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Optimal Signal Detection

This is based on Levine's and Berliner's (J. Clim 12, 564-574,
1999) reinterpretation of a series of papers by Hasselman, e.g.
J. Clim 6, 1957—1971 (1993) or Climate Dynamics 13, 601-611
(1997).

Suppose the observed climate signal ¥ satisfies
v = U4+ T
interpreted as ‘signal4+noise’”. In practice, we usually assume

both ¥ and ¥° are in fact anomalies from some reference time
period. We also assume

o U5 =P a;g, where gi,...,g, are p known signal patterns
and aq,...,ap are unknown weights; also write ¥° = Ga.

e U is a vector of “errors” with mean 0 and covariance matrix
C.



Optimal fingerprints (Hasselmann)
o d; =f!'W is “detector” (and f; is “fingerprint”)
o d° = (df,...,dy) = (¥, .. D)

e Fingerprints f; constructed to maximize signal to noise ratio
,02(dS) — (dS)TD_ldS,
(i,7) entry of D is Cov(d;,d;) = Cov(ff W, 1) = £l Cft;.

e This optimization problem leads to f* = C~1lg. and hence
d* =Gloc-1w.

e Statistical significance of the signal determined through p2(d*).



Alternative formulation (Levine & Berliner)

e Regression equation

v = Ga+ ¥

e GLS estimates 4 = (GTC-10)~1GTC-1¥ and hence ¥° =
Ga.

e Under Gaussian assumptions, a ~ N[a, (GICc—1G)~1].

e Test Hy: a = 0 against H, : a #= 0: UMPI test of level «
rejects Hg if
T = vlclacte ey tete e > xI(1 - w).

e But 7 = ¥t (GTC1a)1(f)TW = p2(d*). Therefore, the
two tests are equivalent.



If C is unknown...

Use a sample estimate from historical data, but the Xg distribu-

tion may be a poor approximation unless sample size n is very
large.

Question: Is there an exact result, analogous to Hotelling's T27?



Attribution

Suppose we reject the null hypothesis of the previous section,
that there is no climate change signal above baseline. We cannot
immediately attribute the signal to any of gi,...,gp. Instead:

e [Two estimates — aj; and agps from climate model and ob-
servations

e Assume distributions ay; ~ Nlays, Cps] and agps ~ Nla, Copsl-
(N.B. Cops = (G 1) 1)

e Test Hy: a=ay; against Hp: a# ayy,
e Under Hpy we have agps — ajps ~ N[O, Cops + Cyyl-
e Hence reject Hg if
(aobs — aM)T(Cobs + CM)_l(aobs —ay) > Xg(l — ).
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Issues

e (' and Cj;y unknown — estimate from climate model runs,
then construct consistency test using Hotelling’s T2 distribu-
tion (but not clear exactly how this works)

e Null and alternative hypotheses the wrong way round?7??
Usually one tries to control the probability of falsely rejecting
the null hypothesis, but that suggests the null and alternative
should be interchanged

e [est is usually performed only if initial ‘“detection’” test re-
jects a = 0. But that makes it harded to asses true signifi-
cance level.



Alternatives

1. Analogy with bioequivalence — test Hp : a # aj,; against
H, : a = a,;. Idea of Brown, Casella and Hwang (JASA
1995). Define @ =a—ay, 0 =a—ay, ¥ = Cops+ Cyy. If
0 ~ N[6,%] then Hj is rejected if and only if the confidence
set

{9 (0T "1)1/2 < 4, + (eTz—le)—l/Q(éTz—le)}

does not contain 0. (Need approximations for > unknown.)

2. Simple v. simple test: Hy: a= 0 versus Hy,: a = ay;. For
C' known, most powerful a-level test rejects Hy when
aMCobsaObS

(a obsa )1/2




Other general points about these procedures

e Covariance Estimation. Many difficulties in practice —
often use long-run control model runs to estimate C but
even this may not be adequate. (Note — subsequent to this
paper, Allen and Tett took this point further by advocating
two independent estimates of C, one for estimation and the
other for model validation.)

e Correlation-Based Detection. T here is an analogy with meth-
ods based solely on correlations, especially when p=1.

e Statistical v. Practical Significance. Possible that a ~ 0
but Hg still rejected.



Bayesian Climate Change Assessment
Levine, Berliner and Shea (J. Clim 13, 3805—3820, 2000)

Idea: Present and alternative Bayesian viewpoint of detection
and attribution procedures
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Introduction

Fundamental model of structure

Observations = g X a + noise.
e 1961-1998 observational data (East Anglia) on 5° x 5° grid

e Climate model output (CSM) interpolated to same grid
— 300-year control run for estimating natural climate vari-
ability
— 120-year CO» forced run in combination with control run
to construct CO» fingerprint, written g.

See Figure 1 for g.
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FIG. 1. Fingerprint pattern developed from NCAR CSM control and CO, runs on a 5% X 5 grid.
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Reasons for adopting a Bayesian approach

e Inability to adopt conventional practices for a cause and ef-
fect analysis, e.g. randomized trials

e Need to account for uncertainties in observational data as
well as in our knowledge of the how the climate system works
(though the present discussion is incomplete, e.g. in its treat-
ment of spatial and temporal correlations)

e Standard significance testing does not account for distinction
between statistical and practical significance; this is more
easily achieved within a Bayesian framework (this has been a
theme of much of Jim Berger’'s work on Bayesian approaches
to hypothesis testing)
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Likelihood Function

e Observational data — yearly averages for 38 years, n =2592
spatial grid points, do not interpolate missing observations

e T; is n-vector of “true” anomalies in year t = 1,...,m; T is
mn-vector formed by concatenating all T}.

e Y, is ns;-vector of observed anomalies in year ¢t (ny < n because
of missingness); Y is concatenated vector.

e Write Yt|Tt,Dt ~ N[XtTt,Dt] where X; IS ny X n incidence
matrix. Similarly Y|T,D ~ N[XT, D].

e Suppose Tila,g, > ~ Nlga, X].

e Unconditionally, Yl|a,g, D,~ ~ N[XGa, D+ X>~X"'] (G is vec-
tor of m replicates of g; > is space-time covariance matrix,
assumed separable)

14



Some simplifications

Do not attempt to model uncertainties in D, > or g: concentrate
on a.

Standard GLS estimator

H'v-1y

HTvV-1H

where H= XG and V = D 4+ X1 X; distribution of a(Y) is

a(Y) =

a(Y) ~ Nla,o?]
where 02 = (H{v—-1mg)-1.
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Prior distribution for a.

Assume a mixture prior:

m(a) ~ pN[0,72]+ (1 — p)Nlua,73]

Estimates of 72,72, 14 derived from climate model runs under
both control and forced conditions.
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Posterior distribution for a.

Mixture prior leads to mixture posterior

n(ala) = p(@)N[u(ala), 7%(al@)] + {1 — p(a)}N[pa(ala), 74 (ala@)],

72

—~

p(ala) =

r%(ald) =

. T .
palala) = > A 2a+ >
A

m%(ala) =

and p(a) given by

—1
1—p\ |7°+0® f 1(@—pa)?* @
(57 (G (3 (G- o]




“Detection and Attribution”

Define “detection set” D (around a = 0) and “attribution set”
A (around a = p4) to represent subsets of physical interest, then

e “Detection” is said to occur if Pr{a € Dla} is small,

e “Attribution” is said to occur if both (i) Pr{a € Ala} is large,
and (ii) 1 —p(a) is large.
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“Robust Bayesian’” viewpoint

Some prior parameters uncertain, especially u4, 74, SO consider
families of priors

r = {r(a): pr<pa<pu 70 <74 < Tuf.

It's possible to calculate the maximum and minimum of p(a) over
these subsets.
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Results

Considered four subsets of time period, (a) 1961-1998, (b)
1970-1998, (c) 1980-1998, (d) 1988—1998.

Here used prior p = 0.5.

Fig. 2: Prior, likelihood and posterior distribution for a, for each
of four time periods.

Table 1: Numerical summaries of posterior distribution

Conclusion: As p(ala) moves closer to 0, stronger evidence that
climate model is correct.
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priors and likelihoods

Data: 1988 - 1998 Data: 1980 - 1988 Data: 1970 - 1988 Data: 1961 — 1998
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Frg. 2. Likehhood function, prior distribution, and posterior distribution of a using our NCAR CSM fingerprint. For each of the time
periods {a}—(d): (left) the hikelihood (dotted hine) and prier distnbution components [anthropogenic CO, forcing (solid line); no anthropogenic

impacts (dashed line)], and (right) the posterior mixture distribution (11).
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TABLE 1. For each of the four time penods a—d: GLS estimate d of a and associated standard deviation o; mean and asseciated standard
deviation of a under the first component (no climate change) of the posterior mixture in (11); posterior mean and associated standard deviation

under the second component (CO, forcing) of the postenor muxture i (11); postenior weight | p{4), assuming pnior weight p = 0.3, 7 =
0.02, p, = 017, and 7, = 0.05.

Time period 1961-98 1970-98 1980-08 193398
d, o 0.059 0.022 0.093 0.025 0.160 0.031 220 0.041
pia | 4), t(a|d) 0.027 0.015 0.036 0.016 0.047 0.017 0.042 0.018
palald), 7ald) 0.077 0.020 0.108 0.022 0.164 0.026 0.200 0.032
pld) 0.671 0.062 0.0001 0.00001
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Fig 3: Posterior probability of p(a) versus prior probability p

Figs 4 and 5: Detection and attribution results based on D =
(—0.05,0.05), A= (g —0.05,u4 + 0.05).

Table 2: Robust Bayesian results

Evem for time period (b), results are much stronger in favor of
both detection and attribution than for time period (a). Results
become overwhelming for time periods (c) and (d).
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F1G. 3. Postenior mixture probability p(d) versus the prior mixture

probability p based on two data subsets: (top) 1961-98 and (bottom)

1970-98. The sohd hine mn each denotes the postenor probabihty

computed from the data. The dotted lines denote the upper and lower

bounds on the posterior probabilities from the robust Bayesian anal-
ysis.
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FI1G. 4. Postenior probability Pr{a € [—0.03, 0.05]|4) as a function
of the prior probability p based on two time periods: (top) 1961-08
and (bottom) 1970-98. The solid lines mn each denotes the postenior
probabilities for the primary prior. The dotted lines give the upper
and lower bounds on these probabihfies from the robust Bayesian
analysis.
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Fig. 5. Postenor probability Pria € [n, — 0.05, p, + 0.05]|4d) as
a fimction of the prior probability p based on two time periods: (top)
1961-98 and (bottom) 1970-98. The solid lines mm each denotes the

posterior probabilities for the data. The dotted lines give the upper
and lower bounds on these probabilities from the robust Bayesian
analysis.

25



TaBLE 2. Upper and lower bounds on data-based contnbutions to the odds ratio m favor of the CO,

the four data subsets.

1961-98 1970-98 1980-98

forced postenior model for each of

1938908

bt M b M i A

iH

1.3339 0.2174 23.1548 8.6383 8776 628324

71 150
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Results based on alternative fingerprint from paper of Santer et
al (1995)

Fig 6: Graphic of g in this case

Table 3: Compare a for two models (those for Santer model
consistently smaller, but this is not surprising when comparing
two different vectors g)

Figs. 7—8: Posterior probabilities (less definitive for whole time
period, but the Santer fingerprint leads to very strong attribution
results in time period (d))
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Santer Annual Finger Print C
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FiG. 6. Fingerprint pattern generated by Santer et al. (1995), after their Fig. 3b, on a 5% X 5° gnd.
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TaBIE 3. GLS estimates of a and associated standard dewviations for each of the four data subsets using the Santer et al. (1995)

fingerpnint.
1961-98 1970-98 1980-98 198898
Fingerprint d ey d ey d ey d ey
Santer 0.0394 0.017 0.052 0.019 0.1117 0.024 0.1508 0.031
CSM 0.0589 0.022 0.093 0.025 0.1612 0.031 0.2200 0.041
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F1G. 7. Postenior probabality Pr{a e [—0.05, 0.05] | 4) as a function
of the prior probability p based on two time perieds: (fop) 196198
and (bottom) 1970-98. The sohid lines in each denotes the posterior
probabihifies for the data. The dotted lines give the upper and lower
bounds on these probabilities from the robust Bayesian analysis.
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Comparison with traditional results

See Table 4

Traditional results more likely to reject Hg when a very close to
O (so Bayesian procedure more conservative for detection)

But situation ‘“somewhat reversed” for attribution.
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TABLE 4. Significance probabilities for traditional, non-Bayesian detection and attribution test results. Detection 13 suggested by very
small values; attribution may be suggested by moderate or large values.

1961-98 197098 1980-98 198E-08
CE5M Santer C5M Santer C5M Santer CSM Santer
Dietection 0.004 0.010 (0.0040 0.001 (0040 0.000 00040 0000
Attribunion (0.0040 0,000 (0.0040 0.000 0.744 0.037 02210 0.720
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Superensemble Based Climate Forecasting

Berliner and Kim (J. Clim 21, 1891-1910, 2008)
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Develop statistical data models to combine ensembles from
multiple climate models in a fashion that accounts for uncer-
tainty

“Superensemble experimental design”

“Superensembles’ means ensembles from multiple climate
models

Bayesian climate modeling and forecasting

Forecasting of future hemispheric monthly-averaged surface
temperatures under different SRES scenarios
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Outline of approach (univariate)

Suppose we have scalar X, and let Y,, be a vector of n,;, model
runs for the same variable from model m, m =1, ..., M.

Construct distribution of Y,, given X as follows:

Given X, generate 3|X ~ N[X, aé].
2]

bm

Also generate “model biases” b1, ...,bys such that by, ~ N{um, o
(independent for different m, though this assumption could
be relaxed)

Hence combine to generate conditional density [Y|X] in terms
of parameters ag,um,agm,ag,m,m = 1,...,M (prior distribu-
tions on all of those)

Also have a model for evolution of X in time (e.g. autore-
gressive time series model)
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Multiple climate variables

Extend the univariate model using Kronecker products, e.g.

BIX ~ N
bm i N
vec(Ym)|B,bm ~ N

:Xa ZIB] )
K me]a

1n, ® (B + bm), In,, xn, @ v, 1.
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Outline of Bayesian strategy:

Use superscripts p and f to denote “present” and “future”.

We have models for

X/ | XP] (AR assumption)

YP | XP]

Y/ | X]
Assume conditionally independent
Hence deduce joint [X/,YP, Y/ | XP]

Hence [X/ | XP,YP, Y/] by Bayes theorem
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FiG. 1. Hemispheric process model means. (a) NH and (b) SH
process model mean parameters (denoted by «'s in text). One
hundred ensembles generated from the posterior distribution are
plotted in each of the cases: observation period 1882-2001 (black)
and the forecast period 2002-97 for SRES scenarios A1B (red),
B1 (blue), and A2 (green), respectively.
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F1G. 2. Hemispheric process autoregression parameters. (a) NH
and (b) SH process model autoregression coefficients (denoted by
7's in text). One hundred ensembles generated from the posterior
distribution are plotted in each of the cases: observation period
1882-2001 (black) and the forecast period 2002-97 for SRES sce-
narios A1B (red). B1 (blue), and A2 (green). respectively.
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generated from the posterior distribution are plotted in each of
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40



18.5

18

17.5

17

16.5

16

annual temperature

15.5

15

14.5

1800 1950 2000 2050 2100
year

FiGc. 4. NH temperature reconstructions and forecasts. One
hundred ensembles generated from the posterior distribution are
plotted in each of the cases: observation period 1882-2001 (black:

observations are also plotted here) and the forecast period 2002-
07 for SRES scenarios A1B (red), Bl (blue), and A2 (green),

respectively.
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Fi1G. 5. SH temperature reconstructions and forecasts. One hun-
dred ensembles generated from the posterior distribution are
plotted in each of the cases: observation period 18382-2001 (black)
(observations are also plotted here) and the forecast period 2002-

07 for SRES scenarios A1B (red), Bl (blue), and A2 (green),
respectively.
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FiG. 6. NH temperature reconstructions. Same as in Fig. 4 but
based on a model assuming constant biases for all times in the
forecast period.
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TABLE 1. Means (std dev) of intercept and slope of regression of means on CO, based on 5000 realizations from the posterior

distribution.
Intercept Slope
NH SH NH SH

Observation 10.256 (0.103) 0.922 (0.078) 0.014 (3.4 x 107™) 0.011 (2.6 x 107™)
Forecast

AlB 12.383 (0.061) 11.842 (0.047) 6.76 x 107" (1.3 x 107 4.59 x 107" (8.8 x 1077

B1 12.631 (0.104) 12.199 (0.105) 578 x 107" (2.1 x l'l}_‘”) 372 x 1079 (2.2 % ID_[”)

A2 12.360 (0.109) 11.724 (0.040) 6.40 % 107" (1.9 x llD“”) 441 x 107" (7.2 % 10‘”5)
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TABLE 2. Means (std dev) of biases b' and b® based on 5000
realizations from the posterior distribution.

Scenario Period FCM CCSM
AlB NH  2002-31 21777 (0.2481) —0.1635(0.3326)
203251 29447 (0.3154) —0.1043 (0.4512)
205271 2.6964 (0.3556)  —0.1406 (0.4723)
2072-91 27923 (0.3431) —0.1228 (0.4615)
2092-97 25123 (0.4832)  —0.3215(0.5101)
SH  2002-31  0.6559(0.1031) —0.0771 (0.0234)
203251 0.3204 (0.1262) 0.3150 (0.0631)
2052-71  0.2550 (0.1416) 0.4121 (0.0843)
2072-91  0.2977 (0.1323) 0.4575 (0.0712)
200297 0.3643 (0.1853) 0.4352 (0.1323)
B1 NH  2002-31  2.1707 (0.1856) —0.1186 (0.3812)
2032-51  2.8037 (0.2015)  —0.0122 (0.4262)
2052-71 2.7395(0.2963) —0.1874 (0.4732)
207291 2.8523 (0.2831)  —0.2550(0.5213)
209297 25412 (0.3612)  —0.2743(0.6722)
SH  2002-31  0.6379(0.0812) —0.0239 (0.2502)
2032-51 04743 (0.1023) 0.2016 (0.3107)
205271  0.2505 (0.1274) 0.2929 (0.3212)
207291 03403 (0.1152) 0.3307 (0.3551)
209297 0.4123 (0.1891) 0.2133(0.4214)
A2 NH  2002-31  2.1001 {0.1525) No data
2032-51 27188 (0.1712)
2052-71  2.6367 (0.1842)
2072-91 25975 (0.1444)
209297 23245 (0.3132)
SH  2002-31 05132 (0.0523) No data
2031-51 01719 (0.0912)
2052-71  0.1023 (0.1142)
207291 0.2246 (0.1073)
200297 02812 (0.1412)
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TABLE 3. Means (std dev) of model error covariance matrices

based on 3000 realizations from the posterior distribution, where
2y, is for PCM and X, is for CCSM.

Scenario MNH variance  SH variance Covariance

AlB 0.144 (0.003)  0.068 (0.002)  0.012 (0.002)
0.338 (0.015)  0.206 (0.010)  0.101 (0.010)

g

3
Yy,
Y, 0.045(0.002) 0.032(0.002) 0001 (0.002)
B1 Yy, 0.174(0.005)  0.089(0.003)  0.014(0.002)
Y, 0326(0.016) 0.153(0.007) 0022 (0.006)
Y, 0.085(0.004) 0.048(0.002)  0.001 (0.002)
A2 Y, 0167 (0.003) 0.085(0.002)  0.012 (0.003)
-

0.095 (0.007)  0.055 (0.003)  —0.001 (0.003)

]
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Detection and Attribution Analysis for Precipitation

Reference: Zhang et al., Nature 2007 (see earlier detection and
attribution notes)
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Datasets

Latitude-band averages
e 75 years
e 11 ten-degree latitude bands (from 40°S to 70°N)
e One observational dataset

e Several forced model runs under different forcings (ANT,
ALL, NAT)

e Control runs — typically 6 control runs of 1000 years broken
up into 75-year segments
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Traditional D&A Analysis

. For each of 11 latitude bands, linear trend is calculated by
OLS, including control runs

. Covariance matrix from control run used to define the weights
for EOF decomposition

. Truncate the EOFs, e.g. by Allen-Tett test (anticipate = 5
EOFs retained

. Same formation of linear trends and EOFs applied to forced
model runs to develop a set of comparison vectors.

. Optimal weights for D& A defined by regressing observational
data EOFs on forcing model EOFs. Calculate standard er-
rors, tests of significance, etc.
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Estimation of the Covariance Matrix

The data we have available consists of 17 runs of 75 years’ data
from control runs of HADCM3. The data are l1ll-dimensional
because of the 11 latitude bands. The covariance matrix C is

defined to be the 11 x11 covariance matrix of estimators of linear
trends over the 75 years.

Possible methods of estimating C include:
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Method 1

Calculate linear trends for each of the 11 latitude bands and
each of the 17 runs; then estimate C (say, as C71) as the sample
covariance matrix

N (B — B)T(B — B)
1 = 1
1 6 (1)
where B is the 17 x 11 matrix of linear trend estimates and B is

the mean of B over all rows.
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Method 2

Suppose Y, is observation in year ¢ from latitude band j and
control model run k. Suppose that, for each 7 and k, {Yijk, ] =
1,...,11} is an independent vector from N[O, V], where V is the
11 x 11 covariance matrix associated with a single year of control
data. Linear trend estimator for region 5 and model run k given

by
75
Bjp = Y wYp (2)
i=1
for weights w;. Then for any two regions j, j/,
75
COV(Bjk,Bj/k) = 231 wz'zvjj" (3)
i=

If V is sample covariance matrix, estimate
Co = QG w)V. (4)
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Method 3
Correct for autocorrelation in method 2.

Assume h-order autocovariances negligible for |h| > H some given
H. Then we can modify (3) to

H 75
Cov(Bjy, Bji) = hZH zzlwiwi—l—hcov(}/;jkay(i—l—h)j’k) (5)
=—H 1=

where w;yp is defined to be O if t+h <1 o0re¢+ h>75.

If vy, denotes sample covariance of Yj;p and Y,y (com-
puted from all 17 x 75 control years of data) then this implies a
covariance estimator Cz with entries

613(]-7.7-,) — Z sz z—|—hvh]j (6)

h=—Hi1=1
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Looking for autocorrelations in the control runs

Sample autocorrelations and partial autocorrelations were calcu-
lated from the control data. They were considered statistically

significant if outside the range i\%

These results suggest that significant autocorrelations do not

persist beyond lag 2. However, as a test, the estimator 63 was
computed for each of H =1,2,3,4,5.
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Testing one estimated covariance matrix against another

Advantage of C; — makes no assumption at all about the au-
tocorrelation structure, but it's based on a small sample (17).

C> or C3 — far larger sample size, but maybe incorrect assump-
tions. Suggests a hypothesis test that of either Hy: C = C5 or
Hp: C = C3, treating (7 as a sample covariance matrix.

Korin (1968) proposed likelihood ratio test statistic

L = N{Iog <||S?|> —p—I—tr(SZOl)} (7)

where S is a p X p sample covariance matrix with N degrees of
freedom, and > is the null hypothesis value of the true covari-
ance matrix. Sampling distributions by Bartlett correction to
the X2 test, an alternative approximation proposed by Korin, or
simulation.
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Application

C‘l against 02 (as null hypothesis): reject under Bartlett's ap-
proximation, accept under Korin's or simulation (p-values .047,
.077, .11) but maybe not a clear-cut result.

However for C7 against C3 (as null hypothesis), with any of
H =1,2,3,4,5, accept null hypothesis. As a specific example,
for H = 2, Bartlett's, Korin's and the simulation test yield p-
values 0.33, 0.42 and 0.47.

Conclusion: C3 seems fine, and the actual value of H doesn't
matter.
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On the other hand, where we see real differences among the
estimators is in computing their inverses. As an example, the
diagonal entries of Cl_l are:

202.1 50.5 8.1 7.5 4.9 44.4 18.4 55.3 124.0 338.0 136.3

The corresponding values for C*gl with H =0 — 5 are:

H=0: 29.9 20.6 5.1 4.9 5.5 11.1 11.7 27.4 50.5 29.7 24.5
H=1: 27.8 19.5 4.6 4.5 5.1 10.2 11.7 28.6 44.2 27.3 22.1
H=2: 28.7 20.6 4.8 4.6 5.1 9.7 11.5 31.6 40.7 28.4 24.8
H=3: 28.5 19.0 4.7 4.5 5.2 9.3 11.0 33.4 39.5 29.1 26.1
H=4: 29.1 20.5 4.5 4.4 5.2 8.9 11.1 33.5 39.8 29.2 25.4
H=5: 30.7 20.1 4.4 4.4 4.6 8.8 11.4 31.3 40.9 28.6 25.1

Evidently, there is much more stability in any of the versions of
(751 (raising the question that maybe no dimension reduction is
actually needed??)
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Results Applied to D&A
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Analysis using full data matrix (11 PCs)

Analyses using Cq1,Co, C3(H = 2)

Models I} SE |t statistic | P-value
ALL |-0.043|0.354| -0.121 0.903
ANT 0.695 | 0.318 2.183 0.029
NAT |-1.701|0.479 | -3.550 0.000

Models 15} SE statistic | P-value
ALL 1.272 | 0.584 2.179 0.029
ANT 3.495 | 0.519 6.730 0.000
NAT |-3.950 | 0.736 | -5.365 0.000

Models I] SE |t statistic | P-value
ALL 1.730 | 0.612 2.825 0.005
ANT 3.470 | 0.532 6.523 0.000
NAT |-4.279 | 0.777 | -5.507 0.000
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Analysis using 5 PCs

Analyses using Cq1,Co, C3(H = 2)

Models 1] SE |t statistic | P-value
ALL | 3.888 | 1.345 2.891 0.004
ANT | 3.370 | 1.195 2.821 0.005
NAT | 8.084 | 4.205 1.922 0.055

Models G SE |t statistic | P-value
ALL | 3.300 | 0.941 3.508 0.000
ANT | 3.486 | 0.968 3.601 0.000
NAT | 2.396 | 1.902 1.259 0.208

Models I] SE |t statistic | P-value
ALL |2.375| 0.990 2.399 0.016
ANT | 3.270 | 1.252 2.613 0.009
NAT | 2.312 | 2.199 1.051 0.293
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Conclusions (preliminary)

Using the full data matrix, there is a lot of discrepancy between
the results based on C; and either of Cy or C3, but the results
comparing C» and C3 are quite close

Using 5 PCs, there is much better agreement between the three
covariance models, but results are quite different from those
using all 11 PCs

Based on all 11 PCs with either Cy or C3, we may claim to have
attribution for the all forcings model, but not for either ANT or
NAT.
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