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1 Introduction

Given a set of spatial data, often the desire is to estimate its covariance structure. For prac-
tical purposes, it is often necessary to propose some parametric model for the variagram.
Once the parametric model is selected, one must estimate the parameters of the model.
Given a parametric structure, it naturally follows that maximum likelihood or Bayesian
methods can be used in estimation. There are also nonparametric methods available, but
the focus of Stein et al. [1] is on likelihood-based methods for parameter estimation of the
covariance structure of a Gaussian random field. The issue with likelihood-based methods
is that when the observations are irregularly sited, the computational effort can be large.
Even for Gaussian random fields, the computational effort is O(n3) for each calculation
(Stein et al.).

Vecchia (1988) [2] proposed a method to approximate the likelihood of spatial data
sets using the basic fact that any joint density can be written in terms of the product of
conditional densities. Let Z = (Z1, · · · , Zn)′ have joint density p(z;φ), where p is a generic
density, and φ is an unknown vector-valued parameter.
Partition Z into subvectors Z1, · · · ,Zb with Z′(j) = (Z′1 · · ·Z′j). Then,

p(z;φ) = p(z1;φ)
b∏

j=2

p(zj|z(j−1);φ) (1)

Vecchia (1988) revised the conditioning vectors for j = 1, · · · , b − 1, to a subvector, S(j),
of Z(j), then

p(z;φ) ≈ p(z1;φ)
b∏

j=2

p(zj|s(j−1);φ).

Stein et al. develops this approximation for restricted maximum likelihood (REML), which
is used in estimation of the parameters of the covariance structure. REML is preferred
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over ML for this type of estimation because it does not rely on estimation of the mean
function. Standard ML methods use the estimated mean parameters in the estimation
of the covariance parameters, but acts as if the mean parameters are known. Since the
standard ML method does not account for the uncertainty in the estimation of the mean
parameters, this leads to underestimation of the variance.

2 Methods

The methods developed in this paper are for Gaussian random fields, and so the general
framework is based on the supposition that Z ∼ N{Fβ,K(θ)}. Furthermore, F is consid-
ered to be a known n × p matrix of rank p, and β is a p-dimensional vector of unknown
coefficients. The focus of the paper is concerned with estimation the parameters, θ, of
the covariance matrix K. The assumptions are that the covariance matrix K is positive
definite for all θ ∈ Θ, the vector Zi has length ni, and the rank of F1 is p. In addition, we
assume that the best linear unbiased predictor (BLUP) of Zj in terms of Z(j−1) exists for
all θ ∈ Θ.

In the methodology section, they first develop the restricted likelihood form in terms
of the errors of the BLUPs of Zj based on Z(j−1), where Z(j−1) = Z1 + · · · + Z(j−1).
Wj(θ) = Bj(θ)Z, where Bj(θ) is the nj × n matrix such that Wj(θ) is the vector of the
errors of the BLUP of Zj in terms of Z(j−1). The result is the following proposition.

Proposition 1. The restricted log-likelihood of θ in terms of Z is given by

rl(θ; Z) = −n− p
2

log(2π)− 1
2

b∑
j=1

[log{det(Vj)}+ W′
jV
−1
j Wj ].

The approximation of the restricted maximum likelihood displayed in Proposition 1 has
the same form, but Wj for j > 1 is the error of the BLUP of Zj based on the sub-vector
S(j−1) of Z(j−1).

Now that the form of the approximation to the restricted log-likelihood has been de-
veloped, there are several issues to address regarding the use of this approximation. The
length of the prediction vectors (Zj) and conditioning vectors (S(j−1)) must be decided,
along with which elements of Z(j−1) should be included in S(j−1). Vecchia (1998) noted,
and Stein et al. agrees that any statistical method used to make these decisions would be
based on unknown parameters. Fortunately, Stein et al. came up with a way to check the
efficiency of the approximation by using the well-developed theory of estimating equations.
An explanation of this validation method is explained in the next section covering the
numerical results.
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3 Numerical Results

As noted in the paper, there are manifold possible networks and designs that could be
studied in order to observe the effects of the approximated restricted likelihood on covari-
ance structure parameter estimation under prediction and conditioning vectors of varying
lengths. They decided to consider an observation network composed of 1000 randomly
selected sites (out of 10,000 points in a plane). Each selected point is then perturbed by
adding a random point in [0.25, 0.25]2. In the first cases considered, they include only one
observation in the prediction vector Zj for j > 1. In the paper, they also consider designs
with longer prediction vectors.

In these designs, they allow the conditioning vectors to be lengths m = 8, 16, and 32,
and consider three cases regarding the distance from the elements of the conditioning vec-
tor to the prediction vector: all m nearest neighbors, three-quarters of the m as nearest
neighbors, and half of the m as nearest neighbors . The covariance structures for the ran-
dom fields are the exponential model (cov{Z(x), Z(y)} = θ2exp(−θ1|x − y|/θ2)) and the
power law variogram model (1

2var{Z(x)− Z(y)} = θ2|x− y|θ1).
I have included the table of the relative efficiencies for the exponential model (Table

1). I include the table to clarify the design and procedure developed in the paper. The
summary of results for the power law variogram model has the same form (except that the
efficiencies for a non-constant mean function is also displayed), but I direct the reader to
the paper to get the numerical results. The results displayed in Table 1 reflect the efficiency
of the parameter estimation under the approximation to the restricted likelihood. As al-
luded to in the methodology section, using estimating equations leads to what is referred
to as the robust information measure. This robust information measure provides a method
for checking the efficiency of the approximation to the restricted likelihood in estimation
compared to the exact restricted likelihood. It is shown that if there is no restriction on
the conditioning vector S(j−1), then we can take S(j−1) = Z(j−1), in which case the ro-
bust information measure is the Fisher information matrix. Hence the robust information
measure based on the approximation can be thought of as a reflection of the extent to
which information is lost by using the approximation. The numbers displayed in Table 1
are the ratios displayed as percentages of the robust information measures to the Fisher
information matrix. Note that the Fisher information matrix can be calculated because
they consider only 1000 observations. Numbers close to 100 percent reflect more efficient
estimation.

As expected, designs with longer conditioning vectors performed better than designs
with shorter conditioning vectors. What is important to note in the tables of results in
the paper are which portion of nearest neighbors to distant observations do the best, and
under which lengths of conditioning vectors. For example, for Table 1 we see that compo-
nent 1 performs similarly under the various designs given the conditioning vector length.
However, component 2’s performance highly depends on the particular design. The general
interpretation for component 2 is that when component 1 is smaller (θ1 = 0.02 or 0.1), it
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does not perform well when the conditioning vector is composed only of nearest neighbors;
however, for larger values of component 1 (θ1 = 0.5 or 2), it performs competitively or
even better when only nearest neighbors are considered. There are many more interesting
results of this nature included in the paper.
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contains observations from Ln{(j - 1)J + i - 1}/J2 + 0.5] + 1 to Ln{(j - 1)J + i}/J2 + 0.51. 
The observations in the ith rectangle of strip j then make up the prediction vector Z(J_l)j+i. 
For a given Zj, define the distances between Zj and a past observation as the minimum of the 

distances between that observation and those in Zj. For a positive integer m > m', now pick 

S(j_1) essentially as in the first scheme: if n(j_) is less than m, then S(j-1) = Z(j- ); otherwise, 

S(J_1) is made up of the m' nearest neighbours together with those past points whose ranked 

distances to Zj equal m + Ll(n(j_l) 
- m)/(m - m')J for 1 = 1, ..., m - m'. Denote this design by 

Dj(m, m'). Here we consider designs with J =8 so that the 1000 observations are partitioned 
into b = 64 subsets of size 15 or 16. 

We shall consider two models for the covariance structures for the Gaussian random fields. The 

first is an exponential model, cov{Z(x), Z(y)} = 02 exp(-01 Ix - y/02), and the second a power 
law variogram model, var{Z(x) - Z(y) } =02 x - yl . We mostly take the mean function to be 

an unknown constant, but we do consider a mean function that is linear in the co-ordinates for 

the power law model. We also consider a power law model observed with measurement error of 

variance 03: var{Z(x) - Z(y)} = 03 l{Ijx_yl>} + 021x - yl6. Except for the power law model, 

we report only on results for the designs D(m, m'). 

4.2. Relative efficiencies 

Let us first consider the results for the exponential model. The parameterization that is used 

here, 02 exp(-01 Ix - YI/02), has the property that 01 describes the local variations of the process 

(I var{Z(x) - Z(y)} 
- 01 Ix- y as Ix- yl -> 0), whereas 02 only substantially affects variations 

on scales that are not small compared with 02/01. Table 1 gives the ratios (as percentages) of 

Table 1. Relative efficiencies of estimators by using approximate 
restricted likelihoods compared with the exact REML estimators as 
measured by the diagonal elements of the inverse information matri- 
ces based on 1000 observations as described in Section 4.1t 

0I m'/m Relative efficiencies (o) for the following components 
and values of m: 

Component 1 Component 2 

m=8 m =16 m=32 m=8 m=16 m=32 

0.02 1 87.3 94.8 97.5 24.8 33.6 44.7 
0.75 91.1 97.4 99.2 71.0 83.1 90.5 
0.5 85.7 95.2 98.6 74.7 82.9 90.9 

0.1 1 83.1 91.6 95.3 35.3 48.9 61.9 
0.75 89.0 96.6 99.0 58.6 78.4 89.8 
0.5 88.0 95.8 98.9 72.9 85.8 93.7 

0.5 1 79.7 89.1 94.2 63.1 78.9 88.4 
0.75 77.6 89.3 94.4 58.2 78.2 88.8 
0.5 81.9 92.2 96.2 69.1 81.6 91.0 

2 1 84.2 91.6 95.6 88.6 94.1 97.0 
0.75 81.8 89.8 94.6 83.9 92.1 96.0 
0.5 79.8 88.8 94.1 80.5 90.4 95.2 

tThe designs that are used for approximate likelihoods are of the form 
D(m, m') as defined in Section 4.2. The model for the covariance function 
is 02 exp(-0i d/02), where d is the interpoint distance; 02 = 1 in all cases. 

4 Conclusion

While this paper develops a number of interesting ideas, and addresses many more con-
cepts than I include in my presentation or this summary, the authors note that there is a
lot of room for further development of these ideas. Vecchia (1988) came up with a clever
way to approximate the likelihood of large spatial data sets, thus allowing for feasible
likelihood-based methods for large spatial data sets. Stein et al. made a number of exten-
sions of these methods, including applying the approximation to REML, and developed a
method to verify the efficiency of these approximations under various designs using esti-
mating equations and the robust information measure. Stein et al. also discusses at several
points in the paper that designs that are good for estimation are not necessarily good for
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prediction, and vice versa. Hence, the goal of estimation or prediction must be considered
when determining the design.
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