
1 Interpretation of Second-Order Asymptotic Results

1.1 Block maxima method: MLE

The result of Dombry and Ferreira [4] may be summarized as follows.
Suppose we have n IID observations from a distribution function F (·) in the domain of attraction

of Gξ(x) = exp
{
−(1 + ξx)

−1/ξ
+

}
where the true value of ξ is denoted ξ0 > −1

2 . Suppose the second-

order condition (2.45) holds. We suppose that the n observations are grouped into kn blocks each
of length mn.

In reality there may not be a convenient factorization so that n = knmn exactly. However, if we
just fix one of them, say kn, and define mn to be the integer part of n

kn
, then we can still have kn

blocks of length either mn or mn+1 that cover all n observations. Since the difference between mn

and mn + 1 in the following theory will not affect any of the asynptotic results, this is effectively
the same as assuming n = knmn exactly. However, some convention of this nature might be worth
fixing for the purpose of conducting simulations.

Following [4], we focus just on the estimation of ξ, though the same principles may be applied for
estimating any function of the GEV parameters, of which tail probabilities and extreme quantiles
are the most common applications

The Fisher information matrix is denoted Iξ, so let v1(ξ) be the (3,3) entry of I−1ξ . Note
that the GEV approximation in [4] is normalized so that the true values of µ and ψ are 0 and 1
respectively, so Iξ and hence v(ξ) are functions of ξ alone. This is an explicit function of ξ: Iξ is
calculated by substituting µ = 0, ψ = 1 in formula (1.23), then invert the matrix. We are saving
space and the likelihood of typographical error by not trying to write out v1(ξ) explicitly.

With these conventions, and writing ξ0 for the true value of ξ, we then have

V ar(ξ̂n) ≈ v(ξ0)

kn
.

Similarly, the function b(ξ, ρ) as defined in [4] is an explicit function of ξ and ρ; it involves and
integral, and we assume that in practice it is evaluated by numerical quadrature, but it is explicit
in the sense that it does not involve any additional parameters beyond ξ and ρ. Let w1(ξ, ρ) be
the third entry of the three-dimensional vector I−1ξ b(ξ, ρ). This depends just on ξ and ρ, though
we have to use numerical integration and numerical matrix inversion to evaluate it.

The main result of [4], limited to just the ξ̂n component, shows that√
kn(ξ̂n − ξ0)

d→ N (λw1(ξ0, ρ), v1(ξ0),

and we also have asymptotically λ ≈
√
knA(mn), so the asymptotic bias of ξ̂n is

λw1(ξ0, ρ)√
kn

≈ A(mn)w1(ξ0, ρ)

Hence the mean squared error (MSE) of ξ̂n is asymptotically of the form

{A(mn)w1(ξ0, ρ)}2 +
v1(ξ0)

kn
.
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Recall that ρ ≤ 0 and A(m) is regularly varying of index ρ, and if ρ = 0 it is necessary to impost
the additional condition A(m) → 0 as m → ∞. The theory is simplified if we assume ρ < 0 and
A(ρ) ∼ Dmρ for some D ∈ (0,∞) as m→∞.

With those simplifications, we have

MSE ≈ D2w2
1

(
n

kn

)2ρ

+
v1
kn

where we have omitted the fixed constants ξ0 and ρ from the notations for w1 and v1.
By simple calculus, we then find that the kn to minimize MSE is given by

kn =

{
v1

D2w2
1n

2ρ|2ρ|

}1/(1−2ρ)

and the MSE is then

MSE =
{
D2w2

1n
2ρ
}1/(1−2ρ)

v
−2ρ/(1−2ρ)
1 |2ρ|2ρ/(1−2ρ)(1 + |2ρ|).

1.2 Threshold exceedance method: MLE

The block maxima method analyzed by Dombry and Ferreira [4] may be considered an alternative
to the threshold exceedance estimator based on the generalized Pareto distribution (GPD). For the
equivalent asymptotic theory for GPD estimators we follow de Haan and Ferreira [10], specifically
Section 3.4. A summary of their treatment is as follows.

Suppose again we have n IID observations from a distribution F and define some kn such that
kn → ∞, kn

n → 0 as n → ∞. Assume that (2.33) holds with the general form of H(x) given by

(2.37). Assume the observations are ordered as X1 > X2 > . . . > Xn and define estimators (σ̂n, ξ̂n)
as the values of (σ, ξ) that minimize

k log σ +

(
1

ξ
+ 1

)
log

{
1 + ξ

Xi −Xk+1

σ

}
They define an expression b(ξ, ρ) by

b(ξ, ρ) =
(

ξ+1
(1−ρ)(1+ξ−ρ)

−ρ
(1−ρ)(1+ξ−ρ)

)
valid for ρ < 0, or just

(
1 0

)
when ρ = 0.

b(ξ, ρ) =


(

ξ+1
(1−ρ)(1+ξ−ρ)

−ρ
(1−ρ)(1+ξ−ρ)

)
if ρ < 0,(

1 0
)

if ρ = 0.

valid for ρ < 0, or just
(

1 0
)

when ρ = 0.

They again define λ = limn→∞
√
knA

(
n
kn

)
and then show√

kn

(
ξ̂n − ξ0 σ̂n

a(n/kn)
− 1

)
d→ N (λb(ξ, ρ),Σ)

where the matrix Σ is given by

Σ =

(
(1 + ξ)2 −(1 + ξ)
−(1 + ξ) 1 + (1 + ξ)2

)
.
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1.2.1 Heuristic derivation

Assume a sequence of thresholds un → ωF such that 1 − F (un) ≈ kn
n ; this is similar to the way

we defined the block maxima model with block sizes of order mn ≈ n
kn

with kn a sequence of

sample sizes that will satisfy kn → ∞, kn
n → 0 as n → ∞. In terms of U =

(
1

1−F

)←
, we define

un = U
(
n
kn

)
.

Writing u in place of un we now define Yu = U
(

n
Skn

)
− U

(
n
kn

)
with S having a uniform

distribution on (0, 1). Then

Pr {Yu ≥ u+ y} = Pr

{
U

(
n

knS

)
> y + u

}
= Pr

{
n

knS
>

1

1− F (y + u)

}
=

n

kn
{1− F (y + u)}

=
1− F (y + u)

1− F (u)
.

In other words, the distribution of Yu is indeed that of X − u, condition on on X > u, where X is
a random variable from the distribution F .

Under the model (2.33), the first-order approximation to Yu = U
(

n
Skn

)
−U

(
n
kn

)
is a(u)·S−1/ξ−1

ξ

which is indeed that of a GPD with scale parameter σ = a(u) and shape parameters ξ.
The log likelihood for a single observation Yu is

`(σ, ξ) = log σ +

(
1

ξ
+ 1

)
log

(
1 + ξ

Yu
σ

)
.

form which we deduce

σ
∂`

∂σ
= −1

ξ
+

(
1

ξ
+ 1

)(
1 + ξ

Yu
σ

)−1
,

∂`

∂ξ
= − 1

ξ2
log

(
1 + ξ

Yu
σ

)
+

1

ξ

(
1

ξ
+ 1

){
1−

(
1 + ξ

Yu
σ

)−1}
.

To calculate the bias vector b, we need to find expressions for the expected values of these terms.
Rewriting in terms of S and including the remainder term from (2.37),

σ
∂`

∂σ
= −1

ξ
+

(
1

ξ
+ 1

){
(1− S)−ξ + ξA(u)Hξ,ρ

(
1

1− S

)
+ o(A(u))

}−1
= −1

ξ
+

(
1

ξ
+ 1

){
(1− S)ξ − ξA(u) (1− S)2ξHξ,ρ

(
1

1− S

)
+ o(A(u))

}
= −1

ξ
+

(
1

ξ
+ 1

){
(1− S)ξ − ξ

ρ
A(u)

[
(1− S)ξ−ρ

ξ + ρ
− (1− S)ξ

ξ

]
+ o(A(u))

}
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and hence

E

{
σ
∂`

∂σ

}
= −1

ξ
+

(
1

ξ
+ 1

){
1

1 + ξ
− ξ

ρ
A(u)

[
1

(ξ + ρ)(1 + ξ − ρ)
− 1

ξ(1 + ξ)

]
+ o(A(u))

}
= −1 + ξ

ρ
A(u)

[
ρ(ρ− 1)

ξ(ξ + ρ)(1 + ξ)(1 + ξ − ρ)

]
+ o(A(u))

= −A(u) · ρ− 1

ξ(ξ + ρ)(1 + ξ − ρ)
+ o(A(u)).

Similarly for ∂`
∂ξ : write this as B1 +B2 +B3 where

B1 = − 1

ξ2
log

(
1 +

ξYu
σ

)
= − 1

ξ2
log
{

(1− S)−ξ
}

+
1

ξ
A(u)(1− S)ξHξ,ρ

(
1

1− S

)
+ o(A(u)),

=
1

ξ
log(1− S) +

A(u)

ξρ

[
(1− S)−ρ − (1− S)−ξ

ξ + ρ
− 1− (1− S)−ξ

ξ

]
+ o(A(u)),

B2 =
1 + ξ

ξ2
,

B3 = −
(

1 + ξ

ξ2

)(
1 + ξ

Yu
σ

)−1
= −σ

ξ

∂`

∂σ
− 1

ξ2
.

Taking expectations in turn,

E{B1} = −1

ξ
+
A(u)

ξρ

[
1

ξ + ρ

(
1

1− ρ
− 1

1− ξ

)
− 1

ξ

(
1− 1

1− ξ

)]
+ o(A(u))

= −1

ξ
+A(u) · 2− ρ

ξ(ξ + ρ)(1− ρ)(1− ξ)
+ o(A(u))

E{B2} =
1 + ξ

ξ2
,

E{B3} = − 1

ξ2
+A(u) · ρ− 1

ξ2(ξ + ρ)(1 + ξ − ρ)
+ o(A(u)).

Adding together the three expressions, then terms that do not involve A(u) sum to 0 (as they
must), so we are left with

E

{
∂`

∂ξ

}
= A(u) ·

{
2− ρ

ξ(ξ + ρ)(1− ρ)(1− ξ)
+

ρ− 1

ξ2(ξ + ρ)(1 + ξ − ρ)

}
+ o(A(u)).

We also have (see Chapter 1) for the Fisher information matrix with σ = 1,

I−1 = (1 + ξ)

(
2 −1
−1 1 + ξ

)
.
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Hence the asymptotic expectation of

(
σ̂n
σn
− 1

ξ̂n − ξ0

)
is

A(u)(1 + ξ)

(
2 −1
−1 1 + ξ

)(
E
{
σ ∂`∂σ

}
E
{
∂`
∂ξ

} )

This should correspond to the formula for bγ,ρ on page 92 of de Haan and Ferreira [10] (with ξ
replacing γ), however our I−1 does not correspond to their Σ. It seems that a explanation of this
discrepancy was given in a paper by Drees, Ferreira and de Haan [5] but I will need to check up on
this.

1.2.2 Interpretation in terms of bias and mean squared error

If we focus specifically on ξ̂n, we can say,

Bias of ξ̂n ≈ A
(
kn
n

)
ξ + 1

(1− ρ)(1 + ξ − ρ)
, Variance of ξ̂n ≈

1 + ξ2

kn
,

If we again assume A(m) ∼ Dmρ we then get

MSE of ξ̂n ≈ D2

(
n

kn

)2ρ

w2
2 +

v2
k2n

with

w2 =
ξ + 1

(1− ρ)(1 + ξ − ρ)
, v2 = (1 + ξ2).

This is of exactly the same structure as the MSE for the GEV estimator, but with w2, v2 replacing
w1, v1. The expressions for the optimal kn and the resulting optimal MSE therefore follow by the
same arguments. The ratio of the optimal MSEs is(

w1

w2

)2/(1−2ρ)
·
(
v1
v2

)−2ρ/(1−2ρ)
.

1.3 Other estimators

The method of probability-weighted moments (PWMs) has been proposed by hydrologists. The
original method for the GEV was proposed in [17], and for the GPD in [15]. A book length
treatment of the application of these methods in hydrology is due to Hosking and Wallis [16].

The motivation behind these methods is a claim (supported by simulations) that although the
variances of PWMs is greater than that of MLEs, the bias is nevertheless smaller, suggesting that
the MSE may be smaller for PWMs. This claim was disputed by Coles and Dixon [3], but the
preceding sections suggest an asymptotic analysis that would rogirously compare the MSEs of the
two approaches. This has been done in Section 3.6 of [10] for the GPD, and in [8] for the GEV.
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2 Automated selection of the threshold

References: [21, 11, 12, 14, 1, 20, 18, 19, 7, 9, 2, 6, 22]
For the simple case of a Pareto tail, Hall and Welsh (1984) [11] shows that the optimal rates

of convergence developed by Hall (1982) [13] cannot be improved, and Hall and Welsh (1985) [12]
proposed an adaptive estimator that achieves the optimal mean squared error, with probability
tending to 1 as sample size n→∞.

Their actual formulation assumed the model

F (x) = Cxα
[
1 +Dxβ + o(xβ)

]
which is equivalent to our assumption (2.55) if we replace x by 1

x everywhere (which obviously
makes no difference to the substance of the problem). In this case they study Hill’s estimator
(α̂r, Ĉr) based on the r smallest order statistics and they repeat the argument of [13] that shows
the optimal value of r to be λn2β/(2β+α for some lambda ∈ (0,∞). They also write ρ = β/α (note
that this is −ρ in the notation of [10]).

From these starting points, Hall and Welsh propose:

1. Assume ρ ∈ (ρ1, ρ2) for known ρ1, ρ2 and choose constants σ, τ1, τ2 such that 0 < σ < 2ρ1
2ρ1+1 ,

2ρ2
2ρ2+1 < τ1 < τ2 < 1, such that 2ρ2(1 − τ1) < σ. Set s = [nσ] (integer part of nσ), t1 =
[nτ1 ], t2 = [nτ2 ].

2. Define

ρ̂ =

∣∣∣∣log

∣∣∣∣ α̂t1 − α̂sα̂t2 − α̂s

∣∣∣∣/log

(
t1
t2

)∣∣∣∣
λ̂0 =

∣∣∣∣α̂s/(2ρ̂)1/2(n/t1)
ρ̂(α̂t1 − α̂s)

∣∣∣∣2/(2ρ̂+1)

,

r̂0 =
[
λ̂n2ρ̂/(2ρ̂+1)

]
.

3. Then r̂0
r0

p→ 1 (where r0 is the true optimal value), and hence the estimator based on r̂0 order
statistics achieves the optimal MSE.
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