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Introduction Over the past 10 years, the quality of regional and hemispheric temperature recon-
struction for the past millennium has increased substantially, due to both methodological develop-
ment as well as to improved data availability. The recent debate about the hockey stick temperature
reconstruction has highlighted the importance of these past temperature estimates. Since there is
only instrumental temperature data from (approximately) 1850 onward, different techniques have
been used to estimate temperatures before 1850. However, it is widely acknowledged that these
reconstructions may contain substantial uncertainty that is difficult to quantify.

Traditionally, most large-scale temperature reconstructions are presented as a single time series
without error bars or confidence ranges. Although it is recognized that the proxies contain noise, the
reconstruction outcomes are often reported as ‘unique’. This, however, does not take into account
that the noise component in all proxies is but a single realization of many possible noise realizations.
Hypothetically, should the exact same climate occur again, the noise realization would be different.
Therefore, it would be more appropriate to recognize each proxy-based climate reconstruction as
an individual member of a family of possible realizations.

In this paper, the authors develop a statistical method to reconstruct past temperatures together
with its confidence ranges by keeping track of different sources of uncertainty. They then illustrate
their approach with multivariate reconstruction of hemispheric mean temperatures using a limited
proxy set.

Data and Methods For the example explored in this paper, the authors restrict their network of
proxy records to the 14 series originally used in MBH99 for the period back to the year 1000. They
also assume the linear and stationary relationship between these 14 proxies and the temperature
evolution following MBH98, MBH99.
Let T; and p¢ denote the temperature and proxies at time ¢, respectively. The basic statistical
model is
Ty = pyf + e (1)

where 3 is a vector of regression coefficients, and the vector of errors e = (eq, ..., e;)’ ~ Normal(0, X).
This model takes uncertainties from both the instrumental data and the proxies into account.

The authors are interested in studying the uncertainties underlying this linear regression recon-
struction. Accodingly, they address three types of uncertainties:

1. Effects of possible autocorrelation in the errors of the linear model, owing to the assumption
of independent errors for the ordinary linear model.

2. Potential prediction errors due to the overfitting from the calibration period. This type of
uncertainty is probably relatively small since the series is so long.

3. Uncertainty about the proxies themselves and how they represent the climatic conditions over
multiple timescales.

The full time period from 1850 to 1980 was chosen as the calibration period for model (1). The
authors then applied the estimated model to the proxies from 1000 to 1849 to reconstruct the



temperature for that time period. After fitting an ordinary least squares model, it was seen that
the errors exhibited a clear temporal correlation. An AR(2) model was found sufficient to capture
the temporal correlation in the residuals. An AR(2) process is defined as

er = res—1 + paer_o + €, € ~ iid Normal(0, o?) (2)

where ¢; and ¢5 are coefficients governing the correlation of time lag 1 and time lag 2.

Motivated by the temporal correlated errors, model (1) is fit using generalized least-squares,
which allows the errors to be correlated. The parameters involved in this model are 0 = (3', 02, ¢1, ¢2)’.
Maximum likelihood estimates are chosen in the GLS fitting to obtain the parameter estimates
6 = (', 62, ¢1.¢2)" simulatenously. Being concerned with the possible overfitting problem during
the cahbratlon period, the authors use 10-fold cross-validation to quantify how much overfitting
there is, if any. By applying 10-fold cross-validation and fixing ¢1 and (;52 but leaving the other
parameters varying, they find that an inflation factor of 1.30 is needed.

To account for the uncertainty from parameter estimates, é, the authors employ a paramteric
bootstrap to determine the sample distribution of 6. This begins with generating ensembles of
temperature based on model ( ). Particular to each ensemble, they first generate an AR(2) error, ey,
as defined in (2) taking 52 , b1, ¢ as true parameters. Then letting T = (Tig50, - - - > Thoso)" denote
an ensemble of temperature and P denote the known proxy matrix containing rows pisso, - - - » P19s0,

= Pﬂ + o produces one valid ensemble. These temperature ensembles have the same mean
functlon Pﬁ, but each ensemble has its own noise, which makes any individual ensemble feature
differently from the others. For each ensemble, they repeat the GLS model fitting procedure to get
the parameter estimates, denoted by 6 = (B, 52 q~51 ¢22) , which are considered to have the same
distribution as 6 estimated from the real data. They generate 1000 temperature ensembles and
thus obtain 1000 0. The sampling distribution of these 0 is a valid estimate of the distribution of .

Now let T = (Tlooo, e T184Q)’ and P be the proxy matrix containing rows pigoo; - - -, P1849-
An ensemble is given by T = PS8 + (e1000,- - -, €1849)" | (€1850,- - -, €1980)’- The conditional error
term ensures that the ensemble is temporally correlated with the 1nstrumental temperature. Each
6 is picked in turn from the 1000 members of § generated above, and &2 is 1nﬂated by the inflation
coefficient to get 62 = 1.3062. The selected 9, with 62 used in place of 62, are taken as true
parameters to generate ensembles. This brings all the components of uncertainty into the ensembles.
In this way, the 1000 temperatures ensembles that are generated correspond to the 1000 individual
0.

Temperature Reconstruction and Results The authors calculate the running decadal average
using 10 years as the moving window. They then identify the maximum decadal average and record
its corresponding year. They do this for each of the 1000 temperature ensembles generated in the
previous section, and thus obtain 1000 decadal maxima with their corresponding years. The result
enables the authors to compute the probability of each year corresponding to the maximum decadal
average across all the ensembles.

All the temperature ensembles are possible realizations with equal chance of occurrence given
the same setting of the proxy and instrumental data. Hence, the statistical inference obtained
from each ensemble is an equally valid estimate of that inference, and moreover, the variability of
inferences from different ensembles shapes the distribution of that inference.

Figure 4 shows a summary of the 1000 temperature ensembles. Up to the 1980s, instrumental
temperatures are not significantly higher than the reconstructed maxima of before 1850 (the 95%
confidence interval of the reconstructed decadal maxima, shown by the black dashed line in Figure
4, 1s 0.22°C, and instrumental temperatures before 1980 fall below this level). However, with the
1990s, observed temperatures (shown by the red asterisks in Figure 4) begin to rise clearly above
the maxima from the ensembles. For example, the 1990s is 0.08° warmer than the upper bound of
the 95% confidence interval, and the most recent decade (1997-2006) is yet another 0.22° warmer.
This example seems to confirm the ’hockey stick’ phenomenon that temperatures over the past
few decades are much warmer than would be expected compared to the reconstructed temperature
ensembles.
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Fig. 4. Summary of 1000 temperature ensembles: the decadal average of mean temperature over the 1000 ensembles (blue curve) with its 95%
confidence region (yellow and grey band); decadal maxima from 1000 individual enserbles (purple dots) and the chance of each year corresponding
to the decadal maximum (green curve scaled by the green label): the upper bound of the Y5% confidence interval of the decadal maxima (dashed
line) and decadal instrumental temperatures (red asterisks). The small box plots overlapped with purple dots show the distribution of decadal
maxima i small groups with each group containing about 20 yr, and the lefimost big box plot shows the distribution of all the decadal maxima. The
decadal average of mean temperature before 1400 (the blue curve embedded in the yellow band) and its 95% confidence region (yellow band) can be
compared o the corresponding section of Fig. 3(a) in MBHOO.

Conclusions A benefit of introducing the notion of ensemble reconstruction is that ensembles
make it easy to draw more sophisticated inferences about past temperture evolution such as the
decadal maximum. There are several important differences in this analysis from previous work.
Adjustment was made for temporal correlation in errors, cross-validation was used to adjust for
overfitting, and bootstrapping was used to determine uncertainty in the estimated parameters.
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