
The `hockey stick' and the 1990s: a statistical perspectiveon reconstructing hemispheric temperaturesChris CabanskiApril 25, 2009Introduction Over the past 10 years, the quality of regional and hemispheric temperature recon-struction for the past millennium has increased substantially, due to both methodological develop-ment as well as to improved data availability. The recent debate about the hockey stick temperaturereconstruction has highlighted the importance of these past temperature estimates. Since there isonly instrumental temperature data from (approximately) 1850 onward, di�erent techniques havebeen used to estimate temperatures before 1850. However, it is widely acknowledged that thesereconstructions may contain substantial uncertainty that is di�cult to quantify.Traditionally, most large-scale temperature reconstructions are presented as a single time serieswithout error bars or con�dence ranges. Although it is recognized that the proxies contain noise, thereconstruction outcomes are often reported as `unique'. This, however, does not take into accountthat the noise component in all proxies is but a single realization of many possible noise realizations.Hypothetically, should the exact same climate occur again, the noise realization would be di�erent.Therefore, it would be more appropriate to recognize each proxy-based climate reconstruction asan individual member of a family of possible realizations.In this paper, the authors develop a statistical method to reconstruct past temperatures togetherwith its con�dence ranges by keeping track of di�erent sources of uncertainty. They then illustratetheir approach with multivariate reconstruction of hemispheric mean temperatures using a limitedproxy set.Data and Methods For the example explored in this paper, the authors restrict their network ofproxy records to the 14 series originally used in MBH99 for the period back to the year 1000. Theyalso assume the linear and stationary relationship between these 14 proxies and the temperatureevolution following MBH98, MBH99.Let Tt and pt denote the temperature and proxies at time t, respectively. The basic statisticalmodel is
Tt = p′

tβ + et (1)where β is a vector of regression coe�cients, and the vector of errors e = (e1, . . . , et)
′ ∼ Normal(0, Σ).This model takes uncertainties from both the instrumental data and the proxies into account.The authors are interested in studying the uncertainties underlying this linear regression recon-struction. Accodingly, they address three types of uncertainties:1. E�ects of possible autocorrelation in the errors of the linear model, owing to the assumptionof independent errors for the ordinary linear model.2. Potential prediction errors due to the over�tting from the calibration period. This type ofuncertainty is probably relatively small since the series is so long.3. Uncertainty about the proxies themselves and how they represent the climatic conditions overmultiple timescales.The full time period from 1850 to 1980 was chosen as the calibration period for model (1). Theauthors then applied the estimated model to the proxies from 1000 to 1849 to reconstruct the1



temperature for that time period. After �tting an ordinary least squares model, it was seen thatthe errors exhibited a clear temporal correlation. An AR(2) model was found su�cient to capturethe temporal correlation in the residuals. An AR(2) process is de�ned as
et = φ1et−1 + φ2et−2 + εt, εt ∼ iid Normal(0, σ2) (2)where φ1 and φ2 are coe�cients governing the correlation of time lag 1 and time lag 2.Motivated by the temporal correlated errors, model (1) is �t using generalized least-squares,which allows the errors to be correlated. The parameters involved in this model are θ = (β′, σ2, φ1, φ2)

′.Maximum likelihood estimates are chosen in the GLS �tting to obtain the parameter estimates
θ̂ = (β̂′, σ̂2, φ̂1,φ̂2)

′ simulatenously. Being concerned with the possible over�tting problem duringthe calibration period, the authors use 10-fold cross-validation to quantify how much over�ttingthere is, if any. By applying 10-fold cross-validation and �xing φ̂1 and φ̂2 but leaving the otherparameters varying, they �nd that an in�ation factor of 1.30 is needed.To account for the uncertainty from parameter estimates, θ̂, the authors employ a paramtericbootstrap to determine the sample distribution of θ̂. This begins with generating ensembles oftemperature based on model (1). Particular to each ensemble, they �rst generate an AR(2) error, e0,as de�ned in (2) taking σ̂2, φ̂1, φ̂2 as true parameters. Then letting T̃ = (T̃1850, . . . , T̃1980)
′ denotean ensemble of temperature and P denote the known proxy matrix containing rows p1850, . . . , p1980,

T̃ = Pβ̂ + e0 produces one valid ensemble. These temperature ensembles have the same meanfunction Pβ̂, but each ensemble has its own noise, which makes any individual ensemble featuredi�erently from the others. For each ensemble, they repeat the GLS model �tting procedure to getthe parameter estimates, denoted by θ̃ = (β̃′, σ̃2, φ̃1,φ̃2)
′, which are considered to have the samedistribution as θ̂ estimated from the real data. They generate 1000 temperature ensembles andthus obtain 1000 θ̃. The sampling distribution of these θ̃ is a valid estimate of the distribution of θ̂.Now let T̃ = (T̃1000, . . . , T̃1849)

′ and P be the proxy matrix containing rows p1000, . . . , p1849.An ensemble is given by T̃ = Pβ̃ + (e1000, . . . , e1849)
′ | (e1850, . . . , e1980)

′. The conditional errorterm ensures that the ensemble is temporally correlated with the instrumental temperature. Each
θ̃ is picked in turn from the 1000 members of θ̃ generated above, and σ̃2 is in�ated by the in�ationcoe�cient to get ˜̃σ2 = 1.30σ̃2. The selected θ̃, with ˜̃σ2 used in place of σ̃2, are taken as trueparameters to generate ensembles. This brings all the components of uncertainty into the ensembles.In this way, the 1000 temperatures ensembles that are generated correspond to the 1000 individual
θ̃.Temperature Reconstruction and Results The authors calculate the running decadal averageusing 10 years as the moving window. They then identify the maximum decadal average and recordits corresponding year. They do this for each of the 1000 temperature ensembles generated in theprevious section, and thus obtain 1000 decadal maxima with their corresponding years. The resultenables the authors to compute the probability of each year corresponding to the maximum decadalaverage across all the ensembles.All the temperature ensembles are possible realizations with equal chance of occurrence giventhe same setting of the proxy and instrumental data. Hence, the statistical inference obtainedfrom each ensemble is an equally valid estimate of that inference, and moreover, the variability ofinferences from di�erent ensembles shapes the distribution of that inference.Figure 4 shows a summary of the 1000 temperature ensembles. Up to the 1980s, instrumentaltemperatures are not signi�cantly higher than the reconstructed maxima of before 1850 (the 95%con�dence interval of the reconstructed decadal maxima, shown by the black dashed line in Figure4, is 0.22◦C, and instrumental temperatures before 1980 fall below this level). However, with the1990s, observed temperatures (shown by the red asterisks in Figure 4) begin to rise clearly abovethe maxima from the ensembles. For example, the 1990s is 0.08◦ warmer than the upper bound ofthe 95% con�dence interval, and the most recent decade (1997-2006) is yet another 0.22◦ warmer.This example seems to con�rm the 'hockey stick' phenomenon that temperatures over the pastfew decades are much warmer than would be expected compared to the reconstructed temperatureensembles. 2



Conclusions A bene�t of introducing the notion of ensemble reconstruction is that ensemblesmake it easy to draw more sophisticated inferences about past temperture evolution such as thedecadal maximum. There are several important di�erences in this analysis from previous work.Adjustment was made for temporal correlation in errors, cross-validation was used to adjust forover�tting, and bootstrapping was used to determine uncertainty in the estimated parameters.References[1] Li, B., Nychka, D. W. and Ammann, C. M. 2007. The `hockey stick' and the 1990s: a statisticalperspective on reconstructing hemispheric temperatures. Tellus 59A, 591-598.
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