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Figure 2.7 Plots of residuals from a linear model fitted to Amherst data. (a) Residual versus x
value. (b) Histogram of residuals.

question the normality of the distribution. In fact, however, we shall show that formal
tests of fit do not contradict normality in this case.

2.9.2 Tests of normality: Shapiro-Wilk and its relatives

The graphical techniques just described allow one to make a visual assessment of
whether or not the data are normally distributed, and in many cases, such an assess-
ment is all that is needed — for example, if the plots allow us to identify specific
observations which are inconsistent with the rest of the data, then there is no need
to make a formal test out of it. However it may also be the case, especially when in-
spection of the probability plot reveals nothing obviously wrong with the model, that
one wants to follow this up with a test, which leads to a formal decision whether to
accept or reject the normal distribution. A number of different methods of doing this
have been proposed. In this section, we study methods based on probability plots;
alternative methods based on the empirical distribution function are discussed in the
next subsection.
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Figure 2.8 Normal probability plot of residuals from (a) Amherst data, (b) Mount Airy—
Charleston data.

A probability plot, such as one of those in Figure 2.8, can itself be thought of
as a regression experiment in which we try to measure how close the relationship
between observed and expected values is to a straight line. For at least the first part
of this discussion, we ignore the covariates in the linear model and assume ei = yi− ȳ,
where y1, ...,yn are independent normal random variables with common mean µ and
variance σ2, and ȳ is the sample mean.

One of the most famous and best tests for normality is the Shapiro-Wilk test,
introduced by Shapiro and Wilk [61]. This test relies on trying to construct a linear
regression of e∗i on the ith expected standard normal order statistic mi for 1 ≤ i ≤
n. This is complicated, because not only are the exact values of mi rather hard to
compute, but in the original version of the test, it was also necessary to know the
variances and covariances of the e∗i under the null hypothesis of a normal distribution.
This is because the test used generalized least squares (GLS) to compute the best
straight line for e∗i against mi. (See Chapter X.X for a description of GLS for a general
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regression problem.) The result is a test statistic of the form

W =
(∑aie∗i )

2

∑e∗2i
.

Tables for the coefficients ai and the percentage points of W were given by Shapiro
and Wilk for samples up to size 50.

Subsequent authors have found ways of simplifying the method without sacri-
ficing much power. Shapiro and Francia [60] simplified the computation of the test
statistic by simply using the squared correlation coefficient between e∗i and mi,

W ′ =
(∑mie∗i )

2

∑m2
i ∑e∗2i

,

and they gave tables of the distribution of W ′ for n = 35 and for values of n between
50 and 100. However, even this method assumes that one knows the exact value of
mi.

Looney and Gulledge [37] simplified the test further by considering various
approximations to mi. Two approximations in common use are z∗i = z(i−0.5)/n or
z†

i = z(i−0.375)/(n+0.25), which was originally proposed by Blom [8] and is generally
considered superior to z∗i . Rather than W ′i , they gave the result directly in terms of
the correlation coefficient

r∗ =
∑z†

i e∗i√
∑z†2

i ∑e∗2i

,

giving tables for the significant values of r∗ (small values of r∗ are significant, be-
cause in a perfect probability plot, r∗ would be very close to 1, the maximum value
possible).

A final comment is that none of these methods really works correctly in a regres-
sion problem, because in regression the residuals do not all have the same variance
and are correlated, in contrast with the simple case of independent observations from
a common normal distribution. We shall go into these issues in detail in Chapter X.X,
but for now, it is sufficient to note that they can cause problems.

In view of these last comments, the best recommendation is to use the correlation
statistic r∗, but if time and computing resources permit, to compute the percentage
points and p-values by simulation. The simulation steps proceed as follows:

1. Select the number of simulations to be used, M say.
2. For the I’th simulation (1≤ I ≤M), generate n independent N(0,1) observations

using a standard random number generator. These will be the y values in the sim-
ulated experiment. The test statistic we are computing is invariant to changes in
the true values of the regression coefficients, and to the variance of the y values,
so for the purpose of the simulation, it is sufficient to assume that all the y values
have mean 0 and variance 1.

3. Carry out a linear regression of y1, ...,yn on xi j, 1≤ i≤ n, 1≤ j ≤ p, the same x
values as in the original experiment, and compute the residuals ei.
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4. Rearrange the residuals ei in increasing order, and compute the r∗ statistic — we
write this r∗I to indicate that it is the I’th simulated value of r∗.

5. When steps 2–4 have been completed M times, rearrange all the r∗I values in in-
creasing order and use these to form empirical percentage points for the distribu-
tion. Alternatively, compute

p =
Number of simulations for which r∗I < r∗

M
,

where r∗ is the test statistic from the original experiment. This gives an approxi-
mate p-value for the test. Values of p < .05 create doubts about the suitability of
the normal distribution; p < .01 creates more conclusive evidence that the normal
distribution is not suitable for this data set.

One further comment here is that there may be some advantage in using either the
standardized or the studentized (Chapter 3) residuals in place of the simple residuals.

2.9.3 Tests of normality based on the EDF

A second very widely-used class of tests of a normal distribution (or of any other
specified distributional family) are those based on the empirical distribution function
(EDF). Particular tests in this category include the Kolmogorov-Smirnov, Cramér-
von Mises and Anderson-Darling tests.

Suppose we have n observations which are independent and identically dis-
tributed (i.i.d.) with some distribution function F(y) on −∞ < y < ∞. Note that we
are not necessarily assuming that the range of the distribution covers the whole of
the interval (−∞,∞), but it is convenient to assume that F is defined everywhere,
setting F(y) = 0 if y is below the left-hand endpoint and F(y) = 1 if y is above the
right-hand endpoint of the distribution. In that case, the regions on which F(y) is ei-
ther 0 or 1 will play no role in the test statistic computations to follow. The empirical
distribution function is the function

Fn(y) =
1
n
{ Number of observations ≤ y} ,

defined for each y ∈ (−∞,∞). The idea of EDF tests is that if we want to test a null
hypothesis F = F0, where F0 is some given distribution function, we construct a test
based on some measure of “closeness” between Fn and F0.

Three commonly used such measures are the Kolmogorov-Smirnov statistic,

D = max
−∞<y<∞

|Fn(y)−F0(y)| ,

the Cramér-von Mises statistic,

W 2 = n
∫

∞

−∞

{Fn(y)−F0(y)}2 dF0(y),

and the Anderson-Darling statistic,

A2 = n
∫

∞

−∞

{Fn(y)−F0(y)}2

F0(y){1−F0(y)}
dF0(y).
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The Kolmogorov-Smirnov is probably the most widely-known and widely-used of
the three test statistics, though it is not necessarily the best in terms of power. Com-
paring the other two, the Anderson-Darling test puts more weight on the tails of the
distribution, and therefore is often recommended for use when one is particularly
concerned about departures from F0 in the tails.

In practice, there are computing formulas which simplify the computation of
these test statistics. If the original data are ordered and have the values y∗1 ≤ ...≤ y∗n,
then we define u∗i for 1≤ i≤ n by u∗i = F0(y∗i ), and let

D+ = max
i

(
i
n
−u∗i

)
, D− = max

i

(
u∗i −

i−1
n

)
.

We then have

D = max(D+,D−),

W 2 = ∑
i

(
u∗i −

2i−1
2n

)2

+
1

12n
,

A2 = −n− 1
n ∑

i
{(2i−1) logu∗i +(2n+1−2i) log(1−u∗i )} .

To define percentage points for these tests, the first thing to note is that they are
distribution-free in the following sense: if F0 is a continuous c.d.f. and is completely
specified (no unknown parameters), then the distribution of D, W 2 and A2 does not
depend on F0. The reason is that when F0 is the true c.d.f, the transformation from y∗i
to u∗i is a probability integral transformation to the uniform distribution, so that we
are in effect testing that u∗1, ...,u

∗
n are the order statistics from a uniform distribution

on [0,1]. This is convenient, because it means that percentage points and p-values
may be calculated independently of the true F0.

In practice, however, things are not as simple as that. Usually F0 is not completely
specified, but only specified up to some unknown parameters. An example is when
we are testing that F0 is the normal distribution with mean µ and variance σ2. In that
case, µ and σ2 are usually not known in advance, but are estimated using the sample
mean and the sample standard variance. In that case, however, the calculations of
percentage points and p-values must take the estimation of µ and σ2 into account.
Some tables and computer packages do this — in other words, quoted percentage
points and p-values allow for the fact that µ and σ2 are estimated.

In principle, when these tests are applied to residuals from a regression equation,
the computation of percentage points should take into account that they are residu-
als from a regression, and should not merely treat them as independent observations
from a normal distribution. In practice, this point is usually ignored. Tables and com-
puter packages allow for the estimation of the mean and variance but not for the full
joint distribution of the residuals. It is possible to allow for this, however, with a sim-
ulation procedure similar to that outlined at the end of Section 2.9.2. We expand on
this further in the next section.

EDF tests are described in considerable detail in the book by D’Agostino and
Stephens [21], which we would recommend for further reading.
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2.9.4 Implementation in R

Two goodness of fit tests are built into base R: shapiro.test implements the
Shapiro-Wilk test, and ks.test applies the Kolmogorov-Smirnov test.

As an example, let’s first fit the linear regression to the Amherst dataset, using
lm1=lm(Temp~Year,data=’Amherst’)

shapiro.test(lm1$resid)

ks.test(rstandard(lm1),y=’pnorm’)

produces the outputs
Shapiro-Wilk normality test

data: lm1$resid

W = 0.99136, p-value = 0.6259

One-sample Kolmogorov-Smirnov test

data: rstandard(lm1)

D = 0.042636, p-value = 0.976

alternative hypothesis: two-sided

The Shapiro-Wilk statistic is applied directly to the residuals from the linear
model, and indicates a p-value of 0.6259. Since this is well above 0.05, we conclude
that the assumption of normally distributed errors is not rejected by this test.

Two points should be made about the Kolmogorov-Smirnov test in this context.
The first is the condition y=’pnorm’ — we have to specify the distribution being
tested, and in this case it is pnorm, that is, the standard normal distribution. (We
could test other distributions with different specifications, for example, y=’punif’
would test the null hypothesis that the data are uniformly distributed on (0,1).) The
second point follows from the first however — pnorm refers specifically to the nor-
mal distribution with mean 0 and variance 1, so ks.test would not give the correct
answer if the distribution had a different mean or variance. In this case, we have re-
solved this issue by applying the test to the standardized residuals rather than the raw
residuals.

However, even with this correction, the test does not adjust correctly for the mean
or variance of the residuals being estimated, which is a critical issue. The book by
D’Agostino and Stephens [21] extensively discussed how the distribution of good-
ness of fit statistics is affected by estimating the mean and variance parameters.

A more comprehensive series of tests is provided by the EnvStats package. For
example, here are the same two tests within this package:

gofTest(lm1$resid,test=’sw’)

gofTest(lm1$resid,test=’ks’)

with (slightly edited) output:
Results of Goodness-of-Fit Test

Test Method: Shapiro-Wilk GOF
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Hypothesized Distribution: Normal

Estimated Parameter(s): mean = 2.973984e-17

sd = 7.133667e-01

Estimation Method: mvue

Data: lm1$resid

Sample Size: 126

Test Statistic: W = 0.9913566

Test Statistic Parameter: n = 126

P-value: 0.6259324

Alternative Hypothesis: True cdf does not equal the

Normal Distribution.

Test Method: Kolmogorov-Smirnov GOF

Hypothesized Distribution: Normal

Estimated Parameter(s): mean = 2.973984e-17

sd = 7.133667e-01

Estimation Method: mvue

Data: lm1$resid

Sample Size: 126

Test Statistic: ks = 0.04169544

Test Statistic Parameter: n = 126

P-value: 0.980819

Alternative Hypothesis: True cdf does not equal the

Normal Distribution.

Warning message:

In ksGofTest(x = c(-0.952328053800059, 0.349830310085597, -0.388011326028766, :

The standard Kolmogorov-Smirnov test is very conservative (Type I error smaller

than assumed; high Type II error) for testing departures from the Normal

distribution when you have to estimate the distribution parameters.

The Shapiro-Wilk results are identical to those with shapiro.test. The
Kolmogorov-Smirnov results are slightly different because this version uses the
raw residuals rather than the standardized residuals. Note, however, the Warning

message at the end: the result does not correctly allow for the estimation of the
mean or variance parameters.

Several other test statistics are available within gofTest. In particu-
lar, the Shapiro-Francia, probability plot correlation coefficient (equivalent to
Looney-Gulledge), Cramér-von Mises and Anderson-Darling tests are covered by
test=’sf’, test=’ppcc’, test=’cvm’ and test=’ad’, respectively.

Each of the EDF tests is affected by the issue of having to account for estimating
the parameters of the distribution, which is usually interpreted as estimating the mean
and variance without accounting for the additional parameters involved in a regres-
sion equation. To the author’s knowledge, there is no systematic theoretical approach
to the latter problem. As an alternative, however, we propose a simulation method.
Some code for this may be accessed by first entering the following command in a R
or R-Studio terminal:
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source(’http://rls.sites.oasis.unc.edu/faculty/rs/source/Data/Rcode-gof.txt’)

This load a function gofsim(y,X,intc,msim) where:
• y is the y variable of the regression;
• X is the X matrix of the regression;
• intc is an indicator for whether an intercept should be included (0 for no, 1 for

yes);
• msim is the number of simulations.

This function relies on the fact that, for any of the goodness of fit statistics we have
considered, the distribution when the null hypothesis of normality is true does not
depend on the true values of the regression parameters β , nor, if the residuals are
standardized, on the true residual variance σ2. The first statement follows from (2.56)
and the second from the definition of standardized residuals, which is the form of
residual used in this routine.

Therefore, to construct a simulated distribution for any of the goodness of fit
statistics, it suffices to refit the model to random samples from a standard normal
distribution; this is implictly assuming β = 0 and σ = 1, but since the distribution is
invariant to the true values of β and σ , this will be sufficient.

We should also discuss the value of msim, the number of simulations. The ex-
amples that follow assume this number is 10,000. Is this adequate? Let’s assume
that the true p-value of the test is exactly 0.05, which is most commonly taken as
the critical value between accepting or rejecting the null hypothesis. We calculate

1.96×
√

0.05×0.95
10000 = 0.00427; thus, there is a better than 95% chance that the simu-

lated p-value will be between 0.045 and 0.055. I would argue that such small differ-
ences among p-values does not affect the practical interpretation of the test; in such
cases we would know that the result was marginal and further simulation would not
give us useful information. Nevertheless, this limitation should be noted.

To conclude this section, I give the results of these tests for both our examples:
gofsim(Amherst$Temp,Amherst$Year,1,10000)

gofsim(mta$Charl,mta$MtAiry,1,10000)

produce the results
[1,] "" "LG" "KS" "CVM" "AD"

[2,] "Test" "0.99569" "0.04101" "0.03315" "0.25477"

[3,] "p-value" "0.5582" "0.8802" "0.7889" "0.7306"

..

[1,] "" "LG" "KS" "CVM" "AD"

[2,] "Test" "0.99353" "0.07725" "0.07899" "0.461"

[3,] "p-value" "0.4865" "0.235" "0.2132" "0.2538"

For example, with the Amherst data, the Looney-Gulledge test has a simulated p-
value about 0.56, and the Kolmogorov-Smirnov about 0.88. Because these are sim-
ulated p-values, the reader should expect to get slightly different p-values from one
run of the routine to another. With neither dataset do any of the four tests point to
rejection of the normality hypothesis.




