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1 Introduction and Background

To be written

2 Time Series Analysis

One of the major sampling designs for air pollution studies is time series analysis. In the air
pollution context this phrase has a specific meaning: it refers to analyses where daily observations
of some measure of health outcomes (e.g. deaths, hospital admissions, asthma attacks) are regressed
against a variety of daily predictors. Common predictors include weather, day of week, and season,
since health outcomes are known to vary with all of these factors. In addition, long-term trend
terms are usually included to allow for such factors as people moving in an out of a city, changes
in health care quality, etc. On top of all these, it is usual to add at least one indicator of air
pollution, such as the daily measurement of ground-level ozone (O3 or particulate matter. The
latter is usually represented as either PM10 or PM2.5, referring to airborne particles of diameter
less than 10 or 2.5 microns respectively. For many years, PM10 was used as the main indicator
of atmospheric particles, but since a revision of United Stated Environmental Protection Agency
(USEPA) standards in 1997, this has largely been replaced by PM2.5, which is widely regarded as
the more potent indicator of particulate matter pollution, the theory being that small particles
penetrate further into the lungs and therefore do more damage.

If the coefficient of the air pollution variable is positive and statistically significant, this is
usually interpreted as evidence of a causal effect. Although the whole technique is called time
series analysis, as usually practiced in epidemiology it does not involve traditional time series
techniques such as autocorrelations and spectra. This is because, when applied to non-infectious
diseases, there is no reason to expect autocorrelation, though it is still a good idea to check up on
this as well as other assumptions of the model.

We now highlight a number of features that need to be taken into account in fitting a time
series model.

2.1 Sampling distribution

Since the outcomes are counts (e.g. deaths), it is natural to use a Poisson distribution. For strict
Poisson data, the variance and the mean are equal; when the variance exceed the mean, the data
are called overdispersed. Both Poisson and overdispersed models for count data may be fitted using
the glm function in R, as we shall see.

2.2 Meteorological covariates

The most common meteorological variables are temperature and dewpoint, since by combining these
variables it is believed we can account for humidity. However, in both cases, the response function
is expected to be nonlinear — deaths are greatest when it is either very hot or cold. Therefore, we
would like to use a nonlinear function of both temperature and humidity. While simple parametric
functions such as quadratic polynomials and piecewise linear functions are possible, these are not
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particularly flexible. An alternative is to use expansions in terms of basis functions. Thus, a variable
x (temperature, say) is included in the regression through a function of form

f(x) =
m∑
j=1

βjBj(x), (1)

where β1, ..., βm are unknown regression coefficients and Bj(x), j = 1, ...,m are predetermined
basis functions. The number of basis functions m is called the degrees of freedom of the model:
the larger m is, the more accurately a general smooth nonlinear f(x) may be represented, but this
is at the costs of increasing variance in estimating the βj ’s and possibly other problems such as
multicollinearity. There is also the question of what Bj(x) functions to take. Well known choices
would be polynomials (e.g. Bj(x) = xj , j = 1, 2, 3, ...) or Fourier expansions (where each Bj(x)
is either cosωjx or sinωjx for some frequency ωj) but these have well-known disadvantages, e.g.
polynomials tend to be numerically unstable as soon as m gets large (also, their extrapolation
properties are terrible), while Fourier series expansions really only work well for periodic functions.
An alternative is to use cubic splines, in which the Bj(x) ar epiecewise cubic polynomials with coef-
ficients chosen so that both the resulting function (1) and its first-order derivatives are continuous
in x. In R, the splines package allows the user to create a matrix of spline basis functions through
the operator bs (for B-splines) or ns (natural splines), which refer to two different methods for
constructing piecewise cubic approximating functions. For example, if the variable x consists of a
vector of n temperature values, whose individual values are x1, ..., xn, then the R operator

fx<-ns(x,df=m)

forms a n×m matrix (here called fx) whose (i, j) entry is Bj(xi). This matrix may then be inserted
directly into a regression function.

We also need to consider lagged meteorology covariates (to be completed...)

2.3 Seasonality and long-term trend

2.4 Lagged air pollution variables: the constrained and unconstrained dis-
tributed lag models

2.5 Confounding and effect modification

3 Combining Data in Independent Linear Regressions:
The “tlnise” Algorithm

Everson and Morris (2000) considered a “two-level normal” hierarchical model, as follows:

Yj | θj ∼ Np[θj , Vj ] (Vj known, j = 1, ..., J, (2)
θj ∼ Np[W T

j γ, A] (3)
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where Wj is a r × p matrix given below (r = pq, some q < J), γ is an unknown r-dimensional
vector, and A is a common unknown covariance matrix. It is assumed that Wj is given by

Wj =



wj1
...
wjq

wj1
...
wjq

. . .
wj1

...
wjq



(4)

where wj = (wj1, ..., wjq)T is a vector of covariates for the j’th vector θj .

The usual context for application of this result is when Yj is a vector of estimates of θj from
the j’th city or the j’th study (so Yj could also be written θ̂j , but Yj is more convenient notation
when there is no danger of confusion with the original data from which θ̂j was calculated). We
assume the covariance matrices Vj are estimated from sufficiently large samples that they may in
practice be treated as known. Also note the assumed multivariate normal distribution of Yj (or
θ̂j) given θj : this is exact in the case of a simple OLS regression, but is itself an approximation in
more complex cases such as a generalized linear model regression with Poisson error structure.

The theory divides into two cases: first we consider the case where all of V1, ..., VJ are the same,
then we extend it to the general case. The first case is not usually appropriate in practice, but it
motivates the method used for the second case.

3.1 The equal covariance case

Suppose now V1 = ... = VJ = V0 in (2). Define

B0 = V
1/2

0 (V0 +A)−1V
1/2

0 (5)

where V 1/2
0 is the symmetric square root of V0. Because A is non-negative definite, all the eigen-

values of B0 lie in the interval (0, 1], a condition we denote by writing 0 < B0 ≤ I.

The marginal likelihood of B0 is given by

L0(B0) ∝ |B0|(J−q)/2 exp
{
−1

2
tr(SB0)

}
, 0 < B0 ≤ I. (6)

Here

S = V
−1/2

0

{∑
(Yj −W T

j γ̂)(Yj −W T
j γ̂)T

}
V
−1/2

0 , (7)

γ̂ = (
∑

WjW
T
j )−1

∑
WjYT

j . (8)

The likelihood (6) has the form of a “constrained Wishart distribution”, as follows.

First recall the standard definition of a Wishart distribution:

3



Definition 1. Let X1, ..., Xm be independent MVNp[0,Σ] and M =
∑m
j=1XjX

T
j . The M is

said to have the Wishart distribution with m degrees of freedom and covariance matrix Σ, notation
M ∼Wp[Σ,m]. The density is

fM (M) =
|M |(m−p−1)/2 exp

{
−1

2tr(Σ−1M)
}

2mp/2πp(p−1)/4|Σ|m/2
∏p
j=1 Γ

(
m+1−j

2

)
with respect to Lebesgue measure on Rp(p+1)/2, restricted to positive definite symmetric matrices
M . The case Σ = Ip (the p× p identity matrix) is known as standard Wishart.

We now turn to the definition of constrained Wishart, introduced by Everson and Morris.

Definition 2. A symmetric p × p random matrix X has a constrained Wishart distribution
CWishp(ν,Σ;Q), of dimension p, degrees of freedom ν > 0, symmetric p × p scale matrix Σ and
diagonal constraint matrix Q, if the density function f(X) satisfies

f(X) ∝ |X|(ν−p−1)/2 exp
{
−1

2
tr
(
Σ−1X

)}
, 0 < X ≤ Q. (9)

Now consider a class of prior densities,

π(B0) ∝ |B0|ν∗−p−1)/2 exp
{
−1

2
tr (S∗B0)

}
, 0 < B0 ≤ I. (10)

This is of the form of a constrained Wishart distribution, B0 ∼CWishp(ν∗, S−1
∗ ; I) provided ν∗ >

0, S∗ > 0, but may also be extended to some cases of improper priors. The following theorem
(Theorem 1 of Everson and Morris (2000)) established that the prior (10) is conjugate for the
likelihood (6):

Theorem 1. Assume a two-level hierarchical model defined by equations (2) and (3), with all
Vj = V0, a known p× p symmetric positive definite matrix. Let B0 = V

1/2
0 (V0 +A)−1V

1/2
0 have the

prior density (10) for p × p symmetric matrix S∗ ≥ 0 and some ν∗ > −(J − q). Then, conditional
on Y,

B0 | Y ∼ CWishp{J − q + ν∗, (S + S∗)−1; I}, (11)

with S as in (7).

As a result of this theorem, it is possible to construct a Monte Carlo sample from the posterior
distribution of B0 by drawing independent Wishart matrices and retaining only those for which
B0 ≤ I. It is then possible to transform A = V

1/2
0 (B−1

0 − I)V 1/2
0 to generate a posterior sample

from the matrix A.

3.2 The unequal covariance case

Now consider the case where V1, ..., VJ are unequal. We still define a V0 which is in principle
arbitrary, but in practice usually taken to be the sample mean of V1, ..., VJ . As before, let B0 =
V

1/2
0 (V0+A)−1V

1/2
0 . In this case the result is that a suitable constrained Wishart density “envelops”

the posterior density of B0 given Y. For two densities f0 and f1, we say that f0 envelops f1 if the
ratio f1/f0 is bounded above.

Theorem 2. For a given symmetric p × p matrix V0 > 0, f(B0 | Y) is the posterior density
function for B0 = V

1/2
0 (V0 + A)−1V

1/2
0 , assuming some prior density π(B0) of the form (10) with
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ν∗ > −(J−q). Let f0 be the density function for any CWish(ν,Σ; I) distribution. Then f0 envelops
f(B0 | Y) for any Σ > 0 and for any ν ≤ J − q + ν∗.

Theorem 2 shows that it is possible to generate Monte Carlo samples from f1 by rejection
sampling. Suppose f0 envelops f1, with f1 ≤ Mf0, M < ∞. Generate a Monte Carlo X from f0;
“accept” X with probability f1(X)

Mf0(X) ; if reject, draw a new X and repeated the process until some
X is accepted. This X then has density f1. The process may be repeated as many times as desired,
to generate an indepedentent, identically distributed sample of observations from f1.

This has the advantage over the Hastings-Metropolis algorithm that the sample values are
independent and have exactly the right distribution, whereas the Hastings-Metropolis algorithm
produces samples that only asymptotically have those properties. On the other hand, we do need
to know M . The proof in Everson and Morris (2000) actually includes a specific value of M , though
it is not clear how sharp the bound is in practice. Two alternatives are importance sampling, which
can be used to estimate the mean of any function of X ∼ f1 without directly generating Monte
Carlo samples from f1, or sampling-importance resampling (Rubin 1987), in which a large sample
X1, ...., XN is generated from f0 and then, the values are resampled with probabilities proportional
to f1(Xi)/f0(Xi), 1 ≤ i ≤ N . The disadvantage of the sampling-importance resampling is that it
may be necessary to generate a sample size N much larger than the one that is actually required,
but it is a way of performing rejection sampling without directly knowing M .

3.3 Technical Details

The joint density of {(θj ,Yj), j = 1, ..., J} is

J∏
j=1

[
|A|−1/2 exp

{
−1

2
(θj −W T

j γ)TA−1(θj −W T
j γ)− 1

2
(Yj − θj)TV −1

j (Yj − θj)
}]

. (12)

We integrate (12), first with respect to θj for each j, then with respect to γ.

The first integral requires completing the square in

(θj −W T
j γ)TA−1(θj −W T

j γ) + (Yj − θj)TV −1
j (Yj − θj)

= θTj (A−1 + V −1
j )θj − 2θTj (A−1W T

j γ + V −1
j Yj) + γTWjA

−1W T
j γ + YT

j V
−1
j Yj

But the identity

θTBθ − 2θT c + d = (θ −B−1c)TB(θ −B−1c) + d− cTB−1c

(where θ, c and d are p-dimensional vectors, B a p×B symmetric positive definite matrix) leads
to ∫

exp
{
−1

2

(
θTBθ − 2θT c + d

)}
dθ = (2π)p/2|B|−1/2 exp

{
−1

2

(
d− cTB−1c

)}
. (13)

Identifying B with A−1 +V −1
j , c with A−1W T

j γ +V −1
j Yj and d with γTWjA

−1W T
j γ +YT

j V
−1
j Yj ,

we integrate (12) with respect to each of θ1, ...,θJ to get

J∏
j=1

[
|A|−1/2(2π)p/2|A−1 + V −1

j |
−1/2 exp

{
−1

2

(
γTWjA

−1W T
j γ + YT

j V
−1
j Yj

−(A−1W T
j γ + V −1

j Yj)T (A−1 + V −1
j )−1(A−1W T

j γ + V −1
j Yj)

)}]
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∝ |A|−J/2
( J∏
j=1

|A−1 + V −1
j |

)−1/2

· exp
[
−1

2

∑
j

{
γTWj(A+ Vj)−1W T

j γ

−2γTWj(A+ Vj)−1Yj + YT
j (A+ Vj)−1Yj

}]
. (14)

We now integrate (14) with respect to γ, again using (13) with θ replaced by γ, where we iden-
tify B with the r × r matrix

∑
jWj(A + Vj)−1W T

j , c with
∑
j

{
Wj(A+ Vj)−1Yj

}
and d with∑

j

{
YT
j (A+ Vj)−1Yj

}
. The result is proportional to

|A|−J/2
( J∏
j=1

|A−1 + V −1
j |

)−1/2∣∣∣∣∑
j

Wj(A+ Vj)−1W T
j

∣∣∣∣−1/2

e−Q/2 (15)

with

Q =
∑
j

{
YT
j (A+ Vj)−1Yj

}
−

∑
j

{
Wj(A+ Vj)−1Yj

}T ·
·
{∑

j

Wj(A+ Vj)−1W T
j

}−1
∑

j

{
Wj(A+ Vj)−1Yj

}
=

∑
j

(Yj −W T
j γ∗)T (A+ Vj)−1(Yj −W T

j γ∗) (16)

where

γ∗ =

∑
j

Wj(A+ Vj)−1W T
j

−1∑
j

Wj(A+ Vj)−1Yj

 . (17)

The result of this calculation is therefore that the integrated or marginal likelihood is given by (15),
with the general residual sum of squares Q defined by (16) and (17).

We note a some side consequences of this calculation:

1. The conditional distribution of γ given A is normal with mean γ∗ and covariance matrix(∑
jWj(A+ Vj)−1W T

j

)−1
;

2. The conditional distribution of θj givenA and γ is normal with mean
(
A−1 + V −1

j

)−1 (
A−1W T

j γ + V −1
j Yj

)
and covariance matrix

(
A−1 + V −1

j

)−1
.

3. As a result of the two preceding points, the conditional distribution of θj given A and is

normal with mean
(
A−1 + V −1

j

)−1 (
A−1W T

j γ∗ + V −1
j Yj

)
and covariance matrix (A−1 +

Vj)−1A−1W T
j

(∑
jWj(A+ Vj)−1W T

j

)−1
WjA

−1(A−1 + Vj)−1 +
(
A−1 + V −1

j

)−1
.

These facts are useful in calculating the posterior distributions of γ and θj respectively, which
are also important for applications.

The final expression (15) is the integrated likelihood (also called the restricted likelihood) of A,
and a simple REML estimator would choose A to maximize (15). Note that when p = 1, A is a
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scalar and this is a simple one-parameter optimization. Also up to this point, the calculation is
completely general, making no restrictions on V1, ..., VJ or the form of Wj .

We now show how to simplify (15) when V1 = ... = VJ = V0 and Wj is of the form (4).
Write B0 = V

1/2
0 (V0 + A)−1V

1/2
0 . Then A(A−1 + V −1

0 ) = (V0 + A)V −1
0 = V

1/2
0 B−1

0 V
−1/2

0 so
|A| · |A−1 + V −1

0 | = |B0|−1. Hence

|A|−J/2
( J∏
j=1

|A−1 + V −1
j |

)−1/2

= |B0|J/2. (18)

Next, we note some simple facts about Kronecker products. If A is a p1 × p2 matrix and B is a
q1 × q2 matrix, and A ⊗ B is a p1q1 × p2q2 matrix whose generic entry is aijbk`, 1 ≤ i ≤ p1, 1 ≤
j ≤ p2, 1 ≤ k ≤ q1, 1 ≤ ` ≤ q2. Then,

1. If A,B,C,D are matrices such that the matrix products AC and BD are both well defined,
then the matrix product of A⊗B and C ⊗D is AC ⊗BD.

2. In particular, if p1 = p2 and q1 = q2, then the inverse of A⊗B is A−1 ⊗B−1.

3. Also if p1 = p2 = p and q1 = q2 = q, |A⊗B| = |A|q|B|p.

We note that any matrix A = A ⊗ 1 where 1 is the 1 × 1 matrix 1; also as a result of (4),
Wj = Ip ⊗ wj . The following statements (following Everson and Morris) are mainly repeated
application of property 1 above (property 3 in the case of (21)):∑

j

Wj(V0 +A)−1Yj =
∑
j

(Ip ⊗wj){(V0 +A)−1Yj ⊗ 1}

=
∑
j

{(V0 +A)−1Yj ⊗wj}, (19)

∑
j

Wj(V0 +A)−1W T
j =

∑
j

(Ip ⊗wj){(V0 +A)−1 ⊗ 1}(Ip ⊗wT
j )

=
∑
j

{(V0 +A)−1 ⊗wjwT
j },

= (V0 +A)−1 ⊗
∑
j

wjwT
j , (20)

|
∑
j

Wj(V0 +A)−1W T
j | = |V0 +A|−q|

∑
j

wjwT
j |p. (21)

As a consequence of (21),

|
∑
j

Wj(V0 +A)−1W T
j |−1/2 ∝ |B0|−q/2. (22)

We also have

γ∗ =

∑
j

Wj(A+ Vj)−1W T
j

−1∑
j

Wj(A+ Vj)−1Yj


=

(V0 +A)⊗ (
∑
j

wjwT
j )−1

∑
j

{
(V0 +A)−1Yj ⊗wj

}
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=
∑
j

(V0 +A)⊗ (
∑
j

wjwT
j )−1

{(V0 +A)−1Yj ⊗wj

}

=
∑
j

Yj ⊗ (
∑
j

wjwT
j )−1wj


=

∑
j

Ip ⊗ (
∑
j

wjwT
j )−1

 (Y ⊗wj)

=

Ip ⊗ (
∑
j

wjwT
j )−1

∑
j

(Y ⊗wj)

=

∑
j

(Ip ⊗wj)(Ip ⊗wT
j )


−1∑

j

(Ip ⊗wj)(Yj ⊗ 1)

=

∑
j

WjW
T
j

−1∑
j

WjYj

= γ̂. (23)

Hence with Q defined by (16),

Q =
∑
j

(Yj −W T
j γ̂)T (A+ V0)−1(Yj −W T

j γ̂)

=
∑
j

(Yj −W T
j γ̂)TV −1/2

0 B0V
−1/2

0 (Yj −W T
j γ̂)

= tr (SB0)) . (24)

Combining (18), (22) and (24), (15) reduces to (6).

3.4 Choosing the Prior

The prior density (10) is proper if ν∗ > 0 and S∗ > 0. However, it’s possible to choose an
improper prior so long as the posterior density is proper, which in view of (11), is true so long as
J − q + ν∗ > 0, S + S∗ > 0. So, for example, taking ν = −p − 1, S∗ = 0 is satisfactory so long
as J > q + p + 1. This corresponds to a prior density for B0 proportional to |B0|−p−1 which, on
transforming back to A, is a uniform prior on A > 0.

The program tlnise is available as a downloadable package for R (written by Roger Peng
of Johns Hopkins, based on earlier S-PLUS code of Philip Everson). This program assumes a
prior for B0 proportional to |B0|(prior−p−1)/2 where “prior” may be specified as an argument. So
prior=−p − 1 (the default) corresponds to a uniform prior on A > 0. But prior=0 is the Jeffreys
prior, and prior=p+ 1 would correspond to a uniform prior on B0. So far as we know, there is no
general theory to determine which of these is best.

3.5 Application to the NMMAPS ozone example

Assume a file out1.txt that contains the output of the individual model fits. In the form adopted
here, this has four columns: Cols. 1 and 2 for the estimate and standard error of the ozone-mortality
coefficient under the “all-year” model, and cols. 3 and 4 the same thing under the “summer only”
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model. Note that some cities have missing data and these are denoted NA. The first few lines of the
file are

-0.0001153294 0.001479885 -0.0001153294 0.001479885
0.0006965119 0.001674628 0.0009891532 0.001928025
NA NA NA NA
0.002951046 0.003074613 0.002951046 0.003074613

Units here are that this is the increase in log µt (logarithm of the expected number of deaths on
day t) associated with a 1 part per billion (ppb) rise in ozone. In practice, it is usual to express the
result as percent rise in mortality associated with a 10 ppb rise in ozone. To convert to this scale,
the above numbers must be multiplied by 1000.

A sample program is as follows:

out1<-matrix(scan(’out1.txt’),ncol=4,byrow=T)
m1<-1000*out1[,1]
v1<-(1000*out1[,2])^2
# remove NAs
m1<-m1[!is.na(v1)]
v1<-v1[!is.na(v1)]
# apply tlnise - remember to load first
#
# there are a bunch of options but this is the basic form of the command
tln1<-tlnise(m1,v1)
#
# output "national" estimates
tln1$gamma
# output individual city posterior estimates and standard errors
tln1$theta
tln1$SDtheta

However, the original NMMAPS cities were also classified into seven regions, denoted Industrial
Midwest, North East, North West, Southern California, South East (includes eastern Texas), South
West and Upper Midwest. We can compute stratified estimates by region, using the following code:

# load regions data and convert to indicator variables
region<-scan(’d:/r/c/props/API/work4/regions.txt’)
regind<-matrix(0,ncol=7,nrow=108)
for(i in 1:108){
if(region[i]==1)regind[i,]<-c(1,0,0,0,0,0,0)
if(region[i]==2)regind[i,]<-c(0,1,0,0,0,0,0)
if(region[i]==3)regind[i,]<-c(0,0,1,0,0,0,0)
if(region[i]==5)regind[i,]<-c(0,0,0,1,0,0,0)
if(region[i]==6)regind[i,]<-c(0,0,0,0,1,0,0)
if(region[i]==7)regind[i,]<-c(0,0,0,0,0,1,0)
if(region[i]==8)regind[i,]<-c(0,0,0,0,0,0,1)
}
# load ozone-mortality coefficients
out1<-matrix(scan(’d:/feb08/UNC/s890/nmmaps/out1.txt’),ncol=4,byrow=T)
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m1<-1000*out1[,1]
v1<-(1000*out1[,2])^2
# remove NAs
regind<-regind[!is.na(v1),]
m1<-m1[!is.na(v1)]
v1<-v1[!is.na(v1)]
# apply tlnise - remember to load first
tln1<-tlnise(m1,v1,w=regind,intercept=F)
#
# output "national" estimates
tln1$gamma
# output individual city posterior estimates and standard errors
tln1$theta
tln1$SDtheta

As an example, Fig. 1 shows the posterior estimates of θj and 95% prediction intervals under
the “national prior”, in which we assume θj ∼ N [µ, τ2] for each city j under a common prior mean
µ and variance τ2 for all cities. Also shown on this figure are the posterior means (squares) from
estimates computed under the “regional prior”, in which θj ∼ N [

∑7
r=1 βrIr,j , τ

2], β1, ..., β7 having
independent uniform priors on (−∞,∞), Ir,j denoting the regional indicator variable (Ir,j = 1 if
city j is in region r, 0 otherwise).

Fig. 2 depicts the “population weighted average coefficient” for each region, with 95% prediction
intervals.

Fig. 3 depicts various versions of a spatially interpolated reconstruction of the ozone-mortality
coefficient. This uses spatial statistics and will be explained later in the course!

4 A Measurement Error Model for the Relationship Between Heart
Rate and Exposure to Particulate Matter

4.1 Introduction

This section is based on a paper (Crooks et al., 2008) that studied the relationship between ambient
particulate matter (PM) and various measures of cardiovasular health. In particular, we consider
whether exposure to PM has the effect of decreasing the RR interval (in effect, the reciprocal of heart
rate). Decreases in RR (ms) or increases in HR (beat/sec) are associated with heightened activity
of the sympathetic division of the autonomic nervous system, and this in turn is a risk factor for
acute coronary heart disease (CHD) events. The data analysis was conducted as part of an ancillary
study based on a large, geographically diverse population of U.S. women enrolled in the Women’s
Health Initiative (WHI) clinical trials, The Environmental Epidemiology of Arrhythmogenesis in
WHI (EEAWHI).

The original dataset included 68,132 individuals studied between 1993 and 1998. At each study
visit, an individuals RR interval (as well as a number of other measures of cardiovascular health, but
we focus on RR here) were measured from an electrocardiograph. After applying various exclusion
criteria, the main analysis was based on the first ECG recorded during the study period among
52,805 participants, grouped into 57 study centers.

Various individual attributed were included in the dataset, such as age, self-reported ethnicity
(White/Non-Hispanic, Black/African-American, Hispanic/Latino, Asian/Pacific Islander or other);
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Variable Lag(s) Estimate SE t statistic 2-sided p-value
(×104) (×104)

PM10 0 –1.58 0.55 –2.89 0.0039
PM10 1 –1.51 0.57 –2.65 0.0080
PM10 2 –0.26 0.60 –0.43 0.66
PM10 3 0.43 0.59 0.72 0.47
PM10 4 0.36 0.57 0.63 0.52
PM10 5 0.26 0.55 0.47 0.64
PM10 01 –2.06 0.64 –3.20 0.0014

Table 1: Simple linear regression models for 6 particulate matter measures.

education (whether or not a college graduate); indicators of diabetes, hypertension, etc.; whether
or not the individual is a smoker; whether or not the individual uses beta-blockers; and chronic
lung disease as measured by history of asthma, emphysema or lung cancer.

Meteorological data were collected; temperature at lag 1 day was included as a covariate in the
regression analyses.

The principal novel feature of the dataset was that exposures to PM were not measured directly,
but interpolated from monitor stations by kriging (to be described in more detail later in this
course!). A previous paper (Liao et al., 2006) established that the most efficient method of kriging
was log-normal kriging, in which it is assumed that the logarithm of particulate matter has a
normal distribution. This use of a lognormal distribution leads to some novel results for the effect
of measurement error on the regression. For simplicity, in this discussion we consider only the
concentrations of PM < 10 µm (PM10) averaged over the day of and before each ECG (lag 0-1).

4.2 Simple Regression Analyses

As a preliminary analysis, we performed a simple regression. We used logarithm of RR as the
response variable, and the following covariates: exam site as a factor variable with 57 levels;
temperature; time of day, day of week, and season of ECG recording; plus each of the participants
characteristics listed in Section 4.1.

In addition to the above, we included (one at a time) concentrations of PM10 at each of lags
0-5 days, as well as the average of lags 0 and 1. Results are in Table 1. From this we conclude that
the strongest effects are at lags 0 and 1, with the strongest of all at the average of lags 0 and 1.

A second step was to include possible interactions between PM10 and participant characteris-
tics. In particular, we divided the sample according to the presence of prior lung disease (“LD”),
according to smoking status (“SM” = current smoker) and beta-blocker use (“BB”) as well as
various combinations of these variables. In all cases, the PM variable was taken to be the mean of
PM10 at lags 0 and 1. Results are in Table 2.

The results showed that PM significantly affects RR only among non-smokers without chronic
lung disease. This suggested defining two risk groups, one consisting of non-smokers without chronic
lung disease (“No SM, No LD”) and the other of everyone else (“SM or LD”). To examine the
effect of beta-blocker use, each of the prior groups was split into two further subgroups, labeled
“No BB” or “BB”. Within the “No SM, No LD” group where the effect of PM is significant, this
further subdivision into BB and no BB showed about the same level of statistical significance as
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Subgroup Percent of Estimate SE t statistic 2-sided p-value
total (×104) (×104)

No LD 89.8 –2.41 0.67 –3.58 0.00034
LD 10.2 0.96 1.81 0.53 0.60

No BB 87.2 –1.72 0.68 –2.53 0.011
BB 12.8 –4.45 1.65 –2.70 0.0069

No SM 94.0 –2.29 0.66 –3.48 0.00051
SM 6.0 1.60 2.37 0.67 0.50

NoBB NoLD 77.9 –2.02 0.71 –2.85 0.0043
NoBB, LD 9.3 0.84 1.83 0.46 0.65
BB, NoLD 11.9 –5.00 1.66 –3.01 0.0026

BB, LD 1.0 2.05 3.05 0.67 0.50
NoBB, NoSM 81.8 –1.92 0.69 –2.76 0.0058

NoBB, SM 5.40 1.28 2.40 0.53 0.59
BB, NoSM 12.3 –4.91 1.66 –2.96 0.0031

BB, SM 0.6 3.63 3.71 0.98 0.33
NoSM, NoLD 84.6 –2.62 0.69 –3.83 0.00013

NoSM, LD 9.5 0.75 1.84 0.41 0.68
SM, NoLD 5.2 1.33 2.42 0.55 0.58

SM, LD 0.7 3.31 3.41 0.97 0.33
NoBB,NoSM,NoLD 73.1 –2.12 0.71 –2.98 0.0029

NoBB,SMorLD 14.0 0.48 1.37 0.35 0.73
BB,NoSM,NoLD 11.4 –5.35 1.67 –3.21 0.0013

BB,SMorLD 1.4 1.99 2.54 0.78 0.43

Table 2: Regression analysis in which the population is split into subgroups in various ways.
Variable of interest is PM10, mean of lags 0 and 1.
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Subgroup Pollutant Posterior Mean 95% CI
(×104) (×104)

NoBB,NoSM,NoLD PM10 –1.77 (–3.40,–0.14)
NoBB,SMorLD PM10 0.40 (–3.25,4.05)

BB,NoSM,NoLD PM10 –5.63 (–9.80,–1.46)
BB,SMorLD PM10 2.08 (–3.33,7.49)

Table 3: Posterior means and 95% credible intervals (CIs) for combined coefficient of PM10, subdi-
vided into four groups of participants, based on hierarchical analysis across sites but without taking
into account PM measurement error.

measured by the t statistic, but a much larger magnitude of regression coefficient in the BB group,
suggesting that PM has a greater effect among beta-blocker users than non-users.

For subsequent analysis, we concentrate on the split defined by the last box in Table 2, dividing
the population first into two groups, one consisting of non-smokers without chronic lung disease,
and the other consisting of everyone else. Then, each of those subgroups was further split according
to beta-blockers use.

4.3 NMMAPS-Style Analysis

AS a first step towards generalizing the simple regression analysis, we considered an “NMMAPS-
style analysis” in which the same regression model was fitted separately to data from each of
the 57 exam sites, with individual counts ranging from 75 to 1972. For each site the coefficient
and standard error corresponding to the particulate matter effect was retained. The results were
combined across sites using the tlnise program. The analysis was restricted to the data split
mentioned at the end of Section 4.2 (based on chronic lung disease, current smoking status and
betablocker use), and to PM concentrations averaged across lags 0 and 1. Results are shown in
Table 3.

The results reinforce the findings of Section 4.2. The PM-RR associations are statistically
significant only among the non-smokers without chronic lung disease, but among that group, the
effect is much stronger among beta-blocker users than among non-users.

4.4 Fully Bayesian Analysis

This section presents a fully Bayesian analysis, combining data across sites as in Section 4.3, but also
including the effects of measurement error in PM10. The analysis relies on a Bayesian hierarchical
model, using Gibbs sampling to update the regression parameters and a Metropolis-Hastings update
for the particulate matter variable.

Let yij denote the observed response of individual j at exam site i, and let {xijk} denote the
individual-level covariates. We assume site-level regression coefficients {βik} and precisions {κi}
to have prior normal and gamma distributions respectively, where the prior mean of βik depends
on site-level covariates {zit, t = 1, ..., T}. Parameters αkt and ψk define the prior distributions of
{βik}. This is the general formulation of the model, that allows for both site-level and individual-
level covariates, but for the applications in this paper, we take T = 1, zi1 = 1 for all i, and write
αk instead of αkt, t = 1, ..., T . We write Pij for the true value of the pollution variable (PM10 or
PM2.5) for individual j in site i, and we assume that the log-normal kriging analysis specifies the
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prior mean and standard deviation, Vij and sij , of Pij ; the standard deviation was converted back
to a logarithmic scale by a delta-function argument. In cases where the coefficient of Pij is the same
for everyone in the population, we just take xij1 = Pij and then α1 is the coefficient. For subgroup
analyses (e.g. four subgroups, group 1 consisting of individuals who do not take beta-blockers and
do not have chronic lung disease or smoking, etc.) we define xijk = Pijδijk, k = 1, ..., 4 where δijk
is the indicator for individual j at site i to be in subgroup k, and in that case αk for k = 1, ..., 4 is
the regression coefficient of Pij in subgroup k. The full model is

yij ∼ N

[∑
k

xijkβik, κ
−1
i

]
, j = 1, ..., ni, i = 1, ..., C,

κi ∼ Γ[γκ, δκ], i = 1, ..., C,

βik ∼ N

[
T∑
t=1

zitαkt, ψ
−1
k

]
, k = 1, ...,K,

ψk ∼ Γ[γψ, δψ], k = 1, ...,K,
αkt ∼ U [−∞,∞], k = 1, ...,K, t = 1, ..., T,

γκ, δκ ∼ Γ[a0, b0], (e.g. a0 = b0 = 0.001)

logPij ∼ N [log Vij , uij ] (uij known,=
s2
ij

V 2
ij

), j = 1, ..., ni, i = 1, ..., C.

The joint density of all observations is:

C∏
i=1

[
κ
ni/2
i exp

−κi2 ∑
j

(
yij −

∑
k

xijkβik

)2
 ·

{
δγκκ

Γ(γκ)
κγκ−1
i e−δκκi

}
·

·
K∏
k=1

ψ1/2
k exp

−ψk
2

(
βik −

∑
t

zitαkt

)2
 ·

·
ni∏
j=1

{
1
Pij

exp

(
− 1

2uij
(logPij − log Vij)2

)}]
·

·γa0−1
κ e−b0γκ · δa0−1

κ e−b0δκ ·

Define αααk to be the vector of αkt, t = 1, ..., T , βββi· to be the vector of βik, k = 1, ...,K for fixed
i, βββ·k to be the vector of βik, i = 1, ..., C for fixed k, zi to be the vector of zit, t = 1, ..., T , and xij
to be the vector of xijk, k = 1, ...,K for fixed i and j. All these are column vectors. Also let Z
be the matrix of zit (C × T ), A be the matrix of αkt (K × T ), and let Ψ be the K ×K diagonal
matrix with diagonal entries (ψ1, ..., ψK).

The conditional distributions are:

βββi· | rest ∼ N


κi∑

j

xijxTij + Ψ

−1κi∑
j

xijyij + ΨAzi

 ,
κi∑

j

xijxTij + Ψ

−1
 ,

αααk | rest ∼ N
[
(ZTZ)−1ZTβββ·k, (ψkZ

TZ)−1
]
,

κi | rest ∼ Γ

γκ +
ni
2
, δκ +

1
2

∑
j

(
yij −

∑
k

xijkβik

)2
 ,
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ψk | rest ∼ Γ

γψ +
C

2
, δψ +

1
2

∑
i

(
βik −

∑
t

zitαkt

)2
 ,

δκ | rest ∼ Γ

(
a0 + Cγκ, b0 +

∑
i

κi

)
.

This covers the “Gibbs sampling” part of the solution. The other elements must be updated by
Metropolis sampling. In the case of Pij , we propose the following algorithm. First note that in the
subgroups analysis with four subgroups, each Pij is one of xijk, k = 1, ..., 4 depending on which
subgroup contains individual j of site i; without loss of generality, let us assume Pij = xij1 for a
particular (i, j). Then

f(xij1) = exp

−κi2
(
yij −

∑
k

xijkβik

)2
 · exp

{
− 1

2uij
(log xij1 − log Vij)2

}
.

At step (i, j) define x′ij1 by replacing xij1 with x′ij1 = xij1e
∆(U− 1

2
) where U is uniform on [0, 1]

and ∆ is arbitrary; accept x′ij1 with probability min
{
f(x′ij1)

f(xij1) , 1
}

, otherwise keep xij1 at its present

value until the next iteration.

For γκ, define

g(γκ) =
(
∏
i κi)

γκ δCγκκ

Γ(γκ)C
· γa0

κ e
−b0γκ .

Based on current γκ define new γ′κ = γκe
∆′(U− 1

2
) where U is uniform on [0, 1] and ∆′ is arbitrary;

accept γ′κ with probability min
{
g(γ′κ)
g(γκ) , 1

}
.

We could treat γψ, δψ in a similar manner to γκ, δκ (i.e. defining a prior distribution using
hyperparameters) but we prefer not to for the following reason: the κi are exchangeable (they
represent equivalent measurements taken in different exam sites, but we believe the sites are similar)
so it makes sense to estimate a distribution across sites that could, for example, be used to predict
responses at a new site should one ever be added to the dataset. The same argument does not apply
to the ψk parameters, which represent qualitatively different covariates. It is doubtful that this
distinction has much impact on the results, but we did find in preliminary analysis that some care
was needed in handling γψ and δψ. For the following analysis we took γψ = 0.01, δψ = 10−6. The
value of γψ ensures that the prior distribution is highly diffuse, while our choice of δψ then ensures
that the prior mean of the ψk is about 104. That would fit in with the fact that the standard errors
of the α parameters, estimated through a conventional regression approach, are of the order of 0.01
(= 1/

√
104).

The values of ∆ and ∆′ are arbitrary but we took ∆ = 5 for the measurement error analysis
with M = 1 and ∆ = 10 for the measurement error analysis with M = 2. These choices were
guided by the criteria of Gelman et al. (1996) for optimal acceptance rates in Hasting-Metropolis
sampling. We took ∆′ = 1.

The Bayesian hierarchical analysis was run using the average for lags 0 and 1 of either PM10

or PM2.5, with a multiplier M = 0, 1 or 2 applied to the kriging error. Since the concentrations
were kriged on a daily basis we calculated the error for this average using the kriging errors from
lags 0 and 1 and the lag-1 autocorrellation of PM10 (0.57) and PM2.5 (0.67) calculated from our
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M = 0 M = 1 M = 2
Subgroup PM Mean 95% CI Mean 95% CI Mean 95% CI

(×104) (×104) (×104) (×104) (×104) (×104)
NoBB,NoSM,NoLD 10 –2.15 (–3.93,–0.37) –1.41 (–3.03,0.14) –0.33 (–1.29,0.61)

NoBB,SMorLD 10 0.12 (–2.88,3.02) –0.44 (–2.98,2.20) 0.15 (–1.35,1.56)
BB,NoSM,NoLD 10 –5.48 (–9.13,–1.96) –5.72 (–9.45,–1.92) –2.34 (–4.17,–0.62)

BB,SMorLD 10 1.83 (–3.75,7.56) –0.54 (–6.30,5.73) 0.62 (–2.76,3.95)

Table 4: Posterior means and 95% credible intervals, for combined coefficient of mean PM10 at lag
0-1, subdivided into four groups of participants, based on fully Bayesian model for cases M = 0,
M = 1, M = 2.

Variable M NoBB,NoSM,NoLD NoBB,SMorLD BB,NoSM,NoLD BB,SMorLD
(k = 1) (k = 2) (k = 3) (k = 4)

PM10 0 0.991 0.465 0.999 0.266
PM10 1 0.962 0.637 0.999 0.580
PM10 2 0.750 0.409 0.997 0.354

Table 5: Posterior probabilities of αk < 0, k = 1, 2, 3, 4, for PM10 and three noise multiplies
(M = 0, 1 and 2). Based on 50000 iterations, the first 20000 iterations discarded as burn-in.

data. The introduction of M is intended to allow examination of different levels of measurement
error. M = 0 ignores the measurement error and gives results fairly comparable to Section 4.3 (see
Table 4). M = 1 is the case of primary interest, while M = 2 is included to allow examination
of the effect of under-estimating the true PM measurement error. As before, the analysis included
the participant characteristics listed in Section 4.1.

The participants were divided into the same four subgroups, as discussed in Section 4.2, based
on chronic lung disease, current smoking status and beta-blocker use. As defined earlier, αk is the
regression coefficient of PM10 or PM2.5 on log RR in subgroup k, k = 1, 2, 3, 4, where, for example,
α1 refers to the “no BB, no SM, no LD” subgroup. For each analysis, a total of 50,000 MCMC
iterations was run, divided into 1000 loops of size 50. The first 20,000 iterations were discarded as
burn-in, the rationale for this choice being discussed further in Section 4.8.

4.5 Results

Figures ?? and ?? show the posterior density estimates of αk, k = 1, ..., 4. The comparison between
the posterior density curves for M = 0 and M = 1 show that in all cases the density is shifted as
a result of taking account of measurement error, though not necessarily towards 0. It appears that
the shift in the posterior pdf as a result of taking account of measurement error is greater with
PM10 than with PM2.5. In all cases, however, doubling the measurement error standard deviation
results in a much more marked shift, towards a posterior density that is highly peaked near 0. This
feature of the results was initially unexpected, but there is a natural explanation for it.

Table 4 shows the posterior means and 95% credible intervals corresponding to the posterior
density curves in Figure ??. The M = 0 results here should be compared with those of Table 3 and
show the effect of using a fully Bayesian approach approach to the hierarchical analysis as compared
with the NMMAPS approach. In Table 3 the credible intervals were calculated assuming a normal
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distribution based on the posterior mean and posterior standard deviation that are produced by the
tlnise program; in Table 4 they are based directly on the MCMC output with boundaries at the 2.5
and 97.5 percentiles of the posterior distribution. The results clearly show some differences between
the two approaches, though they are not so great as to affect the epidemiological interpretation of
the results. Table 5 shows the posterior probabilities of αk < 0, k = 1, ..., 4, for three values of
the error multiplier M , and two pollutants. These probabilities have a similar interpretation to
that of a p-value in classical statistics: a posterior probability close to 1 indicates a high level of
confidence that the true value of αk is negative. The results demonstrate that for the “No SM,
No LD” groups, the posterior probability that αk < 0 is near 1 in every case for which M = 0 or
M = 1; in fact, with one exception (NoBB,NoSM,NoLD; PM10) the same is also true when M = 2.
We therefore see that for this dataset, the inference that there is an inverse PM-RR association is
quite robust against measurement error.

4.6 Subgroup Differences

Though we originally split the study population into four subgroups based on scientific plausibility
it is worth revisiting whether the differences are borne out in the analysis. In a frequentist context,
a test of the null hypothesis α1 = α2 = α3 = α4 would be interpreted as a test of interaction
between subgroup number and PM. In the present Bayesian context, if at least one of the posterior
probabilities that αk1 − αk2 < 0 (for difference k1, k2 ∈ {1, 2, 3, 4}) is very close to 0 or 1, we
conclude that interactions exist.

For example, our results suggest that α1 and α3 are both negative but α3 < α1, implying that
PM has a greater relative effect on beta-blocker users than non-users among non-smokers who do
not have chronic lung disease. In fact, the posterior probability that α3 < α1 is 0.96, 0.98, and
0.98 for M = 0, 1, 2 respectively. In all cases there appears to be strong evidence that α3 < α1, but
interestingly, the evidence is stronger when measurement error is explicitly modeled (M = 1 or 2)
that when it is ignored (M = 0).

On the other hand, among participants who do not use beta-blockers, the posterior probabilities
that the PM effect is stronger for non-smokers who do not have chronic lung disease than for others
are 0.92, 0.75, and 0.72 for PM10. In this case there appears to be strong evidence for a difference
between groups only if kriging error is ignored.

4.7 Rao-Blackwellization

Recall one of the conditional distributions used in the Gibbs sampler:

αk | rest ∼ N
[
(ZTZ)−1ZTβ·k, (ψkZ

TZ)−1
]
. (25)

As written here, the conditional distribution is for a vector αk but in practice our main interest
has been in scalar parameters α1, ..., α4, which are a subset of (25).

Suppose we want to find the posterior mean of α1. Two possible approaches are:

1. Generate a Monte Carlo sample of size B, say α
(b)
1 , 1 ≤ b ≤ B, then calculate 1

B

∑B
b=1 α

(b)
1 ,

as our estimator of the posterior mean of α1.

2. Generate a random sample of β·k, say β
(b)
·k , 1 ≤ b ≤ B; calculate 1

B

∑B
b=1(ZTZ)−1ZTβ

(b)
·k .
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Because of (25), these two procedures lead to the same result in large samples. However, method
2 is more efficient, essentially because whenever X and Y are jointly distributed random variables
with finite variances, Var(E(X|Y )) <Var(X).

This trick is known as Rao-Blackwellization, essentially because the Rao-Blackwell theorem of
classical statistical inference relies on the same inequality.

Rao-Blackwellization is also useful for displaying posterior densities. Suppose we want to show
the posterior density of α1. One approach is to generate a Monte Carlo sample α(b)

1 , 1 ≤ b ≤ B
and construct a density estimate, e.g. using a kernel density estimate. However that has various
disadvantages, including the need to select a kernel bandwidth. Rao-Blackwellization provides an
alternative approach: for each b ∈ {1, 2, ..., B}, construct the normal density based on (25) (based
on β

(b)
·k and ψ(b)

k ). The final plotted posterior density is the average over these B conditional normal
density curves.

4.8 Convergence Diagnostics for MCMC

The package CODA (Plummer et al. 2006) is a package of programs written in R, designed for post-
processing of MCMC output. For this discussion, we focus on two of the procedures included as
part of the package: the Gelman-Rubin procedure of monitoring convergence, and the Heidelberger-
Welch method for estimating confidence intervals from an autocorrelated time series.

The Gelman-Rubin procedure was originally proposed by Gelman and Rubin (1992), and ex-
tended to multivariate distributions by Brooks and Gelman (1998). As described by Gelman and
Rubin (1992), it consists of seven steps.

1. Simulate m ≥ 2 sequences, each of length 2n, with starting points drawn from a distribution
that is believed to be overdispersed relative to the true posterior distribution. Discard the
first n iterations of each sequence, retaining the last n.

2. For each scalar parameter of interest, calculate B/n as the variance between the m sequence
means x̄i·, each based on n values of x, so that B/n =

∑m
i=1(x̄i· − x̄··)2/(m− 1); and also W ,

the average of the m within-sequence variances s2
i , each of which has n−1 degrees of freedom

— thus W =
∑m
i=1 s

2
i /m.

3. Estimate the target mean µ as the mean over mn values of x, so µ̂ = x̄··.

4. Estimate the target variance σ2 =
∫

(x − µ)2P (x)dx by a weighted average of W and B,
namely

σ̂2 =
n− 1
n

W +
1
n
B.

This will be an overestimate of σ2 if the starting distribution is appropriately overdispersed,
but is unbiased for σ2 if the starting distribution is the true stationary distribution. Also,
for finite n, W should underestimate σ2, because the individual Markov chains have not had
time to range over the full stationary distribution; however as n→∞, both σ̂2 and W should
converge to σ2.

5. Calculate the target distribution with mean µ̂, scale
√
V̂ =

√
σ̂2 +B/(mn) and degrees of

freedom df = 2V̂ 2/v̂ar(V̂ ) where

v̂ar(V̂ ) =
(
n− 1
n

)2

· 1
m

v̂ar(s2
i ) +

(
m+ 1
mn

)2

· 2
m− 1

B2
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+2
(m+ 1)(n− 1)

mn2
· n
m

[ ˆcov(s2
i , x̄

2
i·)− 2x̄·· ˆcov(s2

i , x̄i·)]

where the estimated variances and covariances are obtained from the m sample values of x̄i·
and s2

i .

6. Calculate the “potential scale reduction” as
√
R̂ =

√
(V̂ /W )df/(df − 2). If R̂ is much above

1, then we have reason to believe the inference will be improved by continuing the simulation.

7. Once R̂ is near 1, it is desirable to summarize the target distribution by a set of simulations
rather than normal-theory approximations.

To apply these methods to our present application, the preceding analysis was repeated four
times, with 50,000 MCMC iterations in each trial. To save overall computing time, this was not
done for all the different analyses, but only for the one that seems of greatest interest: taking PM10

as the pollution covariate of interest, and M = 1.

To achieve overdispersed initial distributions, taking into account that the greatest uncertainty
seems to be in the posterior distributions of the PM10 values themselves, we multiplied the initial
PM10 estimates by four multiplicative factors — 0.2, 1, 5 and 25 — as starting values for the MCMC
procedure, and also varying the seed of the random number generator. In all other respects, the
four MCMC simulations, of 50,000 iterations each, were identical.

The parameters of primary interest are αk for k = 1, 2, 3, 4, which were generated through the
sequence of conditional distributions

αk | rest ∼ N
[
(ZTZ)−1ZTβββ·k, (ψkZ

TZ)−1
]
, (26)

where βββ·k is the set of βi,k, i = 1, ..., C coefficients associated with the k’th covariate and ψk is the
corresponding scale parameter.

The calculations were subdivided as follows:

4.8.1 Posterior mean of αk

According to Equation (26), the conditional posterior mean of αk, given all the values of βik, is
(ZTZ)−1ZTβββ·k. Unconditionally, the posterior mean may be calculated by averaging this quantity
over all MCMC iterations, after discarding initial burn-in iterations. Therefore, for each of k =
1, 2, 3, 4, (ZTZ)−1ZTβββ·k was generated for each iteration of the MCMC and for each of the four
replications, and subsequent analyses was based on the resulting time series.

The diagnostic of Gelman and Rubin (1992) is based on a “potential scale reduction factor”
R, and the CODA package calculates both a median value and an upper confidence limit for R
— in the present discussion, the confidence limit has been calculated as the 97.5% quantile of
the distribution. A value of R that is much above 1 is taken to indicate non-convergence of the
algorithm.

In Figure 5, we show a plot of the Gelman-Rubin diagnostic (function gelman.plot in CODA)
as a function of the number of iterations for estimating the posterior means of each of the parameters
αk, k = 1, 2, 3, 4. In each case, we note that there is a sharp reduction in R over the first 3,000
iterations and that it settles down to a value less than 1.2 by about the 15,000’th iteration. However,
the convergence is not uniformly fast over all four parameters — in particular, for k = 2, 3, 4, it
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k = 1 k = 2 k = 3 k = 4
Run 1, Estimate –1.45 –0.50 –5.45 –0.30
Run 2, Estimate –1.41 –0.44 –5.72 –0.54
Run 3, Estimate –1.36 –0.57 –5.88 –0.92
Run 4, Estimate –1.41 –0.51 –5.70 –0.55
Run 1, 95% CI (–1.51,–1.39) (–0.77,–0.22) (–5.78,–5.12) (–0.76,0.17)
Run 2, 95% CI (–1.48,–1.35) (–0.65,–0.24) (–6.11,–5.32) (–1.11,0.03)
Run 3, 95% CI (–1.43,–1.28) (–0.80,–0.34) (–6.18,–5.57) (–1.38,–0.47)
Run 4, 95% CI (–1.48,–1.34) (–0.75,–0.26) (–6.05,–5.35) (–1.10,–0.01)

Table 6: Estimates and 95% confidence intervals for the posterior means of each of the αk param-
eters, k = 1, 2, 3, 4, based on four parallel MCMC runs of length 50,000, discarding the first 20,000
iterations as burn-in, and using the Heidelberger-Welch procedure to take account of autocorrela-
tion. All results have been multiplied by 104 for ease of numerical display.

seems to be slower than for k = 1. This may reflect the inherent uncertainty of these parameters (of
the four subgroups of the population, group 1 is by far the largest, therefore the group about which
one would expect the most precise inferences). Guided by these results, in subsequent analyses
we have discarded the first 20,000 iterations as burn-in, and calculate output statistics based on
iterations 20,001 through 50,000.

When reporting results from a simulation, it is conventional to calculate both the mean of the
quantity of interest (in this case, the posterior mean of αk) and a standard error. Since simulation
outputs are autocorrelated, however, it is necessary to correct for the autocorrelation. The method
of Heidelberger and Welch (1981) is based on a nonparametric estimate of the spectral density at
zero frequency, and is implemented in CODA through the function spectrum0, after discarding the
first 20,000 iterations as previously described. This procedure leads to the point estimates and 95%
confidence intervals for the posterior means given in Table 6.

From the table, we can draw some conclusions about how accurately the posterior means have
been estimated. Clearly α1 is the best estimated, all four confidence intervals within the range
–1.51 to –1.28. For α3, the range is wider (–6.18 to –5.12) also much further from 0 — in both
cases, it is clear that the posterior mean is less than 0 (consistent with an adverse effect of PM on
RR). For α2 and α4, the confidence intervals are much wider. Indeed for α4, we cannot even state
the sign of the posterior mean.

4.8.2 Posterior probability that αk < 0

According to Equation (26), conditionally on ψk and all the values of βik, the posterior probability
that αk < 0 is

Φ

−(ZTZ)−1ZTβββ·k√
(ZTZ)−1/ψk

 (27)

with Φ(·) the standard normal distribution function (note that ZTZ is scalar in this instance, so
Equation (27) makes sense). Therefore, we can calculate the unconditional posterior probability
that αk < 0 by averaging Equation (27) over all MCMC runs, discarding burn-in.

For the analysis, the quantity Equation (27) was calculated for each iteration, and the resulting
values analyzed using the same tests as in Section 4.8.1. The Gelman-Rubin test easily confirmed

20



k = 1 k = 2 k = 3 k = 4
Run 1, Estimate 0.963 0.640 0.9958 0.542
Run 2, Estimate 0.962 0.637 0.9993 0.580
Run 3, Estimate 0.953 0.659 0.9996 0.629
Run 4, Estimate 0.957 0.631 0.9988 0.576
Run 1, 95% CI (0.955,0.972) (0.573,0.707) (0.987,1.004) (0.481,0.603)
Run 2, 95% CI (0.955,0.969) (0.571,0.703) (0.999,1) (0.510,0.649)
Run 3, 95% CI (0.943,0.962) (0.592,0.726) (0.999,1) (0.567,0.691)
Run 4, 95% CI (0.949,0.965) (0.562,0.701) (0.997,1.001) (0.507,0.644)

Table 7: Estimates and 95% confidence intervals for the posterior probability that αk < 0 for
k = 1, 2, 3, 4.

k = 1 k = 2 k = 3 k = 4
1 (–3.02,0.14) (–3.36,2.48) (–8.85,–1.85) (–6.02,5.47)
2 (–3.03,0.14) (–2.98,2.20) (–9.45,–1.92) (–6.30,5.73)
3 (–2.94,0.23) (–3.23,2.10) (–9.44,–2.23) (–6.61,4.94)
4 (–3.05,0.20) (–3.37,2.27) (–9.38,–2.20) (–6.52,5.58)

Table 8: 95% credible intervals for αk, k = 1, 2, 3, 4, computed from each of four MCMC runs.

that a burn-in of 20,000 iterations is adequate for convergence of the MCMC. The Heidelberger-
Welch test was applied to find confidence intervals for the desired probabilities, with results in
Table 7.

As a result of this calculation, we can see that the posterior probabilities that αk < 0 are close
to 1 in the cases k = 1 and 3. (The slightly anomalous confidence intervals for k = 3 are probably
explained by the non-normality of the posterior distribution of Pr{αk < 0}.) Conversely, for k = 2
and k = 4, none of the boundaries of the confidence intervals are very close to 0 or 1. Despite the
obvious ambiguities that remain, it seems safe to say that α1 and α3 are statistically significant
(< 0), while α2 and α4 are not.

4.8.3 Posterior densities

Figure 6 shows the posterior density of αk, k = 1, 2, 3, 4 computed from each of the four runs.
The four runs are in excellent agreement for k = 1; less so for k = 2, 3, 4, though the agreement is
still good. Based on these posterior densities, from each run a 95% equal-tailed credible interval
is computed for each αk; see Table 8. These results reinforce that there is strong evidence that
both α1 < 0 and α3 < 0, but for both α2 and α4, all four intervals cover 0 and therefore do not
indicate a significant result. On the other hand, even for α1 and α3, the 95% prediction intervals
are wide relative to the magnitudes of the posterior means, implying that even though we have
high confidence that these parameters are < 0, it would still not be possible to make precise risk
calculations based on their numerical values.

4.8.4 Summary of Convergence Diagnostics

The Gelman-Rubin diagnostics indicate that reasonable convergence has been achieved by iteration
20,000 at latest. The other statistics show generally good but not perfect agreement across the
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four runs of the MCMC. We have very strong reason to believe that both α1 and α3 are negative
(indicating a detrimental effect of PM10 in the two subgroups consisting of non-smokers without
chronic lung disease) but the prediction intervals for the parameters themselves are still wide relative
to the respective posterior means.

4.9 Summary and Conclusions

The present study differs from previous work by assuming a log-normal model, which is usually a
better fit than the linear model in air pollution contexts. However, under this model, measurement
error cannot be accounted for through simple adjustments to the regression coefficients. We have
demonstrated a method that accounts for this measurement error using a computationally intensive
but conceptually straightforward Bayesian technique.

Our results contradict some common conceptions about this kind of analysis. First, including
measurement error did not necessarily cause the means of the posterior distributions to shift toward
zero. Indeed, at M = 1 there was no discernable pattern to the direction of “bias” compared to
M = 0. However, when the kriging error was doubled all the posteriors shifted toward zero.
Second, our posteriors did not widen systematically after accounting for measurement error, and in
fact narrowed in the M = 2 scenario. The original paper (Crooks et al., 2008) presented evidence
from a simulation study that these results are due to the log-normal measurement error distribution
and not some other aspect of our model.

Our primary aim was to determine whether the epidemiological results were robust to ignoring
kriging uncertainty. We have shown that, because of the way the posterior distributions change
under the effect of log-normal emeasurement error, the credibility of the result is robust, though
the effect magnitudes generally are not. We stress, though, that this final conclusion should not
be taken to be generally true of log-normal measurement error models though it may be true in
individual studies.
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Fig. 1: 95% posterior intervals for the ozone-mortality coefficients, all-year data, by the hierar-
chical Bayesian method as in Fig. 2 of Bell et al. (2004). The Bayesian posterior estimates under
the “national prior” (circles) are shown alongside those for the “regional prior” (squares) and the
raw maximum likelihood estimates (triangles).

23



REGIONAL WEIGHTED AVERAGES
24−HOUR OZONE

Industrial Midwest

North East

North West

Southern California

South East

South West

Upper Midwest

National

−1.5 −1.0 −0.5 0 0.5 1 1.5 2

Percent rise in mortality per 10 ppb rise in 24−hour ozone

All−year
Summer only

Fig 2: Regional estimates of population-weighted average regression coefficients based on 24-hour
ozone, with 95% PIs.
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Fig 3: Map of spatially dependent ozone-mortality coefficient for 8-hour ozone (all-year data),
8-hour ozone (summer data), 24-hour ozone (all-year data) and 1-hour ozone (all-year data).
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Fig 4: Posterior densities for PM10 regression coefficient by subgroup.
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Fig 5: Gelman-Rubin diagnostics for convergence of MCMC. The solid curve represents the
median value of Gelman-Rubin’s R statistic; the dashed curve is the 97.5% quantile. All curves are
for M = 1 and PM10 as the pollutant of interest.
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Fig 6: Posterior densities for PM10 regression coefficient by subgroup: 4 runs of MCMC.
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