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Approximate Bayesian Inference for latent Gaussian models by using
integrated nested Laplace approximations

Havard Rue, Sara Martino, and Niholas Chopin

The paper concerns the development of a fast approximate Bayesian inference in a subclass of structured
additive regression models, named latent Gaussian models. The common approach to inference for these
models is the Markov chain Monte Carlo (MCMC) sampling. Despite all the developments, MCMC
sampling remains painfully slow from the end user’s point of view.

The main contribution of the paper is the approach to inference based on integrated nested Laplace
approximations for the posterior marginals of the Gaussian field as an alternative approach to overcome
the drawbacks of the MCMC methods.

In the structured additive regression models, the response variable yi is assumed to belong to an
exponential family, where the mean µi is linked to a structured additive predictor ηi through a link
function g(·)

ηi = α+
nf∑
j=1

f (j)(uji) +
nβ∑
k=1

βkzki + εi (1)

The structured additive predictor ηi accounts the effects of various covariates in an additive way, where
{f (j)(·)} s are unknown, often nonlinear, functions of the covariates u , the {βk} represent the linear
effect of the covariates z and the εi s are unstructured terms. These models are very flexible and have
a lot of applications due to the different forms that {f (j)(·)} s can take. The latent Gaussian models
are those models which assign a Gaussian prior to α , {f (j)(·)} , {βk} and {εi} , which are called
latent Gaussian variables. The hyperparameters are not necessarily Gaussian. The latent Gaussian
models have a wide range of applications like linear regression, dynamic, spatial and spatiotemporal
models. In many practical applications the final model is a sum of various components, such as
spatial component, random effects, linear and smooth effects for some covariates. Sometimes linear
constraints on the latent Gaussian variables are imposed to separate the effects of different components
of the additive predictor {ηi} .

The paper provides fast deterministic approximations to all the posterior marginals for xi , the com-
ponents of the n -dimensional latent Gaussian vector x , and the posterior marginals for θj , the
components of the m -dimensional vector θ of hyperparameters, based on so-called Laplace approxi-
mation. The paper also discusses how to use these marginals to provide adequate approximations to
the posterior marginals for subvectors xS for any subset S , how to compute the marginal likelihood
and the deviance information criterion (DIC) for model comparison, and how to compute Bayesian
predictive measures.

The posterior of (x, θ) given y is

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi, θ)

∝ π(θ)|Q(θ)|n/2 exp

[
−1

2
xTQ(θ)x +

∑
i∈I

log{π(yi|xi, θ)}

]
.

π(x|θ) is the Gaussian prior on the latent variables, assumed having zero-mean and non-singular
precision matrix Q(θ) . The distribution for the nd response variables y = {yi : i ∈ I} is denoted by
π(y|x, θ2) and yi ’s are assumed conditionally independent given x and θ .

Often, the latent Gaussian vector x has a very large dimension n , which increases the computational
complexity of the inference. The latent Gaussian models considered in the paper are assumed to be
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Gaussian Markov random fields (GMRF), which have sparse precision matrices, and to have a small
number of hyperparameters, dim(θ) = m ≤ 6 . These two properties are usually required for fast
inference.

When the GMRF is subject to additional linear constraints Ax = e for a k×n matrix A of rank k ,
a sample xc from the constrained GMRF can be obtained from a sample x from the unconstrained
GMRF by using “conditioning by kriging” xc = x−Q−1AT (AQ−1AT )−1(Ax− e) .

The aim of the paper is to approximate the posterior π(xi|y) , π(θ|y) , and π(θj |y) .

The common approach to inference for latent Gaussian models is MCMC sampling. However, the
MCMC methods tend to exhibit poor performance when applied to such models, firstly, because the
components of the latent field x are strongly dependent on each other and, secondly, x and θ are
also strongly dependent, when n is large. The paper discuss alternative approaches to try to overcome
these problems, including the Gaussian approximations to the full conditional of x and joint updates
of both θ and x . The central part of the paper is the novelty of the approximate inference using
the integrated nested Laplace approximations (INLA) for approximating the posterior marginals of the
latent Gaussian field, π(xi|y), i = 1, . . . , n .

The posterior marginals of interest are

π(xi|y) =
∫
π(xi|θ,y)π(θ|y)dθ,

π(θj |y) =
∫
π(θ|y)dθ−j ,

and the key feature of the new approach is to use this form to construct nested approximations

π̃(xi|y) =
∫
π̃(xi|θ,y)π̃(θ|y)dθ, (2)

π̃(θj |y) =
∫
π̃(θ|y)dθ−j . (3)

The fast inference is based on the following Laplace approximation

π̃(θ|y) ∝ π(x, θ,y)
π̃G(x|θ,y)

∣∣∣∣
x=x∗(θ)

(4)

where π̃G(x|θ,y) is the Gaussian approximation to the full conditional of x , and x∗(θ) is the mode
of the full conditional x , for given θ .

π̃G(x|θ,y) ∝ exp

{
−1

2
xTQx +

∑
i∈I

gi(xi)

}

with gi(xi) = log{π(yi|xi, θ)} . The Gaussian approximation is obtained by matching the modal
configuration and the curvature at the mode. The mode is computed iteratively by using a Newton-
Raphson method (the Fisher scoring algorithm).

For the posterior marginals of the latent field, it is proposed to start from π̃G(x|θ,y) and approximate
the density of xi|θ,y with the Gaussian marginal derived from π̃G(x|θ,y) , i.e.

π̃(xi|θ,y) = N{xi;µi(θ), σ2
ii(θ)}. (5)

where µ(θ) is the mean vector of the Gaussian approximation, whereas σ2(θ) is the covariance matrix.

To obtain the marginals of interest for the latent field, the above approximation can be integrated
numerically with respect to θ (see (2))

π̃(xi|y) =
∑
k

π̃(xi|θk,y)× π̃(θk|y)×∆k. (6)

The INLA is computed in three steps.

1. Approximate the posterior marginal of θ by using the Laplace approximation (4).
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2. Compute the Laplace approximation, or simplified Laplace approximation, of π(xi|θ,y) for se-
lected values of θ to improve the Gaussian approximation (5).

π̃LA(xi|θ,y) ∝ π(x, θ,y)
π̃GG(x−i|xi, θ,y)

∣∣∣∣
x−i=x∗−i(xi,θ)

. (7)

The optimization step in computing π̃GG(x−i|xi, θ,y) is avoided by approximating the modal
configuration

x∗−i(xi, θ) ≈ Eπ̃G(x−i|xi).

The right-hand side is evaluated under the conditional density that is derived from the Gaussian
approximation π̃G(x|θ,y) .

The simplified Laplace approximation π̃SLA(xi|θ,y) is derived form the series expansion of
π̃LA(xi|θ,y) around xi = µi(θ) and keeping the terms up to the third order. This allows to
correct the Gaussian approximation π̃G(xi|θ,y) for location and skewness. The benefit is purely
computational. The simplified Laplace approximation appears to be highly accurate for many
observational models.

3. Combine steps 1 and 2 by using the numerical integration (6).

Obviously, the only one way to assess with certainty the approximation error of the INLA method is to
run an MCMC sampler for infinite time. Two strategies to asses the approximation error are proposed.

1. Verify overall approximation π̃G(x|θ,y) , for each θk that is used in the numerical integration.
This is done by computing pD(θ) , the effective number of parameters, defined by Spiegelhalter
et al. (2002). Since x given y and θ is roughly Gaussian, pD(θ) is conveniently approximated
by pD(θ) ≈ n − tr{Q(θ)Q∗(θ)−1} , the trace of the prior precision matrix times the posterior
covariance of the Gaussian approximation. The smaller pD , the better.

2. Comparing elements of a sequence of increasingly accurate approximations, i.e. the Gaussian
approximations (5), followed by the simplified Laplace approximation, then by the Laplace ap-
proximation (7). Specifically, the integrated marginals (6) are computed on the bases of both the
Gaussian approximation and the simplified Laplace Laplace approximation, and compute their
symmetric Kullback-Leibler divergence. If the divergence is small, then both approximations are
considered acceptable. Otherwise, compute the divergence based on the Laplace approximations
(7) and the simplified Laplace approximations. If this divergence is small, simplified Laplace and
Laplace approximations appear to be acceptable; otherwise the Laplace approximation is claimed
to be the best estimate, but it could be problematic. The last option has not happened in the
examples ran by the authors.

The paper provides examples of applications of the INLA approach, with comparisons to results ob-
tained from intensive MCMC runs. Comparisons are expressed in terms of computational time. The
new approach provides precise estimates in seconds and minutes, even for models involving thousands
of variables, in situations where any MCMC computation typically takes hours or even days.

The authors acknowledge that their work goes against a general trend of favoring exact Monte Carlo
methods over non-random approximations. However, the authors point is that, in the specific case of
latent Gaussian models, the orders of magnitude involved in the computational cost of both approaches
are such that this idealistic point of view is simply untenable for these models. As A. Gelman - professor
of statistics at Columbia University - noted, in addition to being a competitor to Gibbs and Metropolis
algorithms, the INLA ultimately can be used to make these stochastic algorithms more efficient.

The advantages of the INLA approach are not only computational. It also allows for greater automa-
tion and parallel implementation. A challenge remains with problems with many hyperparameters,
which are often themselves modeled hierarchically. The computational cost in the INLA approach
is exponential in the number of hyperparameters m . In most applications m is small (≤ 6 ), but
applications where m goes up to 10 do exist.

In conclusion, the authors view is that the prospects of the work are more important than this work
itself. Near instant inference will make latent Gaussian models more applicable, useful and appealing
for the end user.
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