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CAS Survey

As you're all well aware, the College of Arts and Sciences (CAS)
conducts a survey of every course at the end of semester.

By now, you should have all received a link to the survey from
this course.

Please respond! Even if you don't feel you have much to say,
it's important that we record a response from as many students
as possible, as the information is valuable to the CAS, to the
STOR department, and to me personally. Your responses may
determine whether this course is ever offered again!

Thank you for your cooperation.



The story so far ...
1. Multivariate Extremes

(a) “Classical” theory — based on multivariate max-stable distributions
— estimation theory exists in both block maxima and threshold ex-
ceedance settings (Tawn, Coles, Ledford etc. but see also the book
by Beirlant et al. (2004) and many other references)

(b) Extensions of classical theory — asymptotic dependence versus asymp-
totic independence — alternative models due to Ledford-Tawn, Heffernan-
Tawn-Resnick and Ramos-Ledford but also other work that we haven't
reviewed (e.g. many papers by Dan Cooley, Holger Rootzén, Johan
Segers and others)

(c) Attempts to unify the two approaches, e.g. Wadsworth et al. (2017)
suggested a parametric model that included both AD and Al special
cases, but still appears somewhat ad hoc.

2. Spatial Extremes

(a) Latent process approach — not “fashionable” (i.e. most recent re-
search other than mine has focused on other approaches) but still
a viable technique for studying problems of spatial interpolation and
spatial dependence

(b) Introduction to max-stable process: reviewed basic theory of Poisson
random measures (PRMs) and the mapping theorem

(c) The “inverse Poisson process’ (IPP), a PRM on R4 with intensity
measure v, where v ((z,0)) = %, 0 < z<oo. Denoted{R;, i=1,2,...}
in the following.



(a) (b)

R

(a) Illustration of Z, R and RW processes (W, independent with mean 1)
Z;=FE1+ ...+ E;, {E;} independent exponential (scaled)

R; = 1/Z;; multiply by W; = eX~1/2 X, IID N(0,1); then E{W;} =1; {R;} is
an IPP

(b) Represent (R;,W;) as a Poisson process in R2; define set A = (r,00) X
(w1, w2); then p(A) = 2. {F(w2) — F(w1)}

By the mapping theorem, {(R;W;),1 = 1,2,...} is a Poisson process in R4 ; the
measure of the set {R;W; > z} is [[° [[°I(rw > 2)pu(drdw) = [° {2} F(dw) =
%. Hence {R;W;} is an IPP.

The probability of the event max;(R;) < z is the probability that the set

R; € (z,00) is empty; this is e ¥((z0) = ¢~1/2: therefore, max;(R;) has unit
Fréchet distribution

Hence max;(R;W;) also has unit Fréchet distribution



Construction of a max-stable process

Assume {R;} is an IPP; {W;(z), x € X} are IID processes on X; assume
E{W;(z)} =1 for alliand z € X

Define Z(xz) = max; {R;,W;(x)} for x € X.
Let {z(x), x € X} be any non-negative function on X; z(x) = 400 is allowed

Pr{Z(x) < z(x) for all x € X} = Pr{R;W;(z) < z(x) for all i >0, z € X}
Pr {Ri <infy2@ =12 } — exp {—V(2(z), = € X)} where

Wi(z)’

V(z(z), z€ X) = E{supwex (%)} W any of Wy, Wo, ....

1. For single x € X', Z(x) has unit Fréchet distribution
(Pr{Z(z) <z} =e Y% 0< 2z < 0c0)

2. V is homogeneous of order -1, meaning
Via(z(z), € X)) =a 'V ((z(z), z € X))

3. If Z1,%2>,...,7Z, are n independent copies of Z, then %max{Zl,Zg, ooy In}
has the same finite-dimensional distributions as ~Z.

4. If D C X then Pr{Z(z) < z, all x € D} = e %/* where p = E {sup,ep W(x)}
is the extremal coefficient.



The Brown-Resnick Process

Let {e(x), x € X'} be a Gaussian process with mean 0 and variance function
Var{e(z)} = o?(z). Then W(zx) = exp {e(x) — 02(3:)/2} has mean 1 (by the
well-known formula for the moment generating function for a normal distri-
bution). Let Wi, Wh,... be independent copies of W and let {R;, i =1,2,...}
be an IPP. Then

Z(x) = _max RWi(x), r€ X

IS @ max-stable process known as the Brown-Resnick process.

What to choose for e(z)? A process is stationary and isotropic if Cor{e(x),e(x')} =
p (||x — 2'||) for some function p(-) and ||x — z'|| representing the (Euclidean)
distance between x and z’. Examples: exponential, power law, Matérn...

However a better assumption is that the process be intrinsically stationary
with a variogram Var{e(x) — e(z')} =~ (||z — «'||)

If e(-) is stationary and ¢2(-) is constant then it is also intrinsically stationary
with ~(t) = 202(1 — p(t)), t > 0. However there are also examples of intrinsi-
cally stationary processes that are not stationary, e.g. ~(t) = co + cit?, co >
0, ¢c1 >0, 0 <\ < 2. Special case: ¢og =0, A =1 is Wiener process (a.k.a.
Brownian motion)

Formula: Pr{Z(z1) < z1,Z(x2) < 20} = exp{—V(z1,22)} where
V(a1 22) = Lo (5 log 2 + g) + 1o (% log 2 + g) where a = ~(||z1 — 2||). This
is the Hiisler-Reiss (1989) distribution.

Properties: as a — oo, V(z1,22) — - + & (independent case). As a —
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0, V(z1,22) — m (perfect dependence). Practical reason for preferring

a — 0o as ||x1 — x2|| = oo (intrinsically stationary but not stationary)



Rainfall-Storms Interpretation

{R;} represent magnitudes of storms, normalized so that maxima are unit
Fréchet

{Wi(x), = € X} represent shapes of storms, showing how they are dis-
tributed over X.

Z(x) represents the largest storm in a given year at site z

However, like Wadsworth et al. (2017), we might get a wider class of
processes by allowing more flexible choices
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Figure 5.2 Left hand plot: superimposed processes RiW;(x), where {R;} is an IPP and W;(x) =
exp{&i(x) — 1/2} for independent Gaussian process {€(x)}. Different indices i are indicated
by different line types. Right hand plot: same, with the pointwise maximum process Z(x) =
max; R;W;(x) superimposed in red. Adapted from a figure in [50].



Other Max-Stable Processes

. Origins: characterization theorems by de Haan (1984), Giné, Hahn and
Vatan (1990)

. First attempt to apply the idea to real data: Smith (1990, unpub.)

3. Other developments: Coles (1993), Schlather (2002), Reich-Shaby (2012)

. A different tack: max-linear models and extensions, e.g. Davis and
Resnick (1989) paper on “max-ARMA" models; PhD thesis by Zhengjun
Zhang (2002), see also Zhang and Smith (2010); recent papers by Falk
and Zott (2017), Gissibl, Klippelberg and Lauritzen (2021)

. Extremal t process (Opitz 2013, Thibaud and Opitz 2015): W(x) =
mqe(z)s where () is a stationary Gaussian process with mean 0 and

variance 1, a > 0 and m, = r&fili;//zz)-

For this model, V(z1,22) can be calculated as a linear function of T,41
distribution functions, limit a« — oo may correspond to Brown-Resnick.



https://rls.sites.oasis.unc.edu/postscript/rs/spatex.pdf

Estimation of Max-Stable Processes
. Need to consider both marginal distributions and dependence structure
. Marginal distributions: GEV parameters at site s are u(s; @),y (s; @), £(s; d)

. Could have complicated structure, e.g. smoothing splines to allow for
non-linear dependence on s

. Transform to unit Fréchet distributions (probability integral transform)

. Dependence structure:a max-stable process with parameters 0 (e.g. Brown-
Resnick with unknown &2 and variogram)

. Two strategies: (a) estimate ¢ first, then 0, (b) estimate jointly
. Theory usually shows (b) better, but can be complicated to implement

. Technical problem with estimating @: although all the models we have
considered have a closed-form solution for the bivariate joint distributions,
they don't extend to joint distributions for 3 or more sites

. Solution: composite likelihood



Method of Composite Likelihood
Source paper: Padoan, Ribatet and Sisson (2010, JASA)

Assume n replications on d sampling points, ¢;;(0) = 109 f(zij, zij; @) where
zi; 1S 1th observation at the jth site

Maximize CL(H) = Z?:l 2?22 Z;;ll ’wjj/&,j,j/(a) where wyj aAre fixed weights

depending only on spatial locations

The MCLE ¢ maximizes CL(0)

Properties of estimator: define K = 3,5, 2@ ul0) " j— s~ s Thud)
both evaluated at ..

“Sandwich estimator” J 1K J! is estimator of Cov{f¢}
Theorem: under the right conditions

(JIRT Y 2 (80— 0) 5 N,(0,1,)

Model selection: use the CLIC (Composite Likelihood Information Criterion)

CLIC = 2{tr(J7'K)—CL(0c)}



Progress Towards Exact Likelihood Methods

In some cases it is possible to compute an exact MLE but this is very com-
putationally intensive

Stephenson-Tawn (2005) method; idea of breaking up time into short inter-
vals so that W;(xz) may be observed individually; however this creates risk of
bias if misidentified (Wadsworth (2015))

Threshold methods are, in some respects, easier to apply than block maxima

methods (papers by Wadsworth and Tawn; Thibaud and Opitz; Engelke et
al.)

The “ABC method” (estimate likelihood by simulation; Erhardt and Smith
2012)

Neural network methods (many recent papers by Huser and co-authors)

However, overall the trend is moving away from max-stable models (see arxiv
preprint, “Modeling of spatial extremes in environmental data science: Time

to move away from max-stable processes’ by Huser, Opitz and Wadsworth,
2024)



Back to Attribution of Extreme Weather Events
Source paper: Zhang, Risser, Wehner and O'Brien, JABES 2024.

Leveraging Extremal Dependence to Better
Characterize the 2021 Pacific Northwest
Heatwave

Likun ZHANG®, Mark D. RISSER, Michael F. WEHNER, and
Travis A. O°'BRIEN

In late June, 2021, & devastating heatwave affected the US Pacific Nothwest and
western Canada, breaking numerous all-time temperature records by large margins and
directly causing hundreds of fataliies. The observed 2021 daily maximum temperature
across much of the U8, Pacific Northwest exceeded upper bound estimates obtained
from single-station temperature records even after sccounting for anthropogenic climate
change, meaning that the event could not have been predicted under standard wnivariate
extreme value analysis assumptions. In this work, we utilize a Aexible spatial extremes
medel that considers all stations across the Pacific Morthwest domain and accounis for
the fact that many stations simultaneously experience extreme temperatures. Chur anal-
wsis incorporates the effects of anthropogenic forcing and natural climate variability in
order to better characterize ime-varving changes in the distribution of daily tempera-
ture extremes. We show that greenhouse gas forcing, drought conditions and large-scale
atmospheric modes of vanability all have significant iImpact on summertime mMaximum
temperatures in this region. Our model represents a significant improvement over cos-
responding single-station analysis, and our posterior medians of the upper bounds are
able to anticipate more than 96% of the observed 2021 high station temperatures after
properly accounting for extremal dependence.

Supplementary materials accompanving this paper appear online.

Key Words: Extreme event attribution; Concurrent extremes; Extreme value theory;
(aussian scale mixtures; Granger causality: Spatial statistics,

Remark: 1 already discussed some of this paper, see lecture of March 18,
about 16:30 in. However, I didn't get into the technical details of the spatial
model.



Zhang, Risser, Wehner and O’Brien (2024), I

Temperature Data
e Global Historical Climatology Network-Daily (GHCN-D), USA only

e Homogenized records from 1950—2020, 487 stations within 116.5—125°W,
40—49°N.

e Summertime (JJA) annual maxima daily maxima (T Xx); exclusion crite-
ria reduce to 438 stations

e Non-homogenized data from 2021, 470 stations

Non-stationary elements (covariates to GEV model)
e Greenhouse gas forcings (GHG:, t = 1950,...,2021)
e ENSO Longitude Index (ELI;, t = 1950,...,2021)
e PDSI Drought Index for each location s (PDSI(s,t), t = 1950,...,2021)
e Urbanization Binary Index for each location s (UB(s,t), t = 1950,...,2021)

e Topographical covariates, e.g. elevation, distance to coast (fixed in time
but not in space)



Zhang, Risser, Wehner and O’Brien (2024), II

y —p(s, )\
_{Hg(s’t)( 7(s,1) )}+ |

Marginal Distributions

Pr{Y(s,t) <y} = exp

p(s,t) = po(s) + pi(S)GHG(t) + p2(s)PDSI(s,t) + ps(s)ELI(t) + pa(s)UB(s, t),
logo(s,t) = oo(s) +01(s)GHG(t) + o2(s)ELI(1),

£(s,t) = &(s),
where the functions uo(s), n1(s),...,&(s) are functions of s through thin-plate

splines plus topographical covariates (y(s) is any of uo(s), ni(s),...,&(s))
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Zhang, Risser, Wehner and O’Brien (2024), III
Spatial Dependence Model

We assume that the copula of the spatial field Y (s,t) (JJA max temperature
at site s in year t) is that of

X(s,t) = R:-W(s,t)+ e(s)

where R; ~ Pareto{(1 — )/}, W(s,t) is a standard isotropic and stationary
Gaussian process transformed to standard Pareto margins, and e(s) ~ N (0, 72)
independent for each s

Asymptotic independence when § € (0,1/2], asymptotic dependence when
o€ (1/2,1)

[Precedents: Huser, Opitz and Thibaud (2017), “Bridging Asymptotic Inde-
pendence and Dependence in Spatial Extremes Using Gaussian Scale Mix-
tures' ; see also Huser and Wadsworth (2019); Zhang, Shaby and Wadsworth
(2022)]

Parameters Oy, reflect unknown spatial covariance parameters of W (s, t) (pre-
sumably independent for each t)

Relate X to Y by equating marginal distributions, i.e.
Fy{Y(s,t)} = Fx{X(s,t)} for each t

Formulate as a Bayesian hierarchical model, fit by a big MCMC algorithm



Zhang, Risser, Wehner and O’Brien (2024), 1V
Statistical Counterfactual to Quantify Human Influence
Framework of Granger (1969) causality

Directly based on observational data; doesn’'t use climate models (contrast
“Pearl| causality”)

“Factual” predictions based on present-day GHG; “Counterfactual” predic-
tions based on 1950 GHG

Calculate risk ratio for each s:

pr(s)
pc(s)

where pr and pc represent probabilities of observed event under both factual
and counterfactual models

RR(s)



Zhang, Risser, Wehner and O’Brien (2024), V

Results (GEV marginals)

(a) Location intercept (b) Maximum effect of each covariate on GEV location (1950-2020)
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Figure 2. Posterior means of the maximum effects of GEV coefficients {pug(s), ..., (), og(s), ...,

09(s), £(s)} under M4; see Sect. 3.3 for the definition of M4 and see Eq. (9) to learn how to calculate the maximum
effects .



Zhang, Risser, Wehner and O’Brien (2024), VI

Results (Distribution of maximum temperatures)
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Figure 3. The posterior median of the GEV upper bound under four statistical models (M1-M4; see Sect.3.3).
The first and second rows show upper bound estimates under the factual and counterfactual scenarios, respectively.
For these rows, the *A’ signifies an infinite upper bound (corresponding to £ = 0), and “+° signifies stations for
which the observed 2021 TXx exceeded the posterior median of the upper bound. The inset text in each panel

displays the fraction of stations where the upper bound is exceeded. See Supplemental Fig. B.8 for the differences
in the upper bounds for each scenario.



Zhang, Risser, Wehner and O’Brien (2024), VII

Results (Risk Ratios)

(a) Risk probabilities (b) Risk ratios
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Figure 4. Subfigure a shows the station-specific posterior medians of the risk probabilities calculated from
statistical model M4 for the Counterfactual (left) and Factual (right) climate scenarios, and subfigure b shows
their ratio. For the risk probabilities, solid black triangles indicate gauged locations for which the risk probability
best estimate is zero; for the risk ratios, solid black circles denote R R(s) = oo (wherein the counterfactual risk
probability is zero but the factual risk probability is nonzero) and yellow ‘+° shows where the risk ratios are
undefined (wherein both counterfactual and factual risk probabilities are zero). In the rightmost panel, points that
are plotted with additional ‘o’ sign indicates that risk ratio estimates are statistically significantly different from 1.



Zhang, Risser, Wehner and O’Brien (2024), VIII

Summary and Conclusions

Both covariate modeling and spatial dependence are needed for the final
result but (according to the authors) the spatial dependence component
iIs the more critical

Analysis done only for US stations because Canada stations are not ho-
mogenized; need to repeat analysis for Canadian stations (worse for “heat
dome” effect)

Posterior median station maximum is greater than 2021 observed value in
nearly all stations (authors’ comment: literally “all stations” if posterior
median is replaced by 95% quantile)

Risk ratios in range 10—100 are much more interpretable than those in
previous analyses, but there are still stations where the estimated risk
ratio is infinite or undetermined (0/0), and some where it is < 1

Properties of spatial model: need for one that exhibits “nonstationary
tail dependence” 77



Thank you for attending this course!!

Don’t forget the survey

Now, over to you ....



