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Introduction 1

0.1 Introduction

Detection and Attribution refers to a class of statistical techniques for deter-
mining the extent to which observed changes in climate (such as increased
temperatures, increased frequency and intensity of hurricane events, and both
positive and negative changes in precipitation) may be explained by human
influences including, but not limited to, increased greenhouse gas emissions.
The methodology was originated by the German physicist Klaus Hasselmann
[20, 21, 22], who won the 2021 Nobel Prize in physics, in part because of this
work. The subject developed rapidly after 1990, and became a regular feature
of the reports of the Intergovernmental Panel on Climate Change (IPCC),
most recently in the Sixth Assessment Report [12]. The subject was reviewed
by Hammerling et al. in a previous Handbook in the Chapman and Hall series
[18].

Before moving on to the subject of extreme events, it is worth reviewing
the main ideas of this technology:

� The variable of interest, for example, a temperature trend, is estimated
simultaneously from observational time series and from climate model sim-
ulations. Climate models are large computer programs that simulate the
pattern of weather events under different forcing scenarios, such as no
forcing (control model runs), natural forcings such as solar fluctuations
and volcanic eruptions, and anthropogenic forcings including greenhouse
gas emissions, other sources of atmospheric pollution such as particulate
matter, and land use changes. Typically these analyses are repeated for
data collected over a spatial grid, so we get a spatially correlated set of
estimates for both the observations and climate model data.

� The observational estimates are then used to decompose the observational
signal into a combination of different model components. The most popu-
lar method involves a regression of the observational trends on those de-
rived from climate models, most commonly after a principal components
decomposition to reduce the dimension of the problem [36, 23, 27, 2, 1].

� The human signal is said to be detected if the regression coefficient cor-
responding to the anthropogenic effect is statistically significant when all
natural forcing factors are included in the analysis — in other words,
when the observed change in climate cannot be explained by natural forc-
ings alone. Once the signal is detected, an attribution analysis is designed
to answer questions of the form “What fraction of the observed warming
is due to the human influence?”. Such questions are typically answered in
terms of the regression coefficients from the fitted statistical model.

� Successive reports of the IPCC have used stronger and stronger language
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to describe the strength of the effect, that latest [12] saying, “It is un-
equivocal that human influence has warmed the atmosphere, ocean and
land since pre-industrial times.”

Indeed, an argument could be made that, based on present data, the evi-
dence of human influence on climate is so overwhelming that there is no longer
any need for detailed statistical analysis to support that claim.

However, the question of detection and attribution for extreme events is
rather different. In recent years, there have been many notable examples of
extreme climate events, a small subset of which we list here:

� Hurricane Harvey, which hit Houston, Texas, in 2017, and resulted in a
three-day rainfall that was roughly twice the largest three-day rainfall that
had ever been observed previously, with widespread flooding and loss of
life as a consequence;

� The Pacific northwest heatwave of June, 2021, which resulted in temper-
atures that were in some places more than 5oC higher than any that had
been observed previously;

� The July 2022 heatwave in southern England and Wales, that resulted in
the first ever recorded temperatures over 40o C in London;

� Most recently as of the writing of this chapter, the January 2025 wildfires
that devastated large areas around Los Angeles.

Such events are often attributed to “climate change” in the media, but with
no specific information about which climate-specific effects are responsible.
Hurricanes, wildfires, floods and droughts have always been part of the earth’s
climate and there is often disagreement even among climate scientists over
the extent to which extreme events may have become more frequent, or more
extreme, as a result of the human influence. At the other end of the spectrum,
one hears statements along the lines “this event was X times more likely in
the current climate than it would have been under pre-industrial conditions”,
but with little detail about how such estimates are reached or even the broad
scientific principles on which they are based.

In fact there is a well-developed literature on these topics and methods
familiar to extreme value statisticians, including the Generalized Extreme
Value and Generalized Pareto distributions, are widely used in making these
assessments, but the methods raise many questions about the application
of statistical methods to such complex and often ill-defined problems. The
objective of this chapter is to review these methods and to make an assessment
of how they play into the broader discussion about climate change and its
effects on society.
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0.2 Overview of GEV/GPD Analyses

It will generally be assumed that readers of this volume are familiar with
the basic concepts of extreme value analysis; nevertheless, to fix notation and
terminology and make the chapter self-contained, we give a brief introduction.

The Generalized Extreme Value (GEV) distribution is given by the formula

Pr {Y ≤ y} = exp

{
−
(

1 + ξ
y − µ
σ

)−1/ξ

+

}
where the notation (. . .)+ denotes positive part (the distribution is restricted
to the range 1 + ξ(y − µ)/σ > 0) and µ, σ, ξ are three parameters known
as the location, scale and shape parameters. In environmental applications,
this distribution is most often applied to the annual maxima of a variable of
interest, though maxima over other time periods may also be considered. The
parameters are most often estimated by the method of maximum likelihood
(MLE), though other methods are also available; the probability weighted
moments (PWM) or L-moments approach is popular in certain sections of the
hydrology community and Bayesian methods may also have some advantages
as we shall see.

The Generalized Pareto distribution (GPD) is a related distribution for
exceedances over a threshold; the exceedance Y is inherently positive and has
the distribution

Pr {Y ≤ y} = 1−
(

1 +
ξy

σ

)−1/ξ

+

defined on 0 < y < ∞ if ξ ≥ 0 or 0 < y < σ
−ξ when ξ ≤ 0. Here, σ is a scale

parameter depending on the threshold and ξ is the same shape parameter as
for the GEV. Since this distribution has only two parameters, it is usual to
combine it with a separate model for the probability of crossing the threshold
[10]

These models are easily extended to include trends; for example, we may
assume that the annual maximum in year t has the GEV distribution with
parameters µt, σt, ξt; any of these may include covariates, for example,
µt = β0 +

∑p
j=1 βjxtj where xt1, . . . , xtp are covariates. In climate applica-

tions, typical covariates include global mean surface temperature (GMST) or
other meteorological variables representing conditions in year t; they may also
include circulation indices such as El Niño-Southern Oscillation (ENSO). The
covariates may also influence σt, though since σt is inherently positive, it may
be more practical to represent log σt, rather than σt itself, as a linear function
of covariates. It is less common to allow ξt to be time-dependent; this parame-
ter is in most applications restricted to |ξt| < 1 and in any case is the hardest
of the three parameters to estimate, so even when covariates are included,
they are generally not statistically significant.
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Similarly with the GPD, the parameters σ and ξ, together with the proba-
bility of crossing the threshold, may be made dependent on covariates, though
there is an alternative model known as the point process model, which is also
based on exceedances over a threshold but uses the (µt, σt, ξt) parameter-
ization as the GEV, and in some cases makes for a more interpretable fit
(for example if µt depends on covariates, but not σt or ξt, this has the in-
terpretation that the effect of covariates is an overall additive shift in the
distribution). The interpretation is often convenient for assessing the effect of
long-term environmental changes.

The GEV, GPD and point process models have been described in various
books that we recommend for background reading, including Coles [8] and
Beirlant et al. [4].

As an example, Risser and Wehner [34] contructed a dataset representing
7-day total precipitations in an area around Houston, Texas, and used that to
examine how extreme was the rainfall event that followed Hurricane Harvey
in 2017. They considered statistical models that allowed both µt and log σt
to depend on two covariates: the logarithm of total carbon dioxide in the at-
mosphere, and the Niño-3.4 index which they took as an indicator for the
El Niño–Southern Oscillation effect. The found that “human-induced climate
change likely increased the chances of the observed precipitation accumula-
tions during Hurricane Harvey in the most affected areas of Houston by a
factor of at least 3.5.” The also used the concept of Granger causality [15] to
argue that the effect was most likely a causal consequence of climate change,
though they did not directly use climate models to substantiate that claim.
In the rest of this chapter, we will show how different authors have combined
observational data with climate models to validate claims that human-induced
climate change is responsible for an increase in the frequency or intensity of
extreme events.

0.3 Methods for Extreme Event Attribution

The first paper to attempt a systematic analysis for extremes that mimicked
the methods used for conventional detection and attribution analysis was due
to Stott, Stone and Allen [37], and was motivated by the devastating Euro-
pean heatwave of 2003 that is widely cited as having killed 70,000 people.
In their analysis, they first calculated summer temperature averages (June,
July, August) across a wide spatial region: longitudes 10oW to 40oE, latitudes
30o to 50oN. Theu used such a wide region for two reasons: first, to avoid
the selection bias that would be an issue if they had focused on a region too
closely identified with the more extreme temperatures, and second, to achieve
reasonable agreement between observational and climate model data (such
agreement is always better when averaged over larger regions of space). They
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used five simulations of climate models, four of them including all known an-
thropogenic and natural forcings and the fifth with just natural forcings (solar
variation and volcanic eruptions). As is common in climate studies, both the
observational and climate model data were expressed as “anomalies”, i.e. dif-
ferences from the temperatures calculated from a predefined historical period
(in this case, 1961–1990).

The authors first performed a conventional detection and attribution anal-
ysis on decadal means from the observational and climate model data, essen-
tially estimating regression coefficients for the observational data on the two
climate models, and concluding that “the hypothesis that there is no positive
anthropogenic influence can be rejected at the 5% level”, a result they char-
acterized as “very likely that past anthropogenic forcing is responsible for a
significant fraction of the observed European summer warming.” They went
on to calculate the probability that the 2003 summer mean anomaly was over
a threshold of 1.6oC when conditioned on the observed trend, either anthro-
pogenic or natural. Interestingly for an extreme value statistician, they used
the Generalized Pareto Distribution (GPD) for this, citing Coles [8] for the
technology, though they gave few details about the calculation. One point to
note about their paper is that they based their calculations on the probabil-
ity of exceeding an anomaly of 1.6oC, which was the largest value prior to
2003, rather than the actual 2003 anomaly of 2.3oC, which they justified as
“using a threshold that only just exceeds the second warmest summer is rela-
tively conservative.” They calculated probabilities p0 and p1 for exceeding that
threshold, under natural and anthropogenic forcings respectively, estimating
p1 ≈ 1

250 and p0 ≈ 1
1000 . They therefore derived the risk ratio p1

p0
≈ 4 and the

“fraction of attributable risk” (FAR), which they defined by the formula

FAR =
p1 − p0
p1

and stated the value 0.75 for that, based on the preceding calculations of p1
and p0, though they also provided “normalized estimated likelihood” curves
that showed, unsurprisingly, a high level of uncertainty about all of these
estimates.

Although the methods for extreme event attribution have advanced con-
siderably since that paper, the basic concepts underlying the paper remain
valid. In particular, many recent papers employ methods from extreme value
statistics, though mostly based on the Generalized Extreme Value (GEV)
distribution rather than the GPD.

During the decade following the paper of Stott, Stone and Allen, a va-
riety of alternative methods was proposed, with considerable disagreements
over the results, with some authors claiming that there was no basis for as-
sociating extreme events with climate change in every case (for example, [11]
claimed that the Russian heatwave of 2010 was primarily caused by a block-
ing event that was not necessarily connected with climate change, while [24]
made similar arguments about the heatwave and drought that hit Texas in
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2011). These controversies, and the wide variety of methods being used, led
the U.S. National Academies of Science, Engineering and Medicine (NASEM)
to commission a review of the whole field [28]. This report was reviewed in
more detail in [18], but we reiterate some of the main points here.

In general, the NASEM report did not dwell on statistical details, focusing
more on physical explanations of extreme events and the need to use climate
models that could represent extreme weather conditions, but they did endorse
the use of statistical methods based on either the GEV or GPD distributions,
and discussed the difficulties in quantifying the uncertainty in such results
using either Bayesian or likelihood-based methods. They also addressed a
number of other issues with a statistical flavor:

� Choice of climate variable. As noted in [28], “Statements about attri-
bution are sensitive to the way the questions are posed and the context
within which they are posed.” We already noted that [37] used temperature
averages over both a large spatial scale (50o × 20o) and a large temporal
scale (three-month averages, rather than the approximately one week du-
ration of the most extreme heat), in part to avoid the selection bias issue
of choosing an event too closely linked with the actual occurrence. Most
subsequent analyses have used more narrowly defined events than that,
but the broad issue remains, that it is better in general to select a widely
defined event. Another issue is which meteorological variable(s) — for ex-
ample the 2025 wildfire event in Los Angeles was not so much driven by
extreme temperatures as a combination of drought and high winds, which
were represented by a number of fire risk indices combining both hazards
[3].

� Framing the question. The choice is between FAR = p1−p0
p1

and the

risk ratio RR = p1
p0

as the primary measure, where p1 and p0 represent

the probability of exceeding a high threshold based on all forcings (includ-
ing anthropogenic) and natural forcings respectively. (The natural forcings
result is also sometimes called pre-industrial, because it effectively repre-
sent conditions before industrial activity started on a large scale in the
mid-nineteenth century.) Although the original paper of Stott, Stone and
Allen emphasized the FAR approach, this has a number of disadvantages,
especially when it comes to representing uncertainty either through fre-
quentist (e.g. confidence intervals) or Bayesian methods. In some more
modern applications of the approach, the pre-industrial probability p0 is
extremely small — indeed, there are some instances where it is claimed to
be 0 (a question we shall return to later in this review) — and this makes
it hard to represent uncertainty in a meaningful way, but in that context
the RR is more easily interpreted than the FAR. The opposite problem,
where our estimate of p0 exceeds that of p1, occurs less frequently, but it
does happen sometimes, and of course the FAR loses its natural meaning
if it is negative. Overall, the report recommended using RR rather than
FAR.
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� Causality. A natural question in any study of this nature is whether
the observed relationships are causal, but the NASEM report was cau-
tious about the use of a formal causal framework, noting that “a focus on
formal analysis of causation may distract attention from important ques-
tions about changing probabilities of extreme events and their impacts on
risk”. The causal framework they adopted was based on Hannart et al.
[19], which distinguished concepts of “necessary” and “sufficient” causa-
tion and proposed probabilistic frameworks for each.

� Changes in frequency or changes in magnitude?. The discussion of
p0 and p1 assumes that the magnitude of the event being considered is the
saem in both the present-day scenario and the hypothetical pre-industrial
scenario, but it is possible to frame the question the other way round, i.e.
for a given pre-industrial probability, what magnitude of present-day event
would have the same probability? This can be a more fruitful approach,
because different magnitudes of events are directly comparable in terms
of their impacts.

� Conditioning. A major question addressed by the report was whether
probabilities of extreme events should be conditional on broader atmo-
spheric conditions. As an example, Pall et al. [29] analyzed the flooding
the occurred near Boulder, Colorado, in September 2013, noting “the un-
usual hydrometeorology of the event” and suggesting that pre-existing
conditions may have exacerbated the probability of the extreme flood-
ing that actually occurred. The NASEM report [28] discussed this issue
in general terms, noting the elementary probability formula P (E,N) =
P (E|N) × P (N) where E is the event of interest and N is some back-
ground event that might have precipitated E. The influence of climate
change could be reflected in either P (N), or P (E|N), or both, and the
report in effect recommended that researchers consider both types of phe-
nomenon in forming overall conclusions.

� Selection bias. This review has already referred to the danger of selection
bias, which [28] characterized as “bias from studying only events that
occur.” This kind of bias may be partially mitigated by expanding the
spatial and/or temporal definition of the event, but this is only a partial
solution.

0.4 World Weather Attribution

The World Weather Attribution group (https://www.worldweatherattribution.org/)
is a collaboration of climate scientists, mostly based in Europe, who have com-
bined to produce rapid attributions of extreme climate events. Their philoso-
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phy is that a rapidly produced paper analyzing an event, often within a week
or two of the event in question, will have more impact on the general public
and the media than a carefully reviewed scientific study which typically takes
many months to publish. Nevertheless they are keen to emphasize that their
methods have been published in peer reviewed papers, and we summarize
some of them here, in particular the two papers [38, 31].

0.4.1 Philip et al. (2020).

This paper [38] proposed an “eight-step approach” to the quantitative attri-
bution of extreme events. These are:

1. Analysis trigger. The first step is to decide which events to ana-
lyze. The authors emphazised that this decision should not be in-
fluence by the expected outcome of the analysis, and that the focus
should be on high-impact events. Feasibility of the analysis is also
a consderation, e.g. whether both observational data and climate
model results are available to do the analysis, as well as personnel
with the relevant knowledge. They also emphasized the distinction
between having a formal procedure to identify suitable events to
analyze, and a demand-based procedure based on requests from a
national weather service or non-governmental organization. They
noted that both types of initiation are used in practice.

2. Event definition. The next choice is of a specific event to analyze.
Considerations include which meteorological variable to analyze and
both the spatial and temporal averaging scales. The objective is to
reduce this to a single variable to facilitate calculating the proba-
bility of traversing a high or low threshold.

3. Observed probability and trend. The next step, and proba-
bly the most statistical part of the entire process, is to determine
whether there is a trend in the observational data that is distin-
guishable from natural variability in the process. Considerations
include whether to use data from individual weather stations or a
gridded data product (e.g. the HadCRUT5 dataset published by the
UK Meteorological Office, which calculate historical gridded aver-
age over 5o × 5o grid boxes), and the (spatial) decorrelation length
of the variable being studied, e.g. if spatial correlation persists over
a large distance it may be necessary to aggregate individual station
records to obtain an adequate representation of the event. There
is a lengthy discussion of individual statistical methods, including
the GEV and GPD methods that are well known in extreme value
theory. However they also commented on other methods including
Gaussian and gamma distributions. More complicated issues include
whether to assume a shift fit or a scale fit or both (in the context
of GEV, this essentially means whether the trend is modeled in the
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µ or σ parameter, or both) and modes of natural variability, e.g. if
an extreme event is influenced by atmospheric or ocean circulation
events such as El Niño, it would make sense to include some indi-
cator of those events as a covariate in the analysis. The intention of
this entire analysis is to come up with estimates (and appropriate
measures of uncertainty, e.g. confidence limits) for the change in
probability and intensity of the event of interest.

4. Model evaluation. The next step is the selection/verification of
an appropriate climate model or models to attribute the trends in
observations. The authors emphasized the desirability of starting
with a large collection of climate models to maximize the chance of
finding at least one model that agrees well with the observations of
the variable of interest. This involves statistics tests, e.g. with GEV
as the basic statistical model, one could test whether the GEV pa-
rameters (µ, σ and ξ), or certain combinations such as σ/µ for pre-
cipitation, agree between the observational and model data. They
also emphasized the need to verify that the model trends are phys-
ically plausible. The authors discussed various procedures of bias
correction or calibration to improve the fit between models and ob-
servations, though they acknowledged potential challenges to this
approach, e.g. the possibility of overfitting if one simply adjusted
the model results so that their trends agreed with the observations.
The result of this step is a subset of models that adequately repre-
sent trends in the data. They suggested that a necessary criterion
is for at least two models to pass this test.

5. Multi-method multi-model attribution. After determining the
observational data and climate models that are used for the analysis,
the user proceeds with the attribution itself. The original idea of
detection and attribution analysis was to generate two parallel runs
of the climate models, one that includes both anthropogenic and
natural forcing factors and the other just natural. This method
is still widely used, but there is a growing tendency towards using
transient model runs, in other words those where the forcing factors
change with time, and the comparison is between the present-day
climate and some historical period, ideally before the industrial era
but if that is not available, some more recent period that predates
current warming (e.g. mid twentieth century). They also noted the
possibility of using future projections of climate models to estimate
probabilities of future extreme events.

6. Hazard synthesis. Synthesis here refers to combining the results
from different models to produce an overall conclusion for the quan-
tity of interest, which may be a probability ratio between current
and historical conditions. Different models typically produce both
different means and different measures of uncertainty (e.g. width of
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the confidence interval), and they emphasized both ways of com-
bining different measures (e.g. weighted averages) and formal tests
such as those based on chi-square statistics. (In other contexts this
would be called meta-analysis, but these authors did not use that
term). They also discussed different forms of graphical dsplays, and
they acknowledged the possibility that if the results are too discre-
pent between models, one may have to give up on an attribution
claim.

7. Vulnerability and exposure analysis. The last two steps are
less statistical so they are only briefly discussed here. Steps 1–6 are
primarily concerned with “hazard”, i.e. how the probability of an
extreme event has changed because of anthropogenic influences on
climate. An overall assessment of risk depends on two other factors:
“exposure” essentially means who would be affected by an extreme
climate event, and “vulnerability” refers to the magnitude of its im-
pact. Some climate events may be very extreme but less important
because the exposure and/or vulnerability are low. An overall as-
sessment of risk depends on a combination of hazard, exposure and
vulnerability.

8. Communication. The final step they considered was communica-
tion of the findings. For this, they emphasized not only publication
in the scientific literature, but also providing summaries for pol-
icy makers, press releases and social media. Some practitioners of
these methods have been very effective in publishing articles in the
mainstream media such as The New York Times or The Guardian.

0.4.2 van Oldenbourgh et al. (2021).

Geert Jan van Oldenborgh was a Dutch meteorologist and physicist and one of
the founders of the World Weather Attribution project. He was responsible for
many of the project’s methodological contributions until his untimely death
in 2021.

Under “analysis trigger”, the authors discussed the challenges of using a
societal impact metric to determine which events to analyze. They stated their
current criteria of ≥ 100 deaths or > 1,000,000 people affected or ≥ 50% of
total population affected. However they acknowledged that focusing on high
impact events may induce a bias of its own, citing as an example the decreasing
frequency of floods induced by snow melt in England; such events did occur
in the past, but not recently, therefore the negative impact of climate change
in this case will not be represented in attribution studies.

On the question of event definition, the authors acknowledged that “This
step has turned out to be one of the most problematic ones in event attribu-
tion, both on theoretical and practical grounds”. They discussed the tradeoffs
involved in choosing a spatial and temporal scale, e.g. averages over large
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scales have lower natural variability and are therefore easier to attribute to
climate effects, but they may miss the true high-impact event. They also dis-
cussed how various framing issues, such as the choice of conditioning variables,
may affect the analysis.

Under “observed probability and trend”, the authors acknowledged the
need to study a time series of sufficent length (they suggested at least 50 years
and preferably more than 100) but also highlighted the difficulty of obtaining
a sufficiently long record under some circumstances. They also acknowledged
sensitivity to the choice of threshold, highlighting the distinction between the
Gumbel case (ξ ≈ 0 in the GEV or GPD model fit) and the cases where ξ is
substantially different from 0. This point may be expressed more formally as
follows. If we assume a Gumbel distribution with location and scale parame-
ters µ and σ for the annual maxima, then a change in the location parameters
from µ0 to µ1, holding σ constant, leads to an asymptotic right-hand proba-
bility ratio of e−(x−µ1)/σ/e−(x−µ0)/σ = e(µ1−µ0)/σ which is independent of the
threshold x for which the calculation is being made; but with ξ 6= 0 the corre-

sponding ratio is
(
1 + ξ x−µ1

σ

)−1/ξ

+
/
(
1 + ξ x−µ0

σ

)−1/ξ

+
which does depend on x

and may even be infinite in cases where ξ < 0, µ1−σ/ξ > x > µ0−σ/ξ. This
is a particular problem with temperature extremes where a GEV fit typically
does produce a value ξ << 0.

They also commented, “There has been discussion on whether to include
the event under study in the fit or not. We used not to do this to be conser-
vative, but now realise that the event can be included if the event definition
does not depend on the extreme event itself.” This has been a somewhat con-
tentious issue; if the observed event is included in the analysis, this eliminates
the possibility that the observed event will be beyond the range of the fit-
ted distribution, which as just noted, makes the interpretation problematic.
However, from a statistical point of view, it seems more natural to assess the
probability of an observation based on a model fit that excludes the obser-
vation itself (e.g. this is the whole concept behind cross-validation as it is
typically used in statistics). An alternative approach might be to use statis-
tical methods that are less likely to produce zero-probability estimates, e.g.
a Bayesian model fit averages over the posterior distribution of the GEV pa-
rameters and therefore typically does not lead to a posterior probability of
zero for an observed event (though the estimated probability may still be too
small to be of practical value, e.g. if very few of the parameter vectors in an
MCMC fit result in a non-zero probability for the event in question). They
also mentioned the possibility of pooling observations over spatial locations
to reduce undertainty in estimating extreme event probabilities, but they did
not use formal “spatial statistics” techniques to do this, which have been the
focus of much recent work in extreme value theory (see, e.g. [40]). We return
to these issues later in this review.

The rest of the paper [31] follows along much the same lines as the ear-
lier paper [38]. They noted the need for “large ensembles or long experiments
of multiple climate models and only use the models that represent the ex-
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treme under study in agreement with the observed record.” They also noted
the “need to pay attention that the key global and local forcings are taken
into account in the different models to give realistic total trends”, mention-
ing aerosol (particulate matter) emissions and land use changes among local
forcing factors that may affect the analysis. They also emphasized the need
to communicate in different ways with different groups of potential users of
the analysis.

I now summarize the results of two recent WWA analyses.

0.4.3 WWA analysis of the 2021 Pacific northwest heatwave
[32].

The authors began by describing the event: temperatures in the Pacific north-
west area of the US and the western provinces of Canada that were far above
previous records during the last week of June 2021, with an overall highest
value in Lytton, B.C., of 49.6oC, which was followed by a devastating wildfire.

The variable they chose was TXx, the annual maximum daily maximum
temperature. This was averaged over the region 45–52oN, 119–123oW, which is
a large enough region to encompass the three major cities in the region (Port-
land, Seattle and Vancouver). The source of data was ERA5, a well-known
data product produced by the European Center for Medium-range Weather
Forecasting. They also looked at individual station records for those three
cities. For climate model data, they used data from 18 climate models within
the CMIP6 data archive [13], supplemented by simulations from a number of
other models. A combination of historical forcings and future emission sce-
narios was used to run these models from 1850 to present day with future
projections up to 2100.

The statistical analysis was based on the GEV distribution with location
parameter µ depending on GMST (global mean surface temperature) and σ, ξ
held constant. They fitted the same statistical model to climate model data
and estimated exceedance probabilities p1 and p0 based on GMST for 2021
and for the late nineteenth century respectively, a difference of approximately
1.2oC. They also estimated a future probability of exceedance based on a
GMST of 0.8oC above 2021 values (corresponding to 2oC above pre-industrial
values, a value that has been determined by IPCC to represent a critical
level of warming). Uncertainty was represented by a bootstrap simulation for
observational data but (for reasons not fully explained) by a Bayesian-MCMC
approach for climate model data.

The initial analysis used gridded observational data up to 2020 and led
to a projected upper bound for 2021 of 35.5oC with a confidence interval
width (2 standard errors) of 1.3oC; however the observed value was 39.7oC.
In other words, even under current climate they estimated a zero probability
of achieving the actual observed value. From this they concluded that the
GEV analysis is not appropriate to analyze the 2021 heatwave, and they pro-
posed two alternatives: one fitting a GEV without the 2021 value but with a
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constraint that the fitted 2021 maximum be greater than the observed value,
and the second including the 2021 fully in the analysis. They acknowledged
that none of these analyses is fully satisfactory but based on their GEV fits
they estimated that the 2021 return value is approximately 1000 years with a
confidence interval of (100,∞). They also estimated a relative risk (RR), com-
pared with preindustrial GMST, of 390 with a confidence interval (3.2,∞). In
addition, the authors performed single-station analyses for Portland, Seattle
and Vancouver: all three analyses included 2021 and led to results similar to
those for the gridded data.

The remainder of the paper can be summarized more quickly, since it
essentially consisted of repeating the same analyses on a wide variety of climate
model data. They classified climate models as “good”, “reasonable” or “bad”
according to how well they agreed with the observational data, as judged by
numerous factors but especially their agreement with the GEV model fits.
For the most part, only the ones labelled “good” were used subsequently;
they computed the RR and a confidence interval for each such model and
the proposed a “synthesis” analysis combining different models with weights
depending on their uncertainties. Throughout the analysis, however, there is a
problem with the RR being infinite (sometimes the point estimate, but almost
invariably, the upper bound of the confidence interval is infinite) which they
resolved by, where needed, truncating the RR at 10,000. However, the need for
such an articial fix shows how the issues created by zero-probability estimates,
whether these are realistic or not, pervade the whole analysis.

In the end, the authors concluded, “Results for current vs. past climate, i.e.
for 1.2oC of global warming vs. pre-industrial conditions (1850–1900), indicate
an increase in intensity of about 2.0oC (1.2 to 2.8oC) and a RR of at least
150. Model results for additional future changes if global warming reaches 2oC
indicate a further increase in intensity of about 1.3oC (0.8 to 1.7oC) and a RR
of at least 3, with a best estimate of 175. This means that an event like the
current one, analysed here as having a return period in the current climate
of 1000 years, would occur in the future world with 2 oC of global warming
roughly every 5 to 10 years according to the best RR estimate, albeit with
large uncertainties around it.” They discuss various meteorological factors
that cold explain the extreme weather conditions, focussing particularly on
the large area of very high pressure (the so-called “heat dome” effect) but
also discussing the influence of drought conditions and air circulation patterns,
but concluding that neither of the last two effects was especially influential. In
their final section, they stated “the occurrence of a heat wave of the intensity
experienced in the study area would have been virtually impossible without
human-caused climate change.”
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0.4.4 WWA analysis of the January 2025 Los Angeles wild-
fires [3].

This study analyzed the two large fires, the Palisades and Eaton fires, that hit
the city of Los Angeles and surrounding neghborhoods starting on January
7, 2025, that caused over 16,000 lost homes and a financial damage that has
yet to be fully quantified. The report was placed online on January 28, thus
fulfilling WWA’s commitment to make its reports publicly available as quickly
as possible after the event. The report is available from WWA’s website but
has not yet been peer reviewed or published in a scientific journal.

This event was challenging for a climate attribution study because there is
no single meteorological variable that was obviously responsible for the event.
It was widely reported that 2025 was the hottest January in history, globally,
but temperatures were not excessively high in Los Angeles. Instead, two broad
factors are blamed for the fire: the exceptionally dry conditions due to drought
at the end of 2024, and the Santa Ana winds, that occurred at the same time
as the fires and are believed to have greatly exacerbated the damage. However,
Santa Ana winds are a common feature of the southern California climate and
are not considered to be directly influenced by climate change.

After briefly outlining the background of the fire, the authors defined a
number of indices that they used to characterize the severity of the event.
The fire weather index (FWI) is computed from temperature, relative hu-
midity and 10-meter windspeed reorded at noon, as well as 24-hour precip-
itation. The Standardized Precipitation Index (SPI) is based on historical
October–December mean precipitations, fitted to a gamma distribution and
then transformed to a normal distribution. The drought code (DC) is a sub-
index of the FWI that is used to determine the date of the end of drought
conditions. As covariates, the authors used GMST computed similarly to the
earlier report [32] and an index for ENSO. For climate models, they used data
from a downscaling experiment that combines several regional climate models
(CORDEX) and a high-resolution model (HighResMIP) that uses global sea
ice and sea surface temperatures produced by the Hadley Center (part of the
U.K. Meteorological Office).

To determine trends in the FWI, they fitted a GEV model with constant
σ and ξ whose location parameter µ was modeled as µ0 +αT +βI where T is
a smoothed GMST and I is a detrended ENSO index. They did not consider
interactions between T and I but remarked that by removing the climate
signal from ENSO they would hope to eliminate any factor of that nature. In
calculating the corresponding covariates from the climate models, they used
the GMST as given by the model but rescaled the model’s ENSO signal to
allow for any change in scale between the model and observational data. The
FWI for model data was computed from the equivalent meteorological data
in the CORDEX experiment.

These analyses showed that the estimated return period for the January
2025 event was 17 years, which they characterized as “unusual but not un-
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precedented”, but the evidence for a climate effect was equivocal: compared
with either pre-industrial GMST or neutral ENSO, the relative risk (RR) was
about 1.3 but with a wide confidence interval; they argued that the GMST
and ENSO effects were largely independent, so the combined effect of the two
is multiplicative; “similarly extreme FWI1X [January max of FWI] values are
now 75% more likely to occur than they would have been in a neutral ENSO
phase and in a preindustrial climate, and around 12% more intense.”

The authors went on to compared these results with those from climate
models. They found that only six of the 11 CORDEX models passed the eval-
uation stage and, of these, two showed no dependence on GMST. Combining
all these models, they concluded “the synthesised result is of an increase of
5.7% in peak January FWI intensity (95% interval: -10.4% - +27.4%) and a
probability ratio of 1.37 (0.48 - 3.6): a 37% increase in the likelihood of experi-
encing similarly extreme January FWI in 2025 compared to in a preindustrial
climate.... the congruence between the trends in ERA5 and the climate mod-
els gives us greater confidence that this is a climate change signal.” However
they acknowledged that the wide uncertainty bands render this conclusions
somewat problematic.

The authors went on to construct similar analyses for the other two in-
dices, SPI and DC, though in these cases they did not use extreme value
distributions but instead transformed the raw data to an equivalent normal
distribution in order to look at trends through well-known regression tech-
niques. For SPI, they again noted that the very low value in the observational
data was “unusual but not unprecedented” (return period about 20 years)
and the models gave inconsistent results regarding the climatic contribution
to that outcome; they obtained stronger evidence for a climate signal using
the more recent HighResMIP models than the older CORDEX models.

For “timing the end of the dry season”, they took the day of year on
which the 7-day average of DC showed its largest drop (notation, DC-DOY).
This variable was found to have a Gaussian distribution so they again used
standard regression on GMST or ENSO. Compared with pre-industrial GMST
or neutral ENSO, they found a positive shift in DC-DOY (23 days for GMST,
8.6 for ENSO); in both cases, the changes were significant at the 10% level
of significance but not at 5%. They continued by making similar calculations
based on the climate models; in both cases, they obtained stronger results
using the HighResMIP models than the CORDEX models, but the overall
results are ambiguous; they concluded “it is likely that the observed trend
toward a delayed end of the drought season was promoted by anthropogenic
warming, but that due to the small size of the region evaluated in this study,
we do not detect a consistent signal in the climate models in our analysis.”

In remaining parts of the paper, the authors also analyzed the effect of the
Santa Ana winds; they noted that the wind index for January 2025 was very
high, but they could not find a significant trend that might be climate induced.
They also analyzed “the expected effect of climate change on burned area in
the region”, concluding that “the potential burned area in December-January
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in the Los Angeles area is today substantially higher than it would be in the
absence of climate change”, but also that models “do not faithfully reproduce
observed trends in burned area, and any real-world changes are the combined
result of climate change and direct human interventions in the landscape.”

Overall, the paper gives an excellent account of the different meteorological
influences on this event. The FWI part of the analysis is the most convincing
part from an extreme values point of view, but even there, the evidence for a
direct climate effect is equivocal.

0.5 Alternative Statistical Approaches

The 2021 Pacific northwest heatwave has stimulated quite a few alternative
analyses, some of which we review here.

Bercos-Hickey et al. [5] extended the GEV fitting approach of WWA [32]
by fitting the GEV model with covariates to data from many individual sta-
tions in the Pacific northwest region and also considered Bayesian in addition
to maximum likelihood analyses, but in general their conclusions reinforced
those of [32]. For many stations, they again found that the observed maximum
temperature for 2021 was above the upper bound of the distribution based on
data preceding 2021, in this case estimated using Bayesian methods (which in
principle should be more robust, since posterior distributions allow for uncer-
tainty in the parameter estimates in ways that the plug-in maximum likelihood
approach does not). They also confirmed that including the 2021 value in the
GEV analysis frequently leads to data sets that fail simple goodness of fit
tests. Therefore, they concluded that the GEV analysis does not lead to a
causal attribution for the influence of climate change on these extreme events.
In place of the GEV approach, they performed a regional hindcast analysis,
essentially running regional climate models to assess how the event of interest
would have changed in a world without anthropogenic climate change or with
future warming. They found that, compared with pre-industrial conditions,
the anthropogenic effect resulted in an increased temperature of around 1oC,
while in a hypothetical future world by the end of the 21st century, the in-
creased temperature could be as high as 5oC. This method has been called
the “storyline” approach, and is characteristic of methods that use dynamical
analysis of the meteorological event in place of the statistical methods empha-
sized throughout this review. However, even this approach did not reproduce
the very extreme temperatures that were actually observed in 2021.

The analysis of Zhang et al. [40] took the statistical approach further, in
several directions. One was the inclusion of several physical and geographical
covariates. Apart from a covariate that combined the influence of the known
greenhouse gases, they included: a measure of the El Niño effect called the
ELI (El Niño affects large-scale circulation in the atmosphere and ocean and
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is often associated with abnormal temperatures); the PDSI (Palmer Drought
Severity Index — moisture in the atmosphere generally cools the air, so a lack
of moisture could partly explain the very high temperatures); a measure of
“urbanicity” (increased land development could create a heat island effect)
and geographically based covariates such as long-term mean precipitation,
slope and elevation, and distance from the coast, measured at each spatial
location.

The raw temperature data used in [40] came from 438 stations with “ho-
mogenized” data in the US states of Washington, Oregon and parts of northern
California and Nevada, i.e. data that had been post-processed to remove ef-
fects due to nonmeteorological factors such as changes in station location or
measurement instrument. However for comparisons with the actually observed
temperatures for 2021, they used nonohomogenized data on 470 locations. The
slight mismatch of spatial locations was not a problem because the spatial
model they fitted (to be described) allowed for computing the GEV parame-
ters at any spatial location s, but one disadvatage of proceeding in this way
was that they did not obtain estimates for the Canadian part of the region
where the most extreme increases in temperature, compared with historical
records, were observed.

The incorporation of additional time-dependent covariates (ELI, PDSI and
urbanicity) undoubtedly improved the fit of the statistical model, but the main
innovation of [40] was a much more sophisticated treatment of the spatial
aspects of the analysis. Instead of fitting a single GEV model to a spatially
aggregated temperature dataset as in [32], they treated the 438 stations with
homogenized records individually, and performed the following analyses:

1. Each station’s annual maxima were fitted to a GEV model in which
the standard parameters µ, σ and ξ were allowed to depend on both
spatial location s and time t;

2. The temporal effects were modeled through the various covariates
already discussed (in the case of PDSI and urbanicity, the variable
also varied spatially);

3. Spatial variation was modeled using thin-plate splines: spatial vari-
ation in the coefficients was represented by thin-plate splines in
the latitude-longitude coordinates and there were additional com-
ponents from the topographical variabes;

4. However in addition to all of these spatially and temporally depen-
dent effects, the analysis allowed for the spatial coherence of individ-
ual events, reflecting the fact that a single extreme heat event may
well affect multiple stations simultaneously, an effect not accounted
for by simply including spatially dependent covariates. To this end,
the authors modified a model from an earlier paper of Zhang and
co-authors [39], to lead to a copula model of the form

X(s, t) = Rt ·W (s, t) + ε(s), (1)
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where Rt are independent Pareto variables with index (1−δ)/δ (i.e.
Pr {R > r} = r−(1−δ)/δ for 1 < r <∞), W (s, t) is an isotropic sta-
tionary Gaussian process transformed to Pareto with index 1,and
ε(s) are independent Gaussian random variables with mean 0 and
variance τ2. The parameter δ controls the degree of dependence
between neighboring stations, with δ ∈ (0, 1/2] corresponding to
asymptotic independence and δ ∈ (1/2, 1) to asymptotic depen-
dence.

5. The process X(s, t) defined by (1) is then transformed marginally
to a process Y (s, t) whose GEV parameters µ(s, t), σ(s, t), ξ(s, t)
satisfy the spatial and temporal dependences described in steps 2
and 3.

The analysis of [40] did not use climate models; instead, for their causal
attribution statement they relied on the concept of Granger causality [15],
following the example of [34] and several subsequent papers. In this analy-
sis, the “factual” scenario corresponded to present-day values of the temporal
covariates, while the “counterfactual” scenario considered was for historical
(e.g. 1950) greenhouse gases with present-day values of ELI, PDSI and urban-
icity. In this way, they isolated the effect of greenhouse gases from the other
components of the statistical model. The models were fitted by a hierarchical
Bayesian algorithm, and the ultimate objective was defined as calculating the
posterior distribution of risk ratios of the form

RR(s) =
pF (s)

pC(s)
(2)

at each site s, where pF (s) and pC(s) represent the probability of exceeding
the observed 2021 daily maximum temperature at site s, conditional on all
data prior to 2021, under the factual and counterfactual scenarios respectively.

In a more recent review, Risser et al. [35] have compared the Granger and
Pearl [30, 19] approaches to causality. Pearl’s approach is more direct because
it uses climate models run with different forcing components to compare the
factual and counterfactual scenarios, but it adds considerable computational
cost. The Granger causality approach is easier to apply because it uses just
observational data but it relies on time series models to compare present-
day with pre-industrial conditions. It seems likely that both approaches will
continue to be used in the future.

We give here only a very brief summary of the results of the analysis
from [40]; much more detailed results are in the original paper. Under the
full spatial model just described, they found that only 3.4% of stations were
“unexplainable” in the sense that the median posterior upper bound of the
GEV distribution fitted to 1950–2020 was below the 2021 value. However, that
number would have increased about about another 10% under the counterfac-
tual scenario of 1950 greenhouse gases. They stated that the counterfactual
risk probability (i.e. pC(s) in (2) was typically between 0.01 and 0.1, while
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the factual risk probability (pF (s)) was typically between 0.05 and 0.3. There
were still some stations for which the estimated pF (s) was 0, but in every such
case, pC(s) was 0 as well, producing an undefined risk ratio of 0/0. A plot of
estimated risk ratios for all stations shows very wide variation (including both
undefined, i.e. 0/0, and infinite estimated ratios) but risk ratios in the range
3–10 are typical and in many cases statistically significant, in the sense that
the lower bound of a 95% Bayesian credible interval is > 1.

In summary, this analysis gives a much more nuanced view of the 2021
heatwave. In some stations the risk ratio is still undefined or infinite, and
there are an isolated few where it is < 1, but overall the picture is of risk
ratios where both the median posterior estimate and the lower bound of a
95% credible interval are > 1 and in some cases of the order of hundreds or
thousands. All of this only reinforces that climate change played a major role
in this event. However, we should also note that the analysis was confined to
U.S. stations, though Canadian stations were mostly the ones that experienced
the most extreme temperatures in excess of past values.

0.6 Examples

In this section, I present some datasets and analyses to illustrate the points
made in previous section, and to propose some new interpretations. My in-
tention is not to break new ground research-wise, but rather, to illustrate
different possibilities using well established methods of extreme value analy-
sis. The analyses use R [33], in particular the ismev package [26].

Because the 2021 Pacific northwest heatwave has attracted so much
attention and controversy, the discussion here is focused on that event,
though the methods are intended to be applicable to other datasets
as well. The main source of data is the Climate Explorer website,
https://climexp.knmi.nl/pacificheat timeseries.cgi. Specifically, I use their re-
construction of Daily Maximum Near-Surface Air Temperature for 1950–2021,
derived from ERA5 (a “reanalysis” data product that uses dynamic models
to interpolate data between weather stations) and averaged over longitudes
123.125 to 118.875oW, latitudes 44.875 to 52.125oN. The daily data are used
to compute annual maxima (also available directly from the website), as well
as annual global mean surface temperatures (GMST), smoothed over four
years to remove ENSO effects, as described in [32].

0.6.1 GEV analysis

A first analysis uses annual maximum daily maximum temperatures (TXx)
and fits the GEV model with location parameter depending linearly on GMST.
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Thus the GEV parameters for year t are defined by

µt = β0 + β1GMSTt,

σt = σ,

ξt = ξ. (3)

where GMSTt is GMST for year t.
This model was fitted to data from 1950–2020, so that it could be used

retrospectively to predict the maximum temperature for 2021 based on prior
data. However, [32] also suggested fitting the model including the 2021 event.
I give both models in Table 0.6.1, using the gev.fit function in ismev.

Excluding 2021 Including 2021
Parameter Estimate Standard error Estimate Standard error

β0 29.720 0.286 29.242 0.284
β1 1.758 0.548 2.595 0.641
σ 1.729 0.174 1.694 0.148
ξ –0.469 0.085 –0.128 0.055

NLLH 132.2 — 145.1 —

TABLE 0.1
Table of GEV parameters for Pacific northwest TXx.

FIGURE 1
QQ plots based on residuals from GEV fit. Left: fitted to 1950–2020 annual
maxima. Right: fitted to 1950–2021 annual maxima.

I also used the gev.diag function in ismev to obtain the QQ plots of
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residuals in Figure 1, both with and without 2021. The right hand plot shows
clearly the influence of the large outlier, and this is apparent in the model fits
also (in particular, the estimates of both β1 and ξ are substantially different
between the two models). This reinforces the conclusion that if the 2021 outlier
is included in the analysis, there are significant issues whether the model fits
the data. My own conclusion from this is that we really should omit the outlier
from the analysis and use the data up to 2020 to characterize the likelihood
of the 2021 event.

This conclusion may be reinforced using goodness of fit tests. The fitted
GEV model was used to transform each observation to a uniform distribution
on [0,1] and standard test statistics computed, specifically, the Kolmogorov-
Smirnov, Cramér-von Mises and Anderson-Darling statistics that are well-
established tests of fit [9]. For these datasets, these statistics were computed
and p-values calculated using a simulation method that will be described in
more detail elsewhere. The simulated p-values for the three tests are respec-
tively 0.77, 0.68 and 0.77 for the dataset without 2021, but 0.21, 0.047, 0.022
for the dataset including 2021. This reinforces that with 2021 included, the
GEV model may not fit the data.

The next step is to perform parallel “factual” and “counterfactual” analy-
ses, where by factual we mean using the GMST values as given, and the coun-
terfactual is effectively saying what would happen without human-induced cli-
mate change. Although a full analysis of this question requires climate models,
a simple proxy for the counterfactual analysis (suggested by [32]) is to assume
a GMST that is 1.2oC below present-day temperature, on the grounds that
1.2oC is approximately the overall rise in global mean temperatures since
pre-industrial times. So, in effect, we are comparing the projected annual
maximum for 2021 using the actual GMST for 2021, with the corresponding
projection where the GMST for 2021 is reduced by 1.2oC.

We can estimate the upper bounds of the distribution for 2021 as

ωF = β0 + β1GMST2021 − σ/ξ, ωC = β0 + β1(GMST2021 − 1.2)− σ/ξ

where the suffices F and C stand for factual and conterfactual respectively.
Substituting the MLEs, we deduce:

ω̂F = 35.05 (standard error 0.61), ω̂C = 32.94 (standard error 0.40),

where the standard errors are computed by the delta method. The estimate
for ω̂F differs slightly from that in [32], which may be due to slight revisions
in GMST since the data were originally published in 2021, but there is clearly
consistency in the overall results.

An alternative approach is a Bayesian analysis. Assuming a prior distri-
bution which is uniform in (β0, β1, log σ, ξ), but restricted to |ξ| < 1 because
values outside that range are not physically plausible, I ran a Markov chain
Monte Carlo algorithm using the adaptive Metropolis procedure of [16], using
20,000,000 iterations but discarding the first half of the sample and storing
data every tenth iteration (so the actual MCMC sample is of size 1 million).
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FIGURE 2
Posterior density of the maximum temperature under factual (PF ) and coun-
terfactual (pC) models.

Figure 2 shows the posterior density of the maximum temperature (ωF or
ωC) under the factual and counterfactual models. It can be seen that both den-
sities are right-skewed; the posterior probabilities that ωF > 39.6 or ωC > 39.6
are 0.0088 and 0.0025 respectively (both numbers subject to slight variation
because of the randomness of the MCMC calculation). However, it is not easy
to translate this result into a meaningful statement about the relative risk:

1. Let pF (x) and pC(x) denote the probability that the maximum tem-
perature in a given year exceeds x under either the factual or coun-

terfactual models (pF (x) = 1−exp{−(1+ξ x−β0−β1GMST2021

σ )
−1/ξ
+ };

pC(x) is same with GMST2021 replaced by GMST2021 − 1.2). We
can estimate pF (x) and pC(x) from each row of the MCMC sample,
thus obtaining one million pairs from the posterior density.

2. Under this model, the posterior means of pF (x) and pC(x), for
x = 39.6, are 3.1 × 10−6 and 1.8 × 10−7. These probabilities are
much smaller than the corresponding probabilities for ωF and ωC ,
but that reflects the fact that even if the endpoint is > 39.6, the
probability that a single annual maximum is > 39.6 is much smaller.

3. Evaluate RR = pC(x)/pF (x) for each row of MCMC. Note that I



Examples 23

have reversed the order of numerator and denominator so that I
always get the value 0 when pC(x) = 0. However, as a convention,
I also take RR = 0 when pC(x) and pF (x) are both 0. This seems
justifiable when β1 > 0, because then we always have pC(x) < pF (x)
when pF (x) > 0.

4. Evaluate E {RR | β1 > 0}. The conditioning on β1 > 0 is necessary
to exclude a few wild values where RR >> 1 in the MCMC sample,
but it is justified because the posterior probability that β1 > 0 is
about 0.9994 and one could question whether β1 < 0 is even phys-
ically plausible, because it would imply that the Pacific northwest
maxima are cooling when the world is warming.

5. I also evaluated the posterior probability that RR < r for various
values of r ∈ (0, 1).

Results of this calculation:

In step 4 I found E {RR | β1 > 0} is about 7.7× 10−5, or about 1 part in
13000. However, apart from the fact that this is very unstable as an estimate,
it is almost impossible to put any sensible error bound on this, since 99.8%
of the posterior sample values are 0. Alternatively, if we set r = 0.01 in step
5, we find the posterior probability that RR < 0.01 is about 0.9991. This is
still hard to interpret, but in the language used by IPCC [25], an event with
greater than 99% probabiity is called “virtually certain”. So we could say that
it is “virtually certain” that RR < 0.01, or in the more conventional frame-
work that RR is defined by pF /pC , that the relative risk under anthropogenic
compared with natural forcing is greater than 100.

In extreme value theory there has long been a debate about how far out-
side the range of a sample it is possible to extrapolate. If we did not allow
any extrapolation, the theory would have no value, since probability estimates
within the range of a sample can be calculated by standard nonparametric es-
timators. But it stands to reason that there must be a limit how far one can
extrapolate. Mathematically, the problem concerns estimating a tail prob-
ability or a quantile corresponding to a true tail probability pn as sample
size n → ∞; the question falls within the domain of extreme value theory if
pn → 0, npn →∞. There are some elegant theoretical solutions to this prob-
lem, for example, [17] proposed a novel variant on bootstrapping for precisely
this issue in the case of a Pareto tail (which would not be applicable here).
But such theoretical solutions are of little practical value given the asymp-
totic nature of the procedures and their reliance on second-order assumptions
which are hard to verify in practice. Instead, most practical applications of
extreme value theory involve assessing the variability of an estimate, essen-
tially assuming that the underlying GEV or GPD model is correct, and then
assessing whether the width of the resulting confidence or prediction interval
is good enough to allow practical decision making. From this point of view,
the preceding analyses are not precise enough to be useful.

As an alternative, I suggest taking a cue from the original paper [37] and
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basing the probability estimates on the second largest value in the sample,
in this case, 33.98oC from 2006. The posterior mean probabilities that the
annual maximum is greater than 33.98 are 0.095 and 0.0043 under pF and pC ;
the posterior mean of the estimated risk ratio is 0.0055 (1 part in 180) and the
Bayesian 95% credible interval is (0,0.06). We also calculate that the posterior
probability that pC(33.98)/pF (33.98) < 0.01 is about 0.93, greater than 0.9
and therefore “very likely” in IPCC language [25]. Although less dramatic
than the calculations based on the observed 2021 event, these estimates are
arguably more meaningful, and still confirmatory of the influence of global
warming on this event.

0.6.2 Threshold exceedance approach: The point process
model

Clarkson et al. [7] suggested that a peaks over threshold approach would
work better than a block maxima approach for the 2021 heatwave. Their
actual analysis involved a novel random effects model applied simultaneously
to many stations, but the concept behind their approach is directly applicable
using well-established methods. Here, I show how a version of the point process
model [8, 4] leads to an improved analysis of the 2021 Pacific northwest dataset
of [32].

For this analysis, I use daily data from 1950–2020 and the same annual
averages of GMST as previously. All the high temperatures over 29oC occurred
between May 15 and September 15 so the analysis is confined to this part of
the year. The steps were as follows:

1. Time-varying threshold: a quantile regression was performed with
quantile τ = 0.9 and covariates consisting of sinusoidal terms to
represent seasonal effects and a linear term for the long-term trend,
the fitted values from this model defining the threshold that was
used for the subsequent analysis. The 0.9 quantile was selected after
trying several others, on the basis that the following analysis leads
to excellent agreement between predicted and observed numbers of
excesses for all temperatures over 30oC.

2. Declustering of high-level exceedances: there is a clear clustering
among the exceedances of this threshold, reflecting the fact that
high temperatures tend to persist for several days. Threshold-based
analyses should account for this, as argued in [10, 4], for example.
I applied the extremal index algorithm of Ferro and Segers [14],
implemented through the extremalIndex algorithm of the texmex

R package. The estimated extremal index was about 0.28, and the
algorithm was used to identify the peak value in each cluster. Non-
peak exceedances were not used in the analysis.

3. The pp.fit algorithm from ismev was used to fit the peak ex-
ceedances over the threshold between days 135–255 each year (ap-
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proximately May 15–September 15). The location parameter µ was
allowed to depend on annual mean GMST and sinusoidal terms for
the annual cycle with periods 12 and 6 months. The scale parameter
σ depended just on sinusoidal terms with period 12 months, and the
shape parameter ξ was treated as constant. This model was selected
after trying several others, comparing their negative log likelihood
values and agreement between observed and expected exceedance
counts.

4. Based on the fitted model, I computed expected numbers of ex-
ceedances over the whole sample for a range of temperatures, and
compared them with observed (declustered) counts. The agreement
between observed and expected exceedances was excellent (χ2

1 < 1)
for temperatures of 30oC or greater. The analysis was then re-
peated using the GMST for 2021 to derive projected numbers of
exceedances for 2021 under the “factual” model pF , and similarly,
with GMST–1.2 for the “counterfactual” model pC .

5. I also performed a Bayesian analysis, extracting the pp.lik likeli-
hood function from the pp.fit algorithm within ismev, and run-
ning the adaptive MCMC algorithm of [16], similar to the earlier
GEV analysis.

Based on the MLE fit, the estimated endpoints, i.e. the largest values for
which the expected exceedance count is positive, are 36.4oC and 34.0oC under
pF and pC respectively. These are larger than the corresponding estimates 35.0
and 32.9 under the GEV model, but still well short of what was observed in
2021. In other words, the threshold analysis improves the estimates a little,
but not enough to resolve the basic issue of an observed temperature that was
well above the estimated endpoint of the distribution.

The Bayesian analysis follows similar lines to the earlier Bayesian analysis
using the GEV model (Table 0.2). For a series of temperatures, we compute
the posterior mean of pF and pC , and also of the ratio pC/pF . Table 0.2 shows
the posterior means for all these quantities, as well as a 95% credible interval
for pC/pF (the lower bound is 0 in every case) and the posterior probability
that pC/pF < 0.01. Based on the latter calculation, we can say that it is
“virtually certain” that the relative risk of the 2021 event is > 100 when
translated back to the conventional definition of RR = pF /pC .

0.7 Conclusions

Attribution of extreme weather events is a challenging area for the application
of extreme value analysis methods. On the one hand, these applications show-
case how the familiar methods based on the GEV and GPD distributions may
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Temperature E{pF } E{pC} E{pC/pF } q0.025 q0.975 Pr {pC/pF < 0.01}
34 0.122 0.0022 0.020 0 0.132 0.65
35 0.031 2.1× 10−4 4.8× 10−3 0 0.053 0.901
36 4.8× 10−3 2.0× 10−5 1.4× 10−3 0 0.0013 0.971
37 5.0× 10−4 2.7× 10−6 6.4× 10−4 0 0.00083 0.988
38 4.9× 10−5 4.8× 10−7 3.6× 10−4 0 0 0.994
39 5.3× 10−6 1.0× 10−7 2.1× 10−5 0 0 0.996

TABLE 0.2
Expected exceedances of various high temperature in 2021 based on the
Bayesian fit to the point process model. Expectations and probabilities are
posterior values according to the Bayesian analysis.

be applied to analyze problems of real societal importance. However, there
are clear challenges when the methods are applied to very extreme events
such as the 2021 heatwave in the Pacific northwest of North America. Tem-
perature data generally lie within the ξ < 0 domain of extreme value theory,
which means the distributions have finite upper endpoints, and it is problem-
atic when those estimated endpoints lie below the observed extreme values.
Alternative statistical analyses, including those based on threshold models or
including Bayesian methods of analysis, may resolve some of these issues but
typically do not solve the whole problem. More radical alternatives include
using different covariates or different methods for handling spatial aspects of
the datasets [40, 7]. Finally, this review has not discussed at all the statisti-
cal challenges associated with combining data from observations and multiple
climate models, but there are recent developments in that field as well [6] and
this could also be a fruitful topic for future research.
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