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ESTIMATING THE TAILS OF LOSS SEVERITY
DISTRIBUTIONS USING EXTREME VALUE THEORY

ALEXANDER J.MCNEIL

1. Introduction

Estimating loss severity distributions from historical data is an important actu-
arial activity in insurance. The main focus of this paper is estimation of the tails
of loss of such distributions. Suggested modeling is based on the extreme value
theory (EVT). One of the key results used is Pickands-Balkema-de Haan theorem,
which essentially says that, for a wide class of distributions, losses which exceed
high enough thresholds follow the Generalized Pareto distribution (GPD). Danish
data on major fire insurance losses is analyzed as an illustration of the method.

2. Modeling Loss Severities

Suppose insurance losses are denoted by random variables X1, X2,. . . . Assume
that loses are identically distributed and independent. Denote their common dis-
tribution function by FX(x) = P{X ≤ x} where x > 0.

Suppose we are interested in a high-excess loss layer with lower and upper at-
tachment points r and R respectively, r < R. This means that payout Yi on a loss
Xi is given by

Yi =


0 if 0 < Xi < r,
Xi − r if r ≤ Xi < R,
R− r if R ≤ Xi <∞.

There are two related actuarial problems:

(1) The pricing problem. Given r and R what should this insurance layer cost
to the customer?

(2) The optimal attachment point problem. How to choose r for payout greater
than a specified amount to occur with at most a specified frequency?

Let N be the number of losses, then aggregate payout would be Z =
∑N
i=1 Yi

and the pricing problem would be usually reduced to finding moments of Z. A
common pricing formula is Price = E[Z] + k · V ar[Z], E[Z] = E[Yi]E[N ]. The
paper provides the calculation of E[Yi] among other things.

The attachment point problem can be formulated in the following way: how to
choose r such that P{Z > 0} < p for some fixed p. This problem comes down to
the estimation of high quantile of the loss severity distribution FX(x).

Typically the data available is historical one on losses that exceed a certain
amount δ known as displacement, where δ � r. The d.f. of the truncated losses
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can be defined by

FXδ(x) = P{X ≤ x | X > δ} =

{
0 if x ≤ δ,
FX(x)−FX(δ)

1−FX(δ) if x > δ.

The goal is to find an estimate F̂Xδ(x) of the truncated severity distribution FXδ(x).
The Danish data analyzed in the paper comprises of 2157 losses over one million

Danish Krone. If one would choose layer running from 50 to 200 then there will
be only six observed losses. It is crucial for the insurance company to have a good
estimate of the severity distribution in the tail.

3. Extreme value theory

Just as normal distribution proves to be limiting distribution for sample sums or
averages, Generalized Extreme Value distribution (GEV) is the limiting distribution
of sample extrema. Define the d.f. of the GEV by

Hξ,µ,σ(x) =

{
exp(−(1 + ξ(x− µ)/σ)−1/ξ) if ξ 6= 0,
exp(−e−(x−µ)/σ) if ξ = 0

where 1 + ξ(x− µ)/σ > 0 and ξ is known as shape parameter.
Generalized Pareto distribution (GPD) can be used to describe the behavior

of large observations which exceed high thresholds and to model insurance losses.
GPD is usually expressed as

Gξ,σ(x) =

{
1− (1 + ξ(x− µ)/σ)−1/ξ) if ξ 6= 0,
1− (−e−(x−µ)/σ) if ξ = 0

Consider a certain high threshold u which might be the lower attachment point
r of a high-excess loss layer. We are interested in the excess above this threshold.
Let x0 = sup{x ∈ R : F (x) < 1} ≤ ∞. Define the distribution function of the
excess over the high threshold u by

Fu(x) = P{X − u ≤ x | X > u} =
F (x+ u)− F (u)

1− F (u)

for 0 ≤ x < x0 − u.
The theorem (Balkema and de Haan 1974m Picknds 1975) shows that under

certain conditions the GPD is the limiting distribution for the distribution of the
excesses, as the threshold tends to the right endpoint. It shows that there exist a
positive measurable function σ(u) such that

lim
u→x0

sup
0≤x<x0−u

|Fu(x)−Gξ,σ(u)(x)| = 0,

The statistical relevance of this result is that it is possible to attempt to fit GPD
do data which exceed high thresholds. The theorem gives theoretical grounds to
expect that if we choose a high enough threshold, the data will show the GPD
behavior.

If it is possible to fit the conditional distribution of the excess above a high
threshold, it is also possible to fit it to the tail of the original distribution above
the high threshold. For x ≥ u, i.e. points in the tail of the distribution,

F (x) = P{X ≤ x} = (1− P{X ≤ u})Fu(x− u) + P{X ≤ u}.
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Here Fu(x − u) can be estimated by Gξ,σ(x − u) for u large, P{X ≤ u} can be
estimated from the data by Fn(u). This means that for x ≥ u

F̂ (x) = (1− Fn(u))Gξ,u,σ(x) + Fn(u),

where ξ and σ are estimated by ML method. Estimated d.f. F̂ (x) is also GPD with
same parameter ξ, but with σ̃ = σ(1−Fn(u))ξ and µ̃ = u− σ̃((1−Fn(u))−ξ−1)/ξ.

4. Analysis of Danish Fire Loss Data

Exploratory data analysis was performed on Danish fire loss data. A truncated
lognormal distribution was fitted using ML method and superimposed the resulting
probability density on the histogram. Truncated lognormal appears to provide a
reasonable fit but it is difficult to tell about the largest losses which are the main
interest.

A concave departure from the ideal shape indicates heavy tail distribution in
the QQ-plot against the exponential distribution. Another graphical tool, such as
mean excess plot confirmed that data comes from a heavy tail distribution and in
particular follows a GPD with positive shape parameter in the tail above threshold
u = 10 or u = 20.

Overall fit of three distributions was compared: truncated lognormal, ordinary
Pareto and GPD. The GPD seems to be quite good explanatory model for the
highest losses. As mean excess plot suggested the GPD was fitted to those data
points which exceed high thresholds of 10 or 20. It was described before that is
possible to transform scale and location parameters by

σ̃ = σ(1− Fn(u))ξ and µ̃ = u− σ̃((1− Fn(u))−ξ − 1)/ξ

to estimate a GPD distribution function which fits the severity distribution itself
in the tail area above the threshold.

FXδ(x) = P{X ≤ x | X > δ} =

{
0 if x ≤ δ,
FX(x)−FX(δ)

1−FX(δ) if x > δ.

For the prising of layers or estimation of high quantiles using a GPD model
the crucial parameter is ξ: the higher value of ξ - the heavier the tail and higher
quantile estimates. For a three-parameter GPD model Gξ,µ,σ the pth quantile is
µ+ σ/ξ((1− p)−ξ − 1).

There is a bias-variance tradeoff in the choice of the optimal threshold. Since
modeling approach is based on a limit theorem which applies above high thresholds,
if threshold is chosen too low it is possible to get biased estimates because the
theorem does not apply. On the other hand, if a threshold is set too high then
only few data points will be available and estimates will be prone to high standard
errors.

Using the model with a threshold at 10 the .999th quantile is estimated to be 95.
But for the threshold u = 4 the quantile estimate goes up to 147. This underlines
the fact that estimates of high quantiles are extremely model dependent.

To get an indication of the insurance layer prices from the model price can be
calculated as P = E[Yi|Xi > δ]. For a layer (r,R), P is given by

P =
∫ R

r

(x− r)fXδ(x)dx+ (R− r)(1− FXδ(R))
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where fXδ(x) = dFXδ(x)/dx. By picking a high threshold u(< r) it is possible
to estimate F̂Xδ(x) and therefore the density fXδ(x). It is shown that the price
depends on the choice of the high threshold, which in its turn depends on the use of
it. In other insurance datasets the effect of varying the threshold may be different.
Every dataset is unique and the estimation and pricing process should not be fully
automated.


