes it harded to asses true signifi-

cance level.
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Alternatives

1. Analogy with bioequivalence — test H0 : a 6= aM against

Ha : a = aM . Idea of Brown, Casella and Hwang (JASA

1995). Define θ = a − aM , θ̂ = â − âM , Σ = Cobs + CM . If

θ̂ ∼ N [θ,Σ] then H0 is rejected if and only if the confidence

set{
θ : (θTΣ−1θ)1/2 ≤ zα + (θTΣ−1θ)−1/2(θ̂

T
Σ−1θ)

}
does not contain 0. (Need approximations for Σ unknown.)

2. Simple v. simple test: H0 : a = 0 versus Ha : a = aM . For

C known, most powerful α-level test rejects H0 when

TM =
aTMC

−1
obsâobs

(aTMC
−1
obsaM)1/2

> zα.
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Other general points about these procedures

• Covariance Estimation. Many difficulties in practice —

often use long-run control model runs to estimate C but

even this may not be adequate. (Note — subsequent to this

paper, Allen and Tett took this point further by advocating

two independent estimates of C, one for estimation and the

other for model validation.)

• Correlation-Based Detection.There is an analogy with meth-

ods based solely on correlations, especially when p = 1.

• Statistical v. Practical Significance. Possible that a ≈ 0

but H0 still rejected.
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Bayesian Climate Change Assessment

Levine, Berliner and Shea (J. Clim 13, 3805–3820, 2000)

Idea: Present and alternative Bayesian viewpoint of detection

and attribution procedures
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Introduction

Fundamental model of structure

Observations = g × a+ noise.

• 1961–1998 observational data (East Anglia) on 5o × 5o grid

• Climate model output (CSM) interpolated to same grid

– 300-year control run for estimating natural climate vari-

ability

– 120-year CO2 forced run in combination with control run

to construct CO2 fingerprint, written g.

See Figure 1 for g.
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Reasons for adopting a Bayesian approach

• Inability to adopt conventional practices for a cause and ef-

fect analysis, e.g. randomized trials

• Need to account for uncertainties in observational data as

well as in our knowledge of the how the climate system works

(though the present discussion is incomplete, e.g. in its treat-

ment of spatial and temporal correlations)

• Standard significance testing does not account for distinction

between statistical and practical significance; this is more

easily achieved within a Bayesian framework (this has been a

theme of much of Jim Berger’s work on Bayesian approaches

to hypothesis testing)
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Likelihood Function

• Observational data — yearly averages for 38 years, n =2592
spatial grid points, do not interpolate missing observations

• Tt is n-vector of “true” anomalies in year t = 1, ...,m; T is
mn-vector formed by concatenating all Tt.

• Yt is nt-vector of observed anomalies in year t (nt ≤ n because
of missingness); Y is concatenated vector.

• Write Yt|Tt, Dt ∼ N [XtTt, Dt] where Xt is nt × n incidence
matrix. Similarly Y|T, D ∼ N [XT,D].

• Suppose Tt|a, g,Σ ∼ N [ga,Σ].

• Unconditionally, Y |a, g, D,Σ ∼ N [XGa,D+XΣXT ] (G is vec-
tor of m replicates of g; Σ is space-time covariance matrix,
assumed separable)
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Some simplifications

Do not attempt to model uncertainties in D, Σ or g: concentrate

on a.

Standard GLS estimator

â(Y) =
HTV −1Y

HTV −1H

where H = XG and V = D +XTΣX; distribution of â(Y) is

â(Y) ∼ N [a, σ2]

where σ2 = (HTV −1H)−1.
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Prior distribution for a.

Assume a mixture prior:

π(a) ∼ pN [0, τ2] + (1− p)N [µA, τ
2
A]

Estimates of τ2, τ2
A, µA derived from climate model runs under

both control and forced conditions.
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Posterior distribution for a.

Mixture prior leads to mixture posterior

π(a|â) = p(â)N [µ(a|â), τ2(a|â)] + {1− p(â)}N [µA(a|â), τ2
A(a|â)],

µ(a|â) =
τ2

τ2 + σ2
â,

τ2(a|â) =
τ2σ2

τ2 + σ2
,

µA(a|â) =
τ2
A

τ2
A + σ2

â+
σ2

τ2
A + σ2

µA,

τ2(a|â) =
τ2
Aσ

2

τ2
A + σ2

,

and p(â) given by1 +

(
1− p
p

)√√√√τ2 + σ2

τ2
A + σ2

exp

{
−

1

2

(
(â− µA)2

τ2
A + σ2

−
â2

τ2 + σ2

)}−1

.
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“Detection and Attribution”

Define “detection set” D (around a = 0) and “attribution set”

A (around a = µA) to represent subsets of physical interest, then

• “Detection” is said to occur if Pr{a ∈ D|â} is small,

• “Attribution” is said to occur if both (i) Pr{a ∈ A|â} is large,

and (ii) 1− p(â) is large.
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“Robust Bayesian” viewpoint

Some prior parameters uncertain, especially µA, τA, so consider

families of priors

Γ = {π(a) : µ` ≤ µA ≤ µu; τ` ≤ τA ≤ τu} .

It’s possible to calculate the maximum and minimum of p(â) over

these subsets.
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Results

Considered four subsets of time period, (a) 1961–1998, (b)

1970–1998, (c) 1980–1998, (d) 1988–1998.

Here used prior p = 0.5.

Fig. 2: Prior, likelihood and posterior distribution for a, for each

of four time periods.

Table 1: Numerical summaries of posterior distribution

Conclusion: As p(a|â) moves closer to 0, stronger evidence that

climate model is correct.
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Fig 3: Posterior probability of p(â) versus prior probability p

Figs 4 and 5: Detection and attribution results based on D =

(−0.05,0.05), A = (µA − 0.05, µA + 0.05).

Table 2: Robust Bayesian results

Evem for time period (b), results are much stronger in favor of

both detection and attribution than for time period (a). Results

become overwhelming for time periods (c) and (d).
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Results based on alternative fingerprint from paper of Santer et

al (1995)

Fig 6: Graphic of g in this case

Table 3: Compare â for two models (those for Santer model

consistently smaller, but this is not surprising when comparing

two different vectors g)

Figs. 7–8: Posterior probabilities (less definitive for whole time

period, but the Santer fingerprint leads to very strong attribution

results in time period (d))
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Comparison with traditional results

See Table 4

Traditional results more likely to reject H0 when â very close to

0 (so Bayesian procedure more conservative for detection)

But situation “somewhat reversed” for attribution.
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Superensemble Based Climate Forecasting

Berliner and Kim (J. Clim 21, 1891–1910, 2008)
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• Develop statistical data models to combine ensembles from

multiple climate models in a fashion that accounts for uncer-

tainty

• “Superensemble experimental design”

“Superensembles” means ensembles from multiple climate

models

• Bayesian climate modeling and forecasting

• Forecasting of future hemispheric monthly-averaged surface

temperatures under different SRES scenarios
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Outline of approach (univariate)

Suppose we have scalar X, and let Ym be a vector of nm model
runs for the same variable from model m, m = 1, ...,M .

Construct distribution of Ym given X as follows:

• Given X, generate β|X ∼ N [X,σ2
β].

• Also generate “model biases” b1, ..., bM such that bm ∼ N [µm, σ2
bm

]
(independent for different m, though this assumption could
be relaxed)

• Ym|β, bm ∼ N [(β + bm)1m, σ2
Ym
Inm×nm]

• Hence combine to generate conditional density [Y|X] in terms
of parameters σ2

β, µm, σ
2
bm
, σ2
Ym
,m = 1, ...,M (prior distribu-

tions on all of those)

• Also have a model for evolution of X in time (e.g. autore-
gressive time series model)
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Multiple climate variables

Extend the univariate model using Kronecker products, e.g.

β|X ∼ N [X,Σβ],

bm ∼ N [µm,Σbm],

vec(Ym)|β,bm ∼ N [1nm ⊗ (β + bm), Inm×nm ⊗ΣYm
].
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Outline of Bayesian strategy:

Use superscripts p and f to denote “present” and “future”.

We have models for

• [Xf | Xp] (AR assumption)

• [Yp | Xp]

• [Yf | Xf ]

• Assume conditionally independent

• Hence deduce joint [Xf ,Yp,Yf | Xp]

• Hence [Xf | Xp,Yp,Yf ] by Bayes theorem
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Detection and Attribution Analysis for Precipitation

Reference: Zhang et al., Nature 2007 (see earlier detection and

attribution notes)
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Datasets

Latitude-band averages

• 75 years

• 11 ten-degree latitude bands (from 40oS to 70oN)

• One observational dataset

• Several forced model runs under different forcings (ANT,

ALL, NAT)

• Control runs — typically 6 control runs of 1000 years broken

up into 75-year segments
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Traditional D&A Analysis

1. For each of 11 latitude bands, linear trend is calculated by

OLS, including control runs

2. Covariance matrix from control run used to define the weights

for EOF decomposition

3. Truncate the EOFs, e.g. by Allen-Tett test (anticipate ≈ 5

EOFs retained

4. Same formation of linear trends and EOFs applied to forced

model runs to develop a set of comparison vectors.

5. Optimal weights for D&A defined by regressing observational

data EOFs on forcing model EOFs. Calculate standard er-

rors, tests of significance, etc.
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Estimation of the Covariance Matrix

The data we have available consists of 17 runs of 75 years’ data

from control runs of HADCM3. The data are 11-dimensional

because of the 11 latitude bands. The covariance matrix C is

defined to be the 11×11 covariance matrix of estimators of linear

trends over the 75 years.

Possible methods of estimating C include:
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Method 1

Calculate linear trends for each of the 11 latitude bands and

each of the 17 runs; then estimate C (say, as Ĉ1) as the sample

covariance matrix

Ĉ1 =
(B − B̄)T (B − B̄)

16
(1)

where B is the 17× 11 matrix of linear trend estimates and B̄ is

the mean of B over all rows.
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Method 2

Suppose Yijk is observation in year i from latitude band j and
control model run k. Suppose that, for each i and k, {Yijk, j =
1, ...,11} is an independent vector from N [0, V ], where V is the
11×11 covariance matrix associated with a single year of control
data. Linear trend estimator for region j and model run k given
by

Bjk =
75∑
i=1

wiYijk (2)

for weights wi. Then for any two regions j, j′,

Cov(Bjk, Bj′k) =
75∑
i=1

w2
i Vjj′. (3)

If V̂ is sample covariance matrix, estimate

Ĉ2 = (
∑

w2
i )V̂ . (4)
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Method 3

Correct for autocorrelation in method 2.

Assume h-order autocovariances negligible for |h| > H some given

H. Then we can modify (3) to

Cov(Bjk, Bj′k) =
H∑

h=−H

75∑
i=1

wiwi+hCov(Yijk, Y(i+h)j′k) (5)

where wi+h is defined to be 0 if i+ h < 1 or i+ h > 75.

If v̂hjj′ denotes sample covariance of Yijk and Y(i+h)j′k (com-

puted from all 17× 75 control years of data) then this implies a

covariance estimator Ĉ3 with entries

Ĉ3(j, j′) =
H∑

h=−H

75∑
i=1

wiwi+hv̂hjj′. (6)
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Looking for autocorrelations in the control runs

Sample autocorrelations and partial autocorrelations were calcu-

lated from the control data. They were considered statistically

significant if outside the range ± 2√
n

These results suggest that significant autocorrelations do not

persist beyond lag 2. However, as a test, the estimator Ĉ3 was

computed for each of H = 1,2,3,4,5.
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Testing one estimated covariance matrix against another

Advantage of Ĉ1 — makes no assumption at all about the au-
tocorrelation structure, but it’s based on a small sample (17).

Ĉ2 or Ĉ3 — far larger sample size, but maybe incorrect assump-
tions. Suggests a hypothesis test that of either H0 : C = Ĉ2 or
H0 : C = Ĉ3, treating Ĉ1 as a sample covariance matrix.

Korin (1968) proposed likelihood ratio test statistic

L = N

{
log

(
|Σ0|
|S|

)
− p+ tr(SΣ−1

0 )

}
(7)

where S is a p × p sample covariance matrix with N degrees of
freedom, and Σ0 is the null hypothesis value of the true covari-
ance matrix. Sampling distributions by Bartlett correction to
the χ2 test, an alternative approximation proposed by Korin, or
simulation.
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Application

Ĉ1 against Ĉ2 (as null hypothesis): reject under Bartlett’s ap-

proximation, accept under Korin’s or simulation (p-values .047,

.077, .11) but maybe not a clear-cut result.

However for Ĉ1 against Ĉ3 (as null hypothesis), with any of

H = 1,2,3,4,5, accept null hypothesis. As a specific example,

for H = 2, Bartlett’s, Korin’s and the simulation test yield p-

values 0.33, 0.42 and 0.47.

Conclusion: Ĉ3 seems fine, and the actual value of H doesn’t

matter.
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On the other hand, where we see real differences among the
estimators is in computing their inverses. As an example, the
diagonal entries of Ĉ−1

1 are:

202.1 50.5 8.1 7.5 4.9 44.4 18.4 55.3 124.0 338.0 136.3

The corresponding values for Ĉ−1
3 with H = 0− 5 are:

H=0: 29.9 20.6 5.1 4.9 5.5 11.1 11.7 27.4 50.5 29.7 24.5

H=1: 27.8 19.5 4.6 4.5 5.1 10.2 11.7 28.6 44.2 27.3 22.1

H=2: 28.7 20.6 4.8 4.6 5.1 9.7 11.5 31.6 40.7 28.4 24.8

H=3: 28.5 19.0 4.7 4.5 5.2 9.3 11.0 33.4 39.5 29.1 26.1

H=4: 29.1 20.5 4.5 4.4 5.2 8.9 11.1 33.5 39.8 29.2 25.4

H=5: 30.7 20.1 4.4 4.4 4.6 8.8 11.4 31.3 40.9 28.6 25.1

Evidently, there is much more stability in any of the versions of
Ĉ−1

3 (raising the question that maybe no dimension reduction is
actually needed??)
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Results Applied to D&A

58



Analysis using full data matrix (11 PCs)

Analyses using Ĉ1, Ĉ2, Ĉ3(H = 2)

Models β̂ SE t statistic P-value
ALL -0.043 0.354 -0.121 0.903
ANT 0.695 0.318 2.183 0.029
NAT -1.701 0.479 -3.550 0.000

Models β̂ SE t statistic P-value
ALL 1.272 0.584 2.179 0.029
ANT 3.495 0.519 6.730 0.000
NAT -3.950 0.736 -5.365 0.000

Models β̂ SE t statistic P-value
ALL 1.730 0.612 2.825 0.005
ANT 3.470 0.532 6.523 0.000
NAT -4.279 0.777 -5.507 0.000
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Analysis using 5 PCs

Analyses using Ĉ1, Ĉ2, Ĉ3(H = 2)

Models β̂ SE t statistic P-value
ALL 3.888 1.345 2.891 0.004
ANT 3.370 1.195 2.821 0.005
NAT 8.084 4.205 1.922 0.055

Models β̂ SE t statistic P-value
ALL 3.300 0.941 3.508 0.000
ANT 3.486 0.968 3.601 0.000
NAT 2.396 1.902 1.259 0.208

Models β̂ SE t statistic P-value
ALL 2.375 0.990 2.399 0.016
ANT 3.270 1.252 2.613 0.009
NAT 2.312 2.199 1.051 0.293
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Conclusions (preliminary)

Using the full data matrix, there is a lot of discrepancy between

the results based on Ĉ1 and either of Ĉ2 or Ĉ3, but the results

comparing Ĉ2 and Ĉ3 are quite close

Using 5 PCs, there is much better agreement between the three

covariance models, but results are quite different from those

using all 11 PCs

Based on all 11 PCs with either Ĉ2 or Ĉ3, we may claim to have

attribution for the all forcings model, but not for either ANT or

NAT.
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