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I. Motivation and Background

On October 13, 2024, the Kenyan runner Ruth Chepngetich
ran a women's world record for the marathon of 2 hours, 9
minutes, 56 seconds

T his broke the previous world record by nearly 2 minutes and
Chepngetich’s personal best by nearly 5 minutes

Many commentators have raised questions about illegal drug
use

However, other commentators defended the new record as
fully plausible, and World Athletics ratified the record

T his project proposes a statistical analysis to assess the plau-
sibility of this performance.



RUTH CHEPNGETICH' 5§ MARATHON
WORLD RECORD OFFICIALLY RATIFIED
BY WORLD ATHLETICS

Despite the controversy Chepngetich’s
2:09:56 is officially official.

2» MARATHON HANDBOOK



II. Statistical Analysis

We downloaded data from the Chicago Marathon website,
best 20 women'’s times for each year from 1998—2024

No race 2020 — we just left out that year
2007 is a possible outlier but we discuss that later

Clear downward trend over the 27 years but strong suspicion
of a changepoint in the mid-2010s

Particular interest in a changepoint in 2016 as Nike Vaporfly
shoes were only introduced in 2017






Statistical Model

Generalized Extreme Value (GEV) distribution for sample minima
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where Y is the variable of interest (in this case, the minimum running
time in a marathon), vy is some real number where the distribution is
to be evaluated, and u, o and & are the parameters of the distribution
(z4 = max(z,0))

Location parameter u
Scale parameter o
Shape parameter &€ — when £ = 0 the formula reduces to

o

G(y; p,0,0) = 1—exp [— exp {—M — y}]
However for running times data we often find £ ~ —0.5 corresponding to
a distribution with a very short left-hand tail

In practice often use model of form Y; ~ G(-; ut, 0+, &) where parameters
depend on year t



r largest (smallest) order statistics model
(Coles 2001, equation (3.15))

Let z(1) < 22 < .. < 200 denote the r best (i.e. smallest) running
times in a given year. We make the following assumption (derived from
extreme value theory) about the joint density:
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Assume 1—|—§(“_—Z(k)> >0fork=1,...,r.
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This reduces to the GEV density %’;"”@ with y = 21, when r = 1.

Trend models: keep o, & constant but allow u = u¢ for various possible
functions

The plan: fit a model to the data 1998—2023, use it to predict perfor-
mances in 2024



Model (a): Constant location parameter

us = u, constant

Parameter | Estimate | S.E. | z-ratio p-value
0 140.059 | 0.539 | 259.95 0
log o 1.261 | 0.048 | 26.34 | 6.1 x 10133
¢ —0.511 | 0.037 | —13.82 | 1.9 x 10743
NLLH 393.713

Table of parameter values for model (a), years 1-25, »r = 10



Model (b): Linear trend in time

ur = Bo + B1(t —tg), to a centering time (which we take equal to
the intended changepoint)

Parameter | Estimate | S.E. z-ratio p-value
8o 139.335 | 0.517 | 269.602 0
log o 1.122 [ 0.055| 20.373 | 2.9 x 10792
¢ —0.578 | 0.041 | —13.953 | 2.0 x 10~ 44
81 —0.211 | 0.036 | —5.945 | 2.8 x 107 ?
NLLH 384.124

Table of parameter values for model (b), years 1-25, » = 10

This shows that the linear trned model significantly improves on
the model with constant u, o, &, but it does not prove that this
Is the “best” model



Model (c): Changepoint model

e = Bo+B1(t—to)+P2(t—to)+, to changepoint (initially to = 19, corresponding
to year 2016)

Parameter | Estimate | S.E. Zz-ratio p-value
Bo 143.139 | 0.950 | 150.702 0
log o 1.031 0.064 | 16.172 | 8.0 x 10727
3 —0.617 | 0.047 | —13.128 | 2.3 x 1073°
B1 0.109 0.082 | —1.336 0.182
Bo —1.731 | 0.447 | —3.874 | 1.1 x 104
NLLH 376.137

Table of parameter values for model (c¢), years 1-25, »r = 10, tog = 19
Changepoint model significantly better than linear trend

However, in fact, this is not the best value of t5. The NLLH is smallest when
to = 13 (interpretation: it's not all due to the shoes)



Motivation for a Bayesian Analysis

Two major parameters of interest:

Endpoint of the distribution: for GEV(u,o,£) with £ < 0, the lower end-
point of the distribution is at y = u 4+ %

Obvious modification for a trend model y: = ¢ -I-% but notice this does
depend on t

Do this for year 26 (2024 calendar year — note that we left out 2020
completely) to get projected “best possble time" for 2024

However a more realistic comparison would be based on the predicted
winning time for 2024 — sampling from the GEV distribution with fitted
Ht, O, 5

In this context, a Bayesian calculation allows us to incorporate the incer-
tainty in the GEV parameters

Run an MCMC
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Posterior density plots for the endpoint and the predicted 2024
winning time under model (b). The (estimated) probability that
the winning time is < 130 minutes is about 0.011 — “unlikely
but not impossible”
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Posterior density plots for the endpoint and the predicted 2024
winning time under model (c). The (estimated) probability that
the winning time is < 130 minutes is about 0.25 — maybe even
too large to be believable?



Sensitivity analysis 1

Start Year Endpoint Winning Time

r=>5 r=10 | r=15 | r=20 r=>5 r=10 | r=15 | r=20
1998 0.17 | 0.034 | 0.031 | 0.091 | 0.004 | 0.011 | 0.013 | 0.014
2002 0.273 | 0.045 | 0.067 | 0.172 | 0.006 | 0.011 | 0.015 | O0.016
2005 0.211 | 0.07 | 0.121 | 0.213 | 0.015 | 0.022 | 0.024 | 0.024
2008 0.433 | 0.481 | 0.552 | 0.627 | 0.055 | 0.063 | 0.062 | 0.053
2005x 0.198 | 0.061 | 0.068 | 0.141 | 0.01 | 0.018 | 0.021 | 0.019
1998x 0.188 | 0.03 | 0.027 | 0.084 | 0.004 | 0.011 | 0.013 | 0.014
1998y 0.181 | 0.028 | 0.031 | 0.078 | 0.004 | 0.011 | 0.014 | 0.014

Posterior probability that the endpoint or the winning time is under 130 min-
utes, based on model (b), for four values of r and different starting years.

2005x: analysis starting in 2005 but omitting 2007.

1998x: analysis with changepoint in 2013 instead of 2016.
1998y: analysis with changepoint in 2013 instead of 2016.




Sensitivity analysis

I1

Start Year Endpoint Winning Time

r=>5 r=10 | r=15 | r=20 r=>5 r=10 | r=15 | r=20
1998 0.931 | 0.983 | 0.992 | 0.996 | 0.097 | 0.25 | 0.306 | 0.315
2002 0.967 | 0.988 | 0.996 | 0.996 | 0.168 | 0.324 | 0.392 | 0.34
2005 0.918 | 0.964 | 0.978 | 0.981 | 0.182 | 0.283 | 0.283 | 0.256
2008 0.596 | 0.73 | 0.771 | 0.847 | 0.079 | 0.116 | 0.132 | 0.125
2005x 0.92 | 0.973 | 0.976 | 0.98 | 0.151 | 0.262 | 0.297 | 0.258
1998x 0.686 | 0.722 | 0.796 | 0.874 | 0.037 | 0.069 | 0.092 | 0.106
1998y 0.477 | 0.469 | 0.584 | 0.656 | 0.029 | 0.057 | 0.065 | 0.066

Same as previous table, but based on model (c)




Sensitivity analysis III

I also did some investigation of varying the prior distribution for
the Bayesian analysis, but this did not make much difference (we
may return to this point later in the course)

However, the results contrast sharply with some earlier analyses
based on the performances by Chinese women runners in 1993



Athletics world records blow as Wang Junxia
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doping regime
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Appl. Statist. (1997)
46, No.1, pp.123-128

Letter to the Editors

Statistics for Exceptional Athletics Records

Robinson and Tawn (1995) analysed data from 1972 to 1992 in the women’s 1500 m and
3000 m running events, with a view to establishing whether the remarkable performances
achieved by Chinese athletes in 1993 were statistically inconsistent with previous per-
formances, a conclusion that might be taken as evidence of illegal drug use. Particular
attention was paid to the performance of Wang Junxia, who improved the 3000 m record
from 502.62 s to 486.11 s. For this, they fitted a model to the five best performances by
different athletes in each year. They then constructed 90% confidence intervals, under several
variants of the model, for x,,, a parameter representing the long-term limit of performance.
Although the analysis provides some grounds for regarding Wang’s time as extremely
unusual, in all cases the reported confidence interval for x,, included her record time, and to
this extent the evidence is inconclusive.

In this letter, I argue that a simpler model, based on fitting part of the data without any
trend component, produces very similar results to those of Robinson and Tawn with rather
less effort. My main point, however, is that if we look at Wang’s time from the point of view
of prediction intervals for the observed value, rather than confidence intervals for the
hypothetical x,; parameter, then we indeed obtain strong evidence that the performance was
a severe outlier.

RLS (1997)
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Fig. 1. Five best annual times for the 3000 m: +, annual minima; , regression function (1.5),
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Robinson and Tawn (1995)



Prediction intervals
For the following analysis it is convenient to reparameterize the GEV distribution in three-

parameter Weibull form:
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Fig. 1. Profile likelihood plots: (a) 3000 m data; (b) 1500 m data
RLS (1997)



For the 3000 m data based on 1980-92, the posterior probability that # < 486.11 is
0.076 —small, but hardly negligible. In contrast, when averaged according to the posterior
distribution of the unknown parameters, the conditional probability of an observed record of
less than 486.11, given that a record occurs at all, is 0.00047, which is much smaller.

Plots of the posterior and predictive density, shown in Fig. 2, are indeed of a very different
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Summary and Conclusions

Trends in the data are clearly significant, and there is also strong evidence
that a changepoint model fits better than a linear trend model, though
not necessarily based on 2016 as the changepoint

For estimated probabilities that the winning time for 2024 is below 130
minutes, conditional on previous times up to 2023, is never exceptionally
small (smallest is 0.004, but most of our estimated probabiities are quite
a bit larger than that), so we cannot say that Chepngetich's performance
is “too good to be true”

The results contrast strongly with similar analyses for Chinese women
runners in 1993

From an extreme value theory perspective, the key points are:

— The generalized extreme value distribution (GEV) as a canonical prob-
ability model for extremes

— Extension to the joint distribution of r largest or smallest events

— Use of trend (covariate) models to handle changes in the distribution
(a big issue in climate applications)

— Inference methods — maximum likelihood and Bayesian, though there
are other methods that have been popularized



Overview of the Course

Basic theory: derivation of extreme value distributions as
limiting distributions of extremes in random samples

How good is the approximation? Rates of convergence,
higher order expansions

Extremes in stationary sequences; how do we cope with de-
pendence?

Statistical theory: maximum likelihood, Bayesian, other
Multivariate extremes
Spatial extremes

Applications



