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Disaster Risk Models

Natural disasters are an unavoidable part of the environment from which no location can escape as was seen
from Hurricane Katrina in Louisiana to the vast tsunamis that racked Southeast Asia and the massive floods
in Indonesia. In each of these natural disasters there was substantial loss in human life as well as social,
economic, and environmental assets. Had there been a better infrastructure for dealing with such disasters
then perhaps much of the losses associated with these disasters could have been reduced. Many international
agencies such as the United Nations have begun looking into building such an effective framework using dis-
aster risk management. However, such an infrastructure is costly for a nation, although implementation
is less costly than paying for cleanup and rebuilding after a disaster has struck, not to mention the many
lives that could be saved if effective measures were in place. The Hyogo Framework for Action 2005-2015
was published in January 2005 as a collaborative effort by many governments and international agencies to
define a set of risk management priorities. However, in order to reduce exposure and vulnerability to natural
hazards, high risk countries and locations for natural disasters must be identified. Building such disaster
risk models is still in its early stages with two of the first such global models being the Disaster Risk Index
(DRI) which was developed by the United Nations Environment Program (UNEP) Division of Early Warn-
ing and Assessment Global Resource Information Database project under contract with the United Nations
Development Program, and the Hoptspots project which was a collaboration between Columbia University
and the World Bank. Many major organizations involved in disaster risk management regularly use the
DRI and Hotspots results for country prioritization (Mosquera-Machado, 2009). Although some of the data
used to build these models is the same, the methodologies behind them are quite diverse. In a paper by
Mosquera-Machado and Dilley these two models are standardized to be on the same scale and compared to as-
sess how well they identify high risk areas and to determine how future disaster risk models can be improved.

The DRI was created with the overarching objective of demonstrating the ways in which development
contributes to human vulnerability and risk. Due to the limited availability of usable geophysical and hy-
drometeorological data to model each hazard’s comparative extent and potential severity, the natural hazards
that are identified by the DRI are earthquakes, cyclones, floods, and droughts. These hazards tend to be
the most dominant in association with records of loss of life accounting 94.43% of those killed by natural
disasters. Separate models for each of these hazards were fit using similar methods. The data for this
model comes mostly from the International Emergency Disasters Database (EM-DAT) and various other
international databases with data collected from 1980 to 2000. A simple measure of relative vulnerability
(the ratio of mortality versus the exposed population) was used with disaster mortality being calculated as
a product of hazard, population exposed, and vulnerability variables (often depending on the socio-political-
economical context of the population) listed in Table T.2 in the Appendix. There were two underlying
hypotheses on which the statistical analysis for the DRI was based, risk can be understood in terms of the
number of victims of past hazardous events, and the equation of risk follows a multiplicative model where
K = C × (PhExp)α × V α1

1 × V α2
2 × . . .× V αp

p where k is the number of persons killed by a certain type of
hazard, C is the multiplicative constant, PhExp is the physical exposure, Vi are the socio-economic pa-
rameters identified in Table T.2, αi is the exponent of Vi , which can be negative. A log transformation was
used on the multiplicative model in order to generate a linear relationship between logarithmic sets of values
so that a linear regression could be used, ln(K) = ln(C)+α(PhExp)+α1ln(V1)+α2ln(V2)+ . . .+ αpln(Vp) .
Physical exposure for the DRI model was calculated two different ways, one way was by multiplying the haz-
ard frequency, which was calculated for different strengths of event, by the population living in each exposed
area PhExp =

∑
Fi×Popi , where PhExp is the total physical exposure of a country (the sum of all phys-

ical exposure in the country), Fi is the annual frequency of a specific magnitude event in one spatial unit,
and Popi is the total population living in the spatial unit. When data on the annual frequency of a specific
magnitude event (such as earthquakes) was not available then physical exposure was found by taking the
exposed population and dividing by the number of years when an even had taken place, PhExp =

∑ Popi

Yn

where Yn is the length of time in years. The socio-economic covariates were averaged over the 21 year pe-
riod before doing a log transformation. Covariates that were expressed as a percentage were converted into
odds for the model, V ′i = Vi

1−Vi
. In addition to these models an overall model summing all calculated deaths

was created for a multi-hazard vulnerability index. Results from these regressions are given in the Appendix.



The Hotspots project was created with a similar goal as the DRI to provide a relative representation of
disaster risk, but there are many notable differences. It was created after the DRI and calculates the rela-
tive risks for six natural hazards, as opposed to the DRI’s four, earthquakes, volcanoes, landslides, floods,
drought, and cyclones. Also, rather than calculating a national risk for each country, Hotspots uses a global
gridding system of 2.5’ x 2.5’ (25 sq kilometers) latitude-longitude grid cells known as the Gridded Popu-
lation of the World (GPW). Most countries had population data which the GPW transformed into a grid
of spherical quadrilaterals where each cell contains an estimate of the population and population density
on land. Cells with a population density less than 5 persons per square kilometer (ie, cells < 105 people)
and without significant agriculture were not included as the total casualties and agricultural losses would
be quite small and these low density cells could potentially dominate the results if included. Population
estimates for 1990, 1995, and 2000 for 375,000 sub-national administrative units were used (Dilley et al).
Much of the global hazard data for this was collected from the same sources as the DRI over a similar period
of time from 1981 to 2000; sources can be seen in Table 2 in the Appendix. The actual risk assessment was
calculated first by finding the total global losses from 1981-2000 (ie, number of fatalities, economic losses,
etc.) by hazard h , Mh , and the total population estimated to live in the area affected by the hazard in
2000, Ph . From this a simple mortality rate for this hazard can be computed as rh = Mh

Ph
which, assuming

that 1981-2000 is representative of a typical 20-year period for that hazard in that area, is the estimate of
the proportion of persons killed in the exposed area during a 20-year period. A location-specific expected
mortality was computed for each grid cell i that falls into the hazard zone for h , Mhi = rh×Pi . A kind of
stratification by the various combinations, denoted by j, of region and country-wealth status (see Tables 3
and 4 in the Appendix for these combinations) was applied to get estimated mortality as Mhij = rhj × Pi .
A weight, Whi , was applied to each of the six hazards to reflect the number of times the hazard has hit
the region and the degree of severity with which it was hit, M ′hij = rhj ×Whi × Pi . However, the results
from these accumulated mortalities for each hazard cannot be summed to get a multi-hazard disaster risk
hotspot index as measurements for different hazards are on different scales and summing could inadvertently
cause one hazard to dominate if it happens to be on a bigger scale. The estimated mortalities for each
hazard were therefore standardized so that the total mortality for each region summed to the total that was
found in the EM-DAT dataset used for this analysis which results in a mortality for hazard h in cell i with
region/wealth-class combinations j as M∗hij = M ′hij ×

Mhj∑n
i=1M

′
hij

with n being the number of grid cells in
the hazard zone for h. The mortality-weighted multi-hazard disaster risk hotspot index was then calculated
as Y ∗i =

∑6
h=1M

∗
hij . These measures were then converted into an index ranging from 1 to 10 to classify

those grid cells that were used to make the index into deciles in order to provide a relative representation of
disaster risk.

Although both the DRI and the Hotspots project provide estimates of disaster risk, they do so in very
divergent ways. In order to do a comparison of the two indexes Mosquera-Machado et al had to first stan-
dardize them so they were measuring the same hazards across the same scale. Since the Hotspots index
included volcanoes and landslides which were not included in the DRI, these hazards had to be removed and
the unit of measure converted from grid cells to countries across the globe. A table containing the top 25
countries that were identified as being at risk by each disaster risk model was made for each of the hazards as
well as a table with those countries identified as having the highest overall disaster risk assessment by each
model. The range of overlap between these tables within hazard went from 7 out of 25 with earthquakes,
to 15 out of 25 for cyclones and drought (floods had 8). The multi-hazard disaster-related mortality risk
tables only overlapped by 6 out of the 25 countries that were identified by the two models. Spearman’s rank
correlation was also used to evaluate the degree of correspondence among the country rank orders. These
showed varying degrees of correlation with the highest being 0.56 for cyclones and 0.41 for earthquakes
among the individual hazards, and only 0.31 for the multi-hazard models. However, the low correspondence
between these disaster risk models should not be seen as a failure in part of one or both of the models, but
rather how the quality and availability of data along with methodological choices can substantially affect
the results. While the results from these two models are not highly correlated, they are consistent with the
input datasets and methods used to generate these models. The quality and availability of global disaster
data has improved considerably over time and will probably continue to do so which will improve future
disaster risk models. Since the results for disaster risk seem quite sensitive to the methodological choices for
the model building, multiple methods for assessing particular types of risk could prove useful here. Future
disaster risk models may want to consider using a Bayesian decision theory framework with a standard loss
function to account for disaster risk in a given area.



References

Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kyekstad O, Lyon B,
Yetman G (2005) Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction
and Development/The World Bank and Columbia University, Washington, CD, 132 pp

Mosquera-Machado S, Dilley M (2009) A comparison of selected global disaster risk assessment results.
Natural Hazards, Springer Netherlands Vol 48 Number 3, 439 pp.

United Nations Development Programme-UNDP (2004) Reducing disaster risk: a challenge for
development. United Nations Development Programme, Bureau for Crisis Prevention and Recovery, New
York, 137 pp. www.undp.org/cpr/disred/documents/publications/rdr/english/rdr english.pdf


