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Heffernan and Tawn (2004)



CAS Survey

As you’re all well aware, the College of Arts and Sciences (CAS)

conducts a survey of every course at the end of semester.

By now, you should have all received a link to the survey from

this course.

Please respond! Even if you don’t feel you have much to say,

it’s important that we record a response from as many students

as possible, as the information is valuable to the CAS, to the

STOR department, and to me personally. Your responses may

determine whether this course is ever offered again!

Thank you for your cooperation.



The story so far ...
1. Multivariate Extremes

(a) “Classical” theory — based on multivariate max-stable distributions
— estimation theory exists in both block maxima and threshold ex-
ceedance settings (Tawn, Coles, Ledford etc. but see also the book
by Beirlant et al. (2004) and many other references)

(b) Extensions of classical theory — asymptotic dependence versus asymp-
totic independence — alternative models due to Ledford-Tawn, Heffernan-
Tawn-Resnick and Ramos-Ledford but also other work that we haven’t
reviewed (e.g. many papers by Dan Cooley, Holger Rootzén, Johan
Segers and others)

(c) Attempts to unify the two approaches, e.g. Wadsworth et al. (2017)
suggested a parametric model that included both AD and AI special
cases, but still appears somewhat ad hoc.

2. Spatial Extremes
(a) Latent process approach — not “fashionable” (i.e. most recent re-

search other than mine has focused on other approaches) but still
a viable technique for studying problems of spatial interpolation and
spatial dependence

(b) Introduction to max-stable process: reviewed basic theory of Poisson
random measures (PRMs) and the mapping theorem

(c) The “inverse Poisson process” (IPP), a PRM on R+ with intensity
measure ν, where ν ((z,∞)) = 1

z
, 0 < z <∞. Denoted {Ri, i = 1,2, . . .}

in the following.



(a) Illustration of Z, R and RW processes (Wi independent with mean 1)

Zi = E1 + . . .+ Ei, {Ei} independent exponential (scaled)

Ri = 1/Zi; multiply by Wi = eXi−1/2, Xi IID N(0,1); then E {Wi} ≡ 1; {Ri} is
an IPP

(b) Represent (Ri,Wi) as a Poisson process in R2
+; define set A = (r,∞) ×

(w1, w2); then µ(A) = 1
r
· {F (w2)− F (w1)}

By the mapping theorem, {(RiWi), i = 1,2, . . .} is a Poisson process in R+; the
measure of the set {RiWi > z} is

∫∞
0

∫∞
0 I(rw > z)µ(drdw) =

∫∞
0

{
w
z

}
F (dw) =

1
z
. Hence {RiWi} is an IPP.

The probability of the event maxi(Ri) < z is the probability that the set
Ri ∈ (z,∞) is empty; this is e−ν((z,∞)) = e−1/z; therefore, maxi(Ri) has unit
Fréchet distribution

Hence maxi(RiWi) also has unit Fréchet distribution
Heffernan and Tawn (2004)



Construction of a max-stable process

Assume {Ri} is an IPP; {Wi(x), x ∈ X} are IID processes on X ; assume
E {Wi(x)} = 1 for all i and x ∈ X

Define Z(x) = maxi {RiWi(x)} for x ∈ X .

Let {z(x), x ∈ X} be any non-negative function on X ; z(x) = +∞ is allowed

Pr {Z(x) ≤ z(x) for all x ∈ X} = Pr {RiWi(x) ≤ z(x) for all i > 0, x ∈ X}
Pr
{
Ri ≤ infX

z(x)
Wi(x)

, i = 1,2, . . .
}

= exp {−V (z(x), x ∈ X )} where

V (z(x), x ∈ X ) = E
{

supx∈X
(
W (x)
z(x)

)}
, W any of W1, W2, . . ..

1. For single x ∈ X , Z(x) has unit Fréchet distribution
(Pr{Z(x) ≤ z} = e−1/z, 0 < z <∞)

2. V is homogeneous of order -1, meaning
V (a(z(x), x ∈ X )) = a−1V ((z(x), x ∈ X ))

3. If Z1, Z2, . . . , Zn are n independent copies of Z, then 1
n

max{Z1, Z2, . . . , Zn}
has the same finite-dimensional distributions as Z.

4. If D ⊂ X then Pr {Z(x) ≤ z, all x ∈ D} = e−θD/z where θD = E {supx∈DW (x)}
is the extremal coefficient.



The Brown-Resnick Process

Let {ε(x), x ∈ X} be a Gaussian process with mean 0 and variance function
Var{ε(x)} = σ2(x). Then W (x) = exp

{
ε(x)− σ2(x)/2

}
has mean 1 (by the

well-known formula for the moment generating function for a normal distri-
bution). Let W1,W2, . . . be independent copies of W and let {Ri, i = 1,2, . . .}
be an IPP. Then

Z(x) = max
i=1,2,...

RiWi(x), x ∈ X

is a max-stable process known as the Brown-Resnick process.

What to choose for ε(x)? A process is stationary and isotropic if Cor{ε(x), ε(x′)} =
ρ (||x− x′||) for some function ρ(·) and ||x − x′|| representing the (Euclidean)
distance between x and x′. Examples: exponential, power law, Matérn...

However a better assumption is that the process be intrinsically stationary
with a variogram Var{ε(x)− ε(x′)} = γ (||x− x′||)
If ε(·) is stationary and σ2(·) is constant then it is also intrinsically stationary
with γ(t) = 2σ2(1− ρ(t)), t > 0. However there are also examples of intrinsi-
cally stationary processes that are not stationary, e.g. γ(t) = c0 + c1tλ, c0 ≥
0, c1 ≥ 0, 0 ≤ λ < 2. Special case: c0 = 0, λ = 1 is Wiener process (a.k.a.
Brownian motion)

Formula: Pr {Z(x1) ≤ z1, Z(x2) ≤ z2} = exp {−V (z1, z2)} where

V (z1, z2) = 1
z1

Φ
(

1
a

log z2

z1
+ a

2

)
+ 1

z2
Φ
(

1
a

log z1

z2
+ a

2

)
where a = γ(||x1− x2||). This

is the Hüsler-Reiss (1989) distribution.

Properties: as a → ∞, V (z1, z2) → 1
z1

+ 1
z2

(independent case). As a →
0, V (z1, z2) → 1

min(z1,z2)
(perfect dependence). Practical reason for preferring

a→∞ as ||x1 − x2|| → ∞ (intrinsically stationary but not stationary)



Rainfall-Storms Interpretation

1. {Ri} represent magnitudes of storms, normalized so that maxima are unit
Fréchet

2. {Wi(x), x ∈ X} represent shapes of storms, showing how they are dis-
tributed over X .

3. Z(x) represents the largest storm in a given year at site x

4. However, like Wadsworth et al. (2017), we might get a wider class of
processes by allowing more flexible choices



Other Max-Stable Processes

1. Origins: characterization theorems by de Haan (1984), Giné, Hahn and
Vatan (1990)

2. First attempt to apply the idea to real data: Smith (1990, unpub.)

3. Other developments: Coles (1993), Schlather (2002), Reich-Shaby (2012)

4. A different tack: max-linear models and extensions, e.g. Davis and
Resnick (1989) paper on “max-ARMA” models; PhD thesis by Zhengjun
Zhang (2002), see also Zhang and Smith (2010); recent papers by Falk
and Zott (2017), Gissibl, Klüppelberg and Lauritzen (2021)

5. Extremal t process (Opitz 2013, Thibaud and Opitz 2015): W (x) =
mαε(x)α+ where ε(·) is a stationary Gaussian process with mean 0 and

variance 1, α > 0 and mα = π1/221−α/2

Γ((α+1)/2)
.

For this model, V (z1, z2) can be calculated as a linear function of Tα+1

distribution functions, limit α→∞ may correspond to Brown-Resnick.

https://rls.sites.oasis.unc.edu/postscript/rs/spatex.pdf


Estimation of Max-Stable Processes

1. Need to consider both marginal distributions and dependence structure

2. Marginal distributions: GEV parameters at site s are µ(s;φ), ψ(s;φ), ξ(s;φ)

3. Could have complicated structure, e.g. smoothing splines to allow for
non-linear dependence on s

4. Transform to unit Fréchet distributions (probability integral transform)

5. Dependence structure:a max-stable process with parameters θ (e.g. Brown-
Resnick with unknown σ2 and variogram)

6. Two strategies: (a) estimate φ first, then θ, (b) estimate jointly

7. Theory usually shows (b) better, but can be complicated to implement

8. Technical problem with estimating θ: although all the models we have
considered have a closed-form solution for the bivariate joint distributions,
they don’t extend to joint distributions for 3 or more sites

9. Solution: composite likelihood



Method of Composite Likelihood

Source paper: Padoan, Ribatet and Sisson (2010, JASA)

Assume n replications on d sampling points, `i,j,j ′(θ) = log f(zij, zij ′; θ) where
zij is ith observation at the jth site

Maximize CL(θ) =
∑n

i=1

∑d
j=2

∑j−1
j ′=1wjj ′`i,j,j ′(θ) where wjj ′ are fixed weights

depending only on spatial locations

The MCLE θ̂C maximizes CL(θ)

Properties of estimator: define K̂ =
∑

i

∑
j ′<j

∂`i,j,j′(θ)
∂θ

∂`i,j,j′(θ)
∂θT

, Ĵ = −
∑

i

∑
j ′<j

∂2`i,j,j′(θ)
∂θ∂θT

,

both evaluated at θ̂C.

“Sandwich estimator” Ĵ−1K̂Ĵ−1 is estimator of Cov
{
θ̂C
}

Theorem: under the right conditions(
Ĵ−1K̂Ĵ−1

)−1/2 (
θ̂C − θ

) d→ Np(0, Ip)

Model selection: use the CLIC (Composite Likelihood Information Criterion)

CLIC = 2
{

tr(Ĵ−1K̂)−CL(θ̂C)
}



Progress Towards Exact Likelihood Methods

In some cases it is possible to compute an exact MLE but this is very com-
putationally intensive

Stephenson-Tawn (2005) method; idea of breaking up time into short inter-
vals so that Wi(x) may be observed individually; however this creates risk of
bias if misidentified (Wadsworth (2015))

Threshold methods are, in some respects, easier to apply than block maxima
methods (papers by Wadsworth and Tawn; Thibaud and Opitz; Engelke et
al.)

The “ABC method” (estimate likelihood by simulation; Erhardt and Smith
2012)

Neural network methods (many recent papers by Huser and co-authors)

However, overall the trend is moving away from max-stable models (see arxiv
preprint, “Modeling of spatial extremes in environmental data science: Time
to move away from max-stable processes” by Huser, Opitz and Wadsworth,
2024)



Back to Attribution of Extreme Weather Events

Source paper: Zhang, Risser, Wehner and O’Brien, JABES 2024.

Remark: I already discussed some of this paper, see lecture of March 18,
about 16:30 in. However, I didn’t get into the technical details of the spatial
model.



Zhang, Risser, Wehner and O’Brien (2024), I

Temperature Data

• Global Historical Climatology Network-Daily (GHCN-D), USA only

• Homogenized records from 1950–2020, 487 stations within 116.5–125oW,
40–49oN.

• Summertime (JJA) annual maxima daily maxima (TXx); exclusion crite-
ria reduce to 438 stations

• Non-homogenized data from 2021, 470 stations

Non-stationary elements (covariates to GEV model)

• Greenhouse gas forcings (GHGt, t = 1950, . . . ,2021)

• ENSO Longitude Index (ELIt, t = 1950, . . . ,2021)

• PDSI Drought Index for each location s (PDSI(s, t), t = 1950, . . . ,2021)

• Urbanization Binary Index for each location s (UB(s, t), t = 1950, . . . ,2021)

• Topographical covariates, e.g. elevation, distance to coast (fixed in time
but not in space)



Zhang, Risser, Wehner and O’Brien (2024), II

Marginal Distributions

Pr {Y (s, t) ≤ y} = exp

[
−
{

1 + ξ(s, t)

(
y − µ(s, t)

σ(s, t)

)}−1/ξ(s,t)

+

]
,

µ(s, t) = µ0(s) + µ1(s)GHG(t) + µ2(s)PDSI(s, t) + µ3(s)ELI(t) + µ4(s)UB(s, t),
logσ(s, t) = σ0(s) + σ1(s)GHG(t) + σ2(s)ELI(t),

ξ(s, t) = ξ(s),

where the functions µ0(s), µ1(s), . . . , ξ(s) are functions of s through thin-plate
splines plus topographical covariates (γ(s) is any of µ0(s), µ1(s), . . . , ξ(s))



Zhang, Risser, Wehner and O’Brien (2024), III

Spatial Dependence Model

We assume that the copula of the spatial field Y (s, t) (JJA max temperature
at site s in year t) is that of

X(s, t) = Rt ·W (s, t) + ε(s)

where Rt ∼ Pareto{(1 − δ)/δ}, W (s, t) is a standard isotropic and stationary
Gaussian process transformed to standard Pareto margins, and ε(s) ∼ N (0, τ2)
independent for each s

Asymptotic independence when δ ∈ (0,1/2], asymptotic dependence when
δ ∈ (1/2,1)

[Precedents: Huser, Opitz and Thibaud (2017), “Bridging Asymptotic Inde-
pendence and Dependence in Spatial Extremes Using Gaussian Scale Mix-
tures”; see also Huser and Wadsworth (2019); Zhang, Shaby and Wadsworth
(2022)]

Parameters θW reflect unknown spatial covariance parameters of W (s, t) (pre-
sumably independent for each t)

Relate X to Y by equating marginal distributions, i.e.

FY {Y (s, t)} = FX {X(s, t)} for each t

Formulate as a Bayesian hierarchical model, fit by a big MCMC algorithm



Zhang, Risser, Wehner and O’Brien (2024), IV

Statistical Counterfactual to Quantify Human Influence

Framework of Granger (1969) causality

Directly based on observational data; doesn’t use climate models (contrast
“Pearl causality”)

“Factual” predictions based on present-day GHG; “Counterfactual” predic-
tions based on 1950 GHG

Calculate risk ratio for each s:

RR(s) =
pF(s)

pC(s)

where pF and pC represent probabilities of observed event under both factual
and counterfactual models



Zhang, Risser, Wehner and O’Brien (2024), V

Results (GEV marginals)



Zhang, Risser, Wehner and O’Brien (2024), VI

Results (Distribution of maximum temperatures)



Zhang, Risser, Wehner and O’Brien (2024), VII

Results (Risk Ratios)



Zhang, Risser, Wehner and O’Brien (2024), VIII

Summary and Conclusions

• Both covariate modeling and spatial dependence are needed for the final
result but (according to the authors) the spatial dependence component
is the more critical

• Analysis done only for US stations because Canada stations are not ho-
mogenized; need to repeat analysis for Canadian stations (worse for “heat
dome” effect)

• Posterior median station maximum is greater than 2021 observed value in
nearly all stations (authors’ comment: literally “all stations” if posterior
median is replaced by 95% quantile)

• Risk ratios in range 10–100 are much more interpretable than those in
previous analyses, but there are still stations where the estimated risk
ratio is infinite or undetermined (0/0), and some where it is < 1

• Properties of spatial model: need for one that exhibits “nonstationary
tail dependence”??



Thank you for attending this course!!

Don’t forget the survey

Now, over to you ....


