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I. Motivation and Background

• On October 13, 2024, the Kenyan runner Ruth Chepngetich

ran a women’s world record for the marathon of 2 hours, 9

minutes, 56 seconds

• This broke the previous world record by nearly 2 minutes and

Chepngetich’s personal best by nearly 5 minutes

• Many commentators have raised questions about illegal drug

use

• However, other commentators defended the new record as

fully plausible, and World Athletics ratified the record

• This project proposes a statistical analysis to assess the plau-

sibility of this performance.
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II. Statistical Analysis

• We downloaded data from the Chicago Marathon website,

best 20 women’s times for each year from 1998–2024

• No race 2020 — we just left out that year

• 2007 is a possible outlier but we discuss that later

• Clear downward trend over the 27 years but strong suspicion

of a changepoint in the mid-2010s

• Particular interest in a changepoint in 2016 as Nike Vaporfly

shoes were only introduced in 2017
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Statistical Model
• Generalized Extreme Value (GEV) distribution for sample minima

Pr {Y ≤ y} = G(y;µ, σ, ξ) = 1− exp
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where Y is the variable of interest (in this case, the minimum running
time in a marathon), y is some real number where the distribution is
to be evaluated, and µ, σ and ξ are the parameters of the distribution
(x+ = max(x,0))

• Location parameter µ

• Scale parameter σ

• Shape parameter ξ — when ξ = 0 the formula reduces to

G(y;µ, σ,0) = 1− exp

[
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}]
However for running times data we often find ξ ≈ −0.5 corresponding to
a distribution with a very short left-hand tail

• In practice often use model of form Yt ∼ G(·;µt, σt, ξt) where parameters
depend on year t



r largest (smallest) order statistics model

(Coles 2001, equation (3.15))

• Let z(1) ≤ z(2) ≤ . . . ≤ z(r) denote the r best (i.e. smallest) running
times in a given year. We make the following assumption (derived from
extreme value theory) about the joint density:
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Assume 1 + ξ
(
µ−z(k)

σ

)
> 0 for k = 1, . . . , r.

• This reduces to the GEV density ∂G(y;µ,σ,ξ)
∂y

with y = z(1), when r = 1.

• Trend models: keep σ, ξ constant but allow µ = µt for various possible
functions µt

• The plan: fit a model to the data 1998–2023, use it to predict perfor-
mances in 2024



Model (a): Constant location parameter

µt = µ, constant

Parameter Estimate S.E. z-ratio p-value
µ 140.059 0.539 259.95 0

logσ 1.261 0.048 26.34 6.1× 10−153

ξ –0.511 0.037 –13.82 1.9× 10−43

NLLH 393.713

Table of parameter values for model (a), years 1–25, r = 10



Model (b): Linear trend in time

µt = β0 + β1(t− t0), t0 a centering time (which we take equal to

the intended changepoint)

Parameter Estimate S.E. z-ratio p-value
β0 139.335 0.517 269.602 0

logσ 1.122 0.055 20.373 2.9× 10−92

ξ –0.578 0.041 –13.953 2.0× 10−44

β1 –0.211 0.036 –5.945 2.8× 10−9

NLLH 384.124

Table of parameter values for model (b), years 1–25, r = 10

This shows that the linear trned model significantly improves on

the model with constant µ, σ, ξ, but it does not prove that this

is the “best” model



Model (c): Changepoint model

µt = β0+β1(t−t0)+β2(t−t0)+, t0 changepoint (initially t0 = 19, corresponding
to year 2016)

Parameter Estimate S.E. z-ratio p-value
β0 143.139 0.950 150.702 0

logσ 1.031 0.064 16.172 8.0× 10−59

ξ –0.617 0.047 –13.128 2.3× 10−39

β1 0.109 0.082 –1.336 0.182
β2 –1.731 0.447 –3.874 1.1× 10−4

NLLH 376.137

Table of parameter values for model (c), years 1–25, r = 10, t0 = 19

Changepoint model significantly better than linear trend

However, in fact, this is not the best value of t0. The NLLH is smallest when
t0 = 13 (interpretation: it’s not all due to the shoes)



Motivation for a Bayesian Analysis

Two major parameters of interest:

• Endpoint of the distribution: for GEV(µ, σ, ξ) with ξ < 0, the lower end-
point of the distribution is at y = µ+ σ

ξ
.

• Obvious modification for a trend model yt = µt + σ
ξ

but notice this does

depend on t

• Do this for year 26 (2024 calendar year — note that we left out 2020
completely) to get projected “best possble time” for 2024

• However a more realistic comparison would be based on the predicted
winning time for 2024 — sampling from the GEV distribution with fitted
µt, σ, ξ.

• In this context, a Bayesian calculation allows us to incorporate the incer-
tainty in the GEV parameters

• Run an MCMC



Trace plots for model (b)



Posterior density plots for model (b)



Posterior density plots for the endpoint and the predicted 2024

winning time under model (b). The (estimated) probability that

the winning time is < 130 minutes is about 0.011 — “unlikely

but not impossible”
Heffernan and Tawn (2004)



Posterior density plots for the endpoint and the predicted 2024

winning time under model (c). The (estimated) probability that

the winning time is < 130 minutes is about 0.25 — maybe even

too large to be believable?



Sensitivity analysis I

Start Year Endpoint Winning Time
r=5 r=10 r=15 r=20 r=5 r=10 r=15 r=20

1998 0.17 0.034 0.031 0.091 0.004 0.011 0.013 0.014
2002 0.273 0.045 0.067 0.172 0.006 0.011 0.015 0.016
2005 0.211 0.07 0.121 0.213 0.015 0.022 0.024 0.024
2008 0.433 0.481 0.552 0.627 0.055 0.063 0.062 0.053
2005x 0.198 0.061 0.068 0.141 0.01 0.018 0.021 0.019
1998x 0.188 0.03 0.027 0.084 0.004 0.011 0.013 0.014
1998y 0.181 0.028 0.031 0.078 0.004 0.011 0.014 0.014

Posterior probability that the endpoint or the winning time is under 130 min-
utes, based on model (b), for four values of r and different starting years.
2005x: analysis starting in 2005 but omitting 2007.
1998x: analysis with changepoint in 2013 instead of 2016.
1998y: analysis with changepoint in 2013 instead of 2016.



Sensitivity analysis II

Start Year Endpoint Winning Time
r=5 r=10 r=15 r=20 r=5 r=10 r=15 r=20

1998 0.931 0.983 0.992 0.996 0.097 0.25 0.306 0.315
2002 0.967 0.988 0.996 0.996 0.168 0.324 0.392 0.34
2005 0.918 0.964 0.978 0.981 0.182 0.283 0.283 0.256
2008 0.596 0.73 0.771 0.847 0.079 0.116 0.132 0.125
2005x 0.92 0.973 0.976 0.98 0.151 0.262 0.297 0.258
1998x 0.686 0.722 0.796 0.874 0.037 0.069 0.092 0.106
1998y 0.477 0.469 0.584 0.656 0.029 0.057 0.065 0.066

Same as previous table, but based on model (c)



Sensitivity analysis III

I also did some investigation of varying the prior distribution for

the Bayesian analysis, but this did not make much difference (we

may return to this point later in the course)

However, the results contrast sharply with some earlier analyses

based on the performances by Chinese women runners in 1993
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Summary and Conclusions
• Trends in the data are clearly significant, and there is also strong evidence

that a changepoint model fits better than a linear trend model, though
not necessarily based on 2016 as the changepoint

• For estimated probabilities that the winning time for 2024 is below 130
minutes, conditional on previous times up to 2023, is never exceptionally
small (smallest is 0.004, but most of our estimated probabiities are quite
a bit larger than that), so we cannot say that Chepngetich’s performance
is “too good to be true”

• The results contrast strongly with similar analyses for Chinese women
runners in 1993

• From an extreme value theory perspective, the key points are:
– The generalized extreme value distribution (GEV) as a canonical prob-

ability model for extremes
– Extension to the joint distribution of r largest or smallest events
– Use of trend (covariate) models to handle changes in the distribution

(a big issue in climate applications)
– Inference methods — maximum likelihood and Bayesian, though there

are other methods that have been popularized



Overview of the Course

• Basic theory: derivation of extreme value distributions as

limiting distributions of extremes in random samples

• How good is the approximation? Rates of convergence,

higher order expansions

• Extremes in stationary sequences; how do we cope with de-

pendence?

• Statistical theory: maximum likelihood, Bayesian, other

• Multivariate extremes

• Spatial extremes

• Applications


