
STOR 834: Spring 2025: Class of 2025-02-27 

Here I essentially covered Section 2.5 of the text, though without filling in all the details. Since this 
section is likely to change in subsequent versions, I am attaching here the current version of this 
material. 
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It can be readily checked that this implies

y = (ct)1/α

{
1+

d
α

c−1−β/α t−β/α +o(t−β/α)

}
. (2.38)

Therefore, U(t) satisfies the right hand side of (2.38).
Hence,

U(tx)−U(t) = (cxt)1/α

{
1+

d
α

c−1−β/α(xt)−β/α

}
− (ct)1/α

{
1+

d
α

c−1−β/α t−β/α

}
+o(t1/α−β/α)

= (ct)1/α(x1/α −1)+
d
α

c1/α−1−β/α t1/α−β/α(x1/α−β/α −1)+o(t1/α−β/α). (2.39)

If we define a(t) = α−1(ct)1/α , we get

U(tx)−U(t)
a(t)

− x1/α −1
1/α

= dc−1−β/α t−β/α(x1/α−β/α −1)+o(t−β/α),

which, however, does not give the form of limit function we are aiming at.
Therefore, we return to (2.39) and rewrite

U(tx)−U(t) =

{
(ct)1/α +

(1−β )d
α

c1/α−1−β/α t1/α−β/α

}
(x1/α −1)

+
(1−β )d

α2 c1/α−1−β/α t1/α−β/α · α

1−β

{
x1/α−β/α −1− (1−β )(x1/α −1)

}
+o(t1/α−β/α).

Now define a(t)=α−1
{
(ct)1/α + βd

α
c1/α−1−β/α t1/α−β/α

}
, A(t)=− (1−β )d

β
c−1−β/α t−β/α ,

then

lim
t→∞

U(tx)−U(t)
a(t) − x1/α−1

(1/α)

A(t)
= −α

β

(
x1/α−β/α −1
1/α−β/α

− x1/α −1
1/α

)
.

This is precisely of the form (2.37) with ξ = 1
α
, ρ =−β/α .

2.5 Estimation theory based on second-order asymptotics

We focus here on a paper by Dombry and Ferreira [60], but this is just one of a series
of papers going back to the 1980s [234, 63, 58, 79, 59, 182].

Consider an IID random sequence {Xi, i = 1,2, . . .} where the common distri-
bution function is F . Suppose the observations are grouped into blocks of length m,
and let Mk,m = max{Xi : (k−1)m+1, . . . ,km} be the maximum of the k’th block. We
assume F is in the domain of attraction of the GEV, so that

Pr
{

Mk,m−bm

am
≤ x
}

= Fm(amx+bm) → Gξ0
(x) = exp

{
−(1+ξ0x))−1/ξ0

+

}
.

(2.40)
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for some “true value” ξ0 which we write that way to distinguish it from the unknown

parameter ξ in the following likelihood analysis. We define gξ0
(x) =

dGξ0
(x)

dx =

(1+ξ0x))−1/ξ0−1 exp
{
−(1+ξ0x))−1/ξ0

}
defined whenever 1+ ξ0x > 0 to be the

density of Gξ0
and let

`(µ,ψ,ξ ;x) = logψ + loggξ

(
x−µ

ψ

)
(2.41)

be the log density for arbitrary ξ when the distribution is extended to include a loca-
tion and scale parameter. The idea is that we treat the block maxima Mi,m for 1≤ i≤ k
as if their exact distribution was GEV with parameters θθθ =(µ,ψ,ξ ) though we know
that for finite m this is only an approximation. Define the log likelihood

Lk,m(θθθ) =
k

∑
i=1

`(θθθ ,Mi,m) (2.42)

In the following, we shall consider a sequence of sample sizes and block lengths
kn, mn where both kn and Mn are indexed by n. We define θ̂θθ n = (µ̂n, ψ̂n, ξ̂n) to be a
local maximizer of the log likelihood function, or just the MLE for short, if it satisfies
the likelihood equations

∂Lk,m(θθθ)

∂θθθ
= 0 (2.43)

and if the hessian matrix ∂ 2Lk,m

∂θθθ∂θθθ
T is positive definite at θ̂θθ n.

Dombry and Ferreira differ slightly from the notation of the previous section by
defining V = (−1/ logF)← (instead of U = (1/(1−F))← as previously, though in
most cases the two definitions will lead to the same asymptotics). In that context they
assume, first, that there exists am such that

lim
m→∞

V (mx)−V (m)

am
=

xξ0 −1
ξ0

(2.44)

and, second, that for some positive function a(t) as t → ∞ and some positive or
negative function A(t) as t→ ∞ with limt→∞ A(t) = 0,

lim
t→∞

V (tx)−V (t)
a(t) − xξ0−1

ξ0

A(t)
=

∫ x

1

∫ s

1
sξ0−1uρ−1duds = Hξ0,ρ(x), x > 0,(2.45)

where ξ0 > − 1
2 , ρ ≤ 0, the function A is regularly varying with index ρ , and Hξ0,ρ

is given by (2.37) with ξ = ξ0. As noted previously, in any case where a limit of the
form (2.45) exists, we can without loss of generality, redefining the functions a(t)
and A(t) is necessary, assume that the right hand side is Hξ0,ρ(x) for suitable ρ ≤ 0.

Dombry and Ferreira consider limiting cases as k = kn→∞, m = mn→∞ where

lim
n→∞

√
knA(mn) = λ ∈ R. (2.46)
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They define θθθ 0 = (0,1,ξ0) and then

Qξ0
(s) =

(− logs)−ξ0 −1
ξ0

, s ∈ (0,1)

b(ξ0,ρ) =
∫ 1

0

∂ 2`

∂x∂θθθ
(θθθ 0,Qξ0

(s))Hξ0,ρ

(
1

− logs

)
ds,

Iξ0
= −

∫ 1

0

∂ 2`

∂θθθ∂θθθ
T (θθθ 0,Qξ0

(s))ds.

Note that Iξ0
is the Fisher information for the GEV evaluated at θθθ 0; this is the same

matrix as was shown in Chapter 1 following [194].
With these preliminaries, Theorem 2.2 of [60] states:

(a) There exists a sequence of estimators θ̂θθ n = µ̂n, ψ̂n, ξ̂n such that

lim
n→∞

Pr
{

θ̂θθ n is a MLE
}

= 1,√
kn

(
µ̂n−bmn

amn

,
ψ̂n

amn

−1, ξ̂n−ξ0

)
d→ N

(
λ I−1

ξ0
b, I−1

ξ0

)
.

(b) If θ̂θθ
i
n = (µ̂ i

n, ψ̂
i
n, ξ̂

i
n), i = 1,2 are two sequences of estimators satisfying

lim
n→∞

Pr
{

θ̂θθ
i
n is a MLE

}
= 1,

lim
n→∞

Pr
{√

kn

(
µ̂ i

n−bmn

amn

,
ψ̂ i

n

amn

−1, ξ̂ i
n−ξ0

)
∈ Hn

}
= 1,

where Hn is a ball in R3 of center 0 and radius rn, where rn = O(kδ
n ), 0 < δ <

min
( 1

2 ,ξ0 +
1
2

)
as n→ ∞, then

lim
n→∞

Pr
{

θ̂θθ
1
n = θ̂θθ

2
n

}
= 1.

2.5.1 Side Section 1: A heuristic on biased estimation

Suppose we have a sequence of experiments indexed by n, where in the nth exper-
iment there are kn observations X1, . . . ,Xkn whose true joint density is gn, but for
reasons of convenience or because we don’t know how to exactly calculate gn, we
replace gn by a known joint density fn indexed by a parameter vector θθθ n. The exam-
ples of interest to us include the Xi’s being either block maxima or exceedances over
a threshold and their density fn being approximated by a GEV or GPD density. We
will always want fn− gn → 0 under some suitable metric (e.g. total variation norm
or Hellinger distance) but we won’t worry about precise modes of convergence for
the moment — that can come later.

Suppose we estimate θθθ by defining a set of equations

kn

∑
i=1

T(Xi;θθθ) = 0
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where T(Xi;θθθ) is a vector of the same length as θθθ that form a set of unbiased esti-
mating equations in the sense that

E{T(Xi;θθθ)} = 0 when Xi ∼ fn(· ; θθθ).

The classical case is when T is the vector of first-order derivatives of the log like-
lihood but we are writing the formula in this alternative format to allow for other
possible estimators (in particular, in the case of extreme value theory, probability
weighted moments estimators or PWMs, which are a popular alternative to maxi-
mum likelihood estimation).

We also define a matrix W (Xi) with entries wrs(Xi) =
∂Tr(Xi)

∂θs
where Tr is the rth

component of T and θs is the sth component of θθθ . In standard maximum likelihood
theory, W is the hessian matrix of the log likelihood function (for a single obser-
vation), also known as the observed information matrix, and the expectation of W
when θθθ = θθθ 0 is I0, the Fisher information matrix assuming the model fn is correct
with parameter vector θθθ = θθθ 0.

Assuming suitable regularity conditions,

0 =
kn

∑
i=1

T(Xi; θ̂θθ n)

≈
kn

∑
i=1

T(Xi;θθθ 0)+W (Xi;θθθ 0)(θ̂θθ n−θθθ 0)

and hence

θ̂θθ n−θθθ 0 ≈ −

{
kn

∑
i=1

W (Xi;θθθ 0)

}−1{ kn

∑
i=1

T(Xi;θθθ 0)

}
. (2.47)

If we assume
(i) The mean of W (Xi;θθθ 0) is J0 for each i,

(ii) The covariance matrix of T(Xi;θθθ 0) is C0 for each i,
and assume fn is the true density, we will have√

kn

(
θ̂θθ n−θθθ 0

)
d→ N (0,J−1

0 C0J−1
0 ). (2.48)

Formula (2.48) is widely known as the information sandwich formula. When estima-
tion is by maximum likelihood, J0 and C0 both reduce to I0, the Fisher information
matrix, and (2.48) is the standard asymptotic distribution for maximum likelihood
estimators.

Now, however, suppose the true density is gn rather than fn. Typically, the
following is true: the covariance matrix of ∑

kn
i=1 T(Xi;θθθ 0) and the mean of

∑
kn
i=1 W (Xi;θθθ 0) are still asymptotic to knC0(θθθ) and knJ0(θθθ) respectively, but the mean

of ∑
kn
i=1 T(Xi;θθθ 0) is non-zero. To be precise the mean is bn. In that case, the CLT for
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∑
kn
i=1 T(Xi;θθθ 0) takes the form

kn
−1/2

kn

∑
i=1

T(Xi;θθθ 0) ∼ N [kn
−1/2bn,C0(θθθ 0)](1+op(1))

and the final result for θ̂θθ n becomes√
kn(θ̂θθ n−θθθ 0)+ kn

−1/2J−1
0 bn

d→ N [0,J−1
0 C0J−1

0 ]. (2.49)

Note that there are different special cases of this result depending on the asymptotic
behavior of kn

−1/2bn. If kn
−1/2bn → 0 then the asymptotic bias of θ̂θθ n is negligi-

ble compared with its statistical variability as represented by the Fisher information
matrix. In effect, this means we can ignore the discrepancy between fn and gn. Con-
versely, if n−1/2bn→ ∞ in at least one component, the bias dominates the variance,
which has the practical interpretation that we can’t really use the standard results in
this case. However if kn

−1/2bn → c for some vector c whose components are finite
and not all zero, we can rewrite the result (2.49) as√

kn(θ̂θθ n−θθθ 0)
d→ N [−J−1

0 c,J−1
0 C0J−1

0 ]. (2.50)

This is a true case of “bias-variance tradeoff” which can be the basis for various de-
cision processes, such as the choice of a threshold in a peaks over threshold analysis
(the ultimate objective of [234]).

2.5.2 Side section 2: Asymptotics of the Hill-Weissman Estimator

In this section we consider the special case of extreme value theory based on the
Type I or Fréchet limit. Gnedenko [92] showed that a limit of the form

Fn(anx) → Φα(x) = exp
(
−cx−α

)
, x≥ 0, α > 0, c > 0, (2.51)

holds if 1−F(x) is regularly varying with index α , and in that case an may without
loss of generality be taken as the solution of F(an) = 1−1/n, and c = 1. Note that in
this case, there is no location parameter to the distribution (bn = 0), but for statistical
purposes, it makes sense to retain c as well as α as an unknown parameter.

In this case, Weissman’s representation [265, 267] for the asymptotic joint distri-
bution of the k largest order statistics m1 ≥ m2 ≥ . . .mk reduces to

L(α,c | m1, ...,mk) =
k

∏
i=1

(
cαm−α−1

i
)
· exp

(
−cm−α

k

)
. (2.52)

where the notation is intended to indicate that we are thinking of (2.52) as a likelihood
function for the parameters α and c. The dependence on m1, ...,mk will be omitted in
many of the formulas. Taking logarithms, we want to minimize

`(α,c) = − logL(α,c) = −k logα− k logc+(α−1)
k

∑
i=1

logmi + cm−α

k .
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It is quickly established that this expression is minimized when α = α̂, c = ĉ where

α̂ =

(
1
k

k

∑
i=1

log
mi

mk

)−1

, ĉ = kmα̂
k . (2.53)

Note, in particular, the simple direct formula for the estimator of α . The deriva-
tion is the same as that in [265], but that paper did it for the equivalent case where
the limit distribution is Gumbel (the Fréchet model is turned into the Gumbel model
by taking logarithms of the observations).

An alternative, even simpler, derivation of an equivalent result was given by Hill
[121]. Hill assumed, in effect, that the relationship 1−F(x) = cx−α is exact for x≥ u,
for some known threshold u, but that F(x) is unspecified for x < u. If data X1, ...,Xn
are ordered so that X1 ≥ X2 ≥ . . .Xk > u≥ Xk+1 ≥ . . .Xn then the likelihood function
is

L(α,c | X1, ...,Xn) =
k

∏
i=1

(
αcX−α−1

i
)
·
(
1− cu−α

)n−k

Taking logarithms and minimizing with respect to first c and then α leads to

α̂ =

(
1
k

k

∑
i=1

log
Xi

u

)−1

, ĉ =
k
n

uα̂ . (2.54)

Note, in particular, the similarity of the two estimators of α: in effect, the role of
the threshold u in (2.54) is replaced by the kth largest order statistic in (2.53). (The
different estimators of c arise because of different definitions: (2.53) uses the limit
distribution for sample maxima whereas (2.54) assumes the same functional form
directly for the individual observations. The two definitions differ by a factor of n,
which is reflected in the estimates.)

The estimator α̂ in (2.54) is widely known as Hill’s estimator but in the present
section, to emphasize the close similarity with Weissman’s [267] result, we shall call
it the Hill-Weissman estimator.

In order to develop some asymptotics for this estimator, we assume an expansion
of the form

1−F(x) = cx−α

{
1+dx−β +o(x−β )

}
, x→ ∞. (2.55)

In general, the assumption (2.55) may be replaced by an assumption of second-order
regular variation which allows the terms with x−α and x−β to be replaced by general
regularly varying functions; see in particular [94] for a survey of this theory and its
applications (including the present one). This, in turn, is a special case of the general
sceond-order regular variation theory of [110], For the present discussion, we mke
the simpler assumption (2.55) which is sufficient for most practical applications, and
easier to manipulate.

Our focus will be on the condition distribution of X given X > u, for some high
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threshold u. Let Yu = X/u. Then the conditional probability P{Yu > y | Yu > 1} is
represented as

1−F(uy)
1−F(u)

= y−α

{
1+du−β (y−β −1)+o(u−β )

}
so, assuming it is valid to differentiate term by term, we calculate the density as

fYu(y) = αy−α−1 +du−β

{
(α +β )y−α−β−1−αy−α−1

}
+o(u−β ).

We note integrals of the form∫
∞

1
(logy)ky−α−1dy = α

−k−1k!

where we shall mainly be interested in the cases k = 1 and 2 but for non-integer k the
same formula holds with k! replaced by Γ(k+1). We therefore deduce

E(logYu)
k = α

−kk!+du−β k!
{
(α +β )−k−α

−k
}
= o(u−β ). (2.56)

Now let’s consider the bias and variance of 1
α̂
= 1

k ∑
k
i=1 log Xi

u as an estimator of
1
α

, where k is the number of exceedances of u. Since E(logYu) =
1
α
−du−β β

α(α+β ) +

o(u−β ), we deduce

Bias of
1
α̂
≈ −du−β β

α(α +β )
.

However, we also have from the k = 1 and k = 2 cases of (2.56) that Var(logYu)→ 1
α2

as u→ ∞ and hence the variance of 1
α

is asymptotically 1
kα2 . However if the whole

sample is of size n, and k is the random number of exceedances of u, we have k ∼
ncu−α . Therefore, in large samples we have

Variance of
1
α̂
≈ 1

α2ncu−α
.

Combining the espressions for bias and variance, and writing mean squared error
(MSE) for the sum of squared bias and variance, we deduce

MSE of
1
α̂
≈ Auα

n
+B2u−2β

where A = 1
α2c and B = dβ

α(α+β ) .
This asymptotic MSE is minimized with

u =

(
2βB2n

αA

)1/(α+2β )
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which in turn leads to an asymptotic MSE of

MSE =
B2(α +2β )

α

(
2βB2n

αA

)−2β/(α+2β )

.

The most important consequence of this is that the MSE is of O
(

n−2β/(α+2β )
)

as

n→ ∞, which could be arbitrarily slow for very small β but is of O(n−1) as β → ∞

— this makes sense, because in thaty limit the cx−α result is exact and we are back
in the original case considered by Hill.

2.5.2.1 Extension to the GPD

The above calculation was relatively straightforward because of the explicit closed
form of the estimator. In most cases of interest (for example, estimating the two-
parameter GPD or the three-parameter GEV distribution), there is no closed form
estimator and the MLE is obtained by solving the likelihood equations. In such case,
we may in principle proceed as follows. Suppose the negative log likelihood function
based on n observations is `n(θ) for some multidimensional parameter θ whose true
value we shall write θ0. Also write θ̂n for the MLE. The Taylor expansion

∇`n(θ̂n)−∇`n(θ0) ≈
(
θ̂n−θ0

)T
∇

2`n(θ0)

leads to the approximation

θ̂n−θ0 ≈ −
(
∇

2`n(θ0)
)−1

∇`n(θ0).

Now suppose that as n→ ∞, n−1∇2`n(θ0)
p→ J (the Fisher information matrix) and

n−1∇`n(θ0)
p→ b (bias due to model misspecification; if the model is correctly spec-

ified, b = 0). Then for θ̂n we have, for large n,

Bias ≈ J−1b, Covariance Matrix ≈ n−1J−1. (2.57)

Now let’s apply this to the case of the GPD, again under the assumption that the
true distribution satisfies (2.55). Note that in the case where 1−F(x) = cx−α is exact,
we have

1−F(u+ y)
1−F(u)

=
(

1+
y
u

)−α

=
(

1+ξ
y
σ

)−1/ξ

so the two forms are identical if σ = u
α
, ξ = 1

α
. From now on, we treat these as the

“true” GPD parameter values in this case.
In this model, the Fisher information matrix [234] is

J =

(
1

σ2(1+2ξ )
1

σ(1+ξ )(1+2ξ )
1

σ(1+ξ )(1+2ξ )
2

(1+ξ )(1+2ξ )

)
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provided 1+2ξ > 0, and hence

J−1 = (1+ξ )

(
2σ2 −σ

−σ (1+ξ )

)
Now let’s compute the b term in (2.57). The log likelihood for a single observation
is

`(σ ,ξ ) = logσ +

(
1
ξ
+1
)

log
(

1+ξ
y
σ

)
.

Hence,

σ
∂`

∂σ
= − 1

ξ
+

(
1
ξ
+1
)(

1+ξ
y
σ

)−1
,

∂`

∂ξ
= − 1

ξ 2 log
(

1+ξ
y
σ

)
+

1
ξ

(
1
ξ
+1
){

1−
(

1+ξ
y
σ

)−1
}
.

To calculate b, we need to find expressions for the expected values of these terms.
To recast in the notation of Section 2.5.2, we first make the substitutions σ =

u
α
, ξ = 1

α
, and also that if y denotes the excess over the threshold u, then y= u(Yu−1)

and so 1+ξ
y
σ
= Yu. Also, by the same reasoning as led to (2.56)

E
(
Y−1

u
)

=
α

α +1
+du−β · β

(α +1)(α +β +1)
+o(u−β ).

We now calculate the expectations of σ
∂`
∂σ

and ∂`
∂ξ

, respectively, to be

−α +(α +1)
{

α

α +1
+du−β · β

(α +1)(α +β +1)
+o(u−β )

}
= du−β · β

α +β +1
+o(u−β )

and

−α
2
{

1
α
−du−β β

α(α +β )

}
+α(α +1)

{
1

α +1
−du−β β

(α +1)(α +β +1)

}
+o(u−β )

= du−β · αβ

(α +β )(α +β +1)
+o(u−β ).

Therefore, we conclude

b ∼ du−β

(
1
σ

β

α+β+1
αβ

(α+β )(α+β+1)

)
,

J−1b ∼ du−β (α +1)β
α(α +β )(α +β +1)

(
σ(α +2β )

1−β

)
.

Focussing on the second entries in these vectors, we deduce that ξ̂ has asymptotic
bias

du−β (α +1)β (1−β )

α(α +β )(α +β +1)
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and asymptotic variance (based on k ≈ ncu−α exceedances of the threshold

1
k

(
α +1

α

)2

∼ (α +1)2

α2ncu−α
.

2.5.2.2 Comparisons with the Hill-Weissman Estimator

For the Hill-Weissman estimator, we deduced that the bias was asymptotically Bu−β ,
variance Auα/n, with B =−dβ/(α(α +β )), A = 1/(α2c).

For the GPD estimator, we get asymptotic bias B′u−β , asymptotic variance
A′uα/n, where B‘ = dβ (1−β )(α +1)/(α(α +β )(α +β +1).

The optimal MSE is proportional to

|B|2α/(α+2β )A2β/(α+2β )

Therefore, the ratio of the optimal MSE for the GPD estimator to that of the
Hill-Weissman estimator is∣∣∣∣B′B
∣∣∣∣2α/(α+2β ) ∣∣∣∣A′A

∣∣∣∣2β/(α+2β )

=

∣∣∣∣ (1−β )(α +1)
α(α +β )(α +β +1)

∣∣∣∣2α/(α+2β )

|α +1|4β/(α+2β )

See Figure 5.1.

2.5.2.3 Background References

The Hill estimator was introduced in [121] and the Weissman estimator, in its original
form, in [267]. Asymptotic properties of the Hill estimator were obtained by [116,
112, 94] Optimality of the derived rate of convergence was proved by [114], and
an adaptive estimator to achieve the optimal threshold was given by [115]. Many
variants on the method exists, for example, [46] used a kernel-weighted version. The
comparison of the two estimators was first derived in [234]. Many other authors have
contributed to the theory and a more complete bibliography will be given later.

2.5.3 Outline Derivation of Dombry-Ferreira result

Health warning: This is not the proof. For that, we refer to the original paper [60].
The intention here is to motivate the result, and to show how it follows logically from
the asymptotic approximations we have been developing in this chapter.

First, let us assume that the relationship (2.44) is exact, i.e. the left and right hand
sides are identical for every m. Since Mi,m has the distribution function Fm, by the
probability integral transformation we can write Fm(Mi,m) = S where S is uniform
on (0,1). In that case − 1

logF(Mi,m)
= m
− logS . But − 1

logF(·) was defined to be the inverse

of V , so Mi,m = V
(

m
− logS

)
. We also define bm = V (m), am = a(m). If we assume

(2.44 is exact, then

Mi,m−bm

am
=

(
− 1

logS

)ξ0
−1

ξ0
.
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Figure 2.1 Ratio of optimal mean squared error for the GPD estimator to that of the Hill-
Weissman estimator, for a variety of values of α and β .

But the right hand side has the GEV distribution:

Pr


(
− 1

logS

)ξ0
−1

ξ0
≤ y

 = Pr
{

S≤ e−(1+ξ y)−1/ξ
}

= e−(1+ξ y)−1/ξ

(provided 1+ξ y > 0).

Now, however, suppose (2.45) holds instead of (2.44) being exact. In that case, we
can write

Mi,m−bm

am
=

(
− 1

logS

)ξ0
−1

ξ0
+A(bm)Hξ0,ρ

(
1

− logS

)
+op(A(bm)).

Suppose we want to find the expectation of h
(

Mi,m−bm
am

)
, where h is some nonlinear

continuously differentiable function. We proceed formally, assuming limiting opera-
tions are valid without rigorous proof. By Taylor expansion, we write

h
(

Mi,m−bm

am

)
= h


(
− 1

logS

)ξ0
−1

ξ0

+A(bm)Hξ0,ρ

(
1

− logS

)
h′


(
− 1

logS

)ξ0
−1

ξ0

+op(A(bm)).

Taking expectations term by term

E
{

h
(

Mi,m−bm

am

)}
=

∫ 1

0
h


(
− 1

logs

)ξ0
−1

ξ0

ds+
∫ 1

0
A(bm)Hξ0,ρ

(
1

− logs

)
h′


(
− 1

logs

)ξ0
−1

ξ0

ds

+op(A(bm)).

Now suppose the function h is any of d`
dµ

, d`
dψ

, d`
dξ

, where ` is given by (2.41). Because
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h is a derivative of the log likelihood of the GEV model,
∫ 1

0 h

{(
− 1

logs

)ξ0−1

ξ0

}
ds = 0

and we are left with

E
{

h
(

Mi,m−bm

am

)}
∼ A(bm)

∫ 1

0
Hξ0,ρ

(
1

− logs

)
∂h
∂x


(
− 1

logs

)ξ0
−1

ξ0

ds.

Representing `(µ,ψ,ξ ;x) = `(θθθ ,x) where θθθ = ( θ1 θ2 θ3 and θ1 = µ, θ2 =
ψ, θ3 = ξ , we therefore have

E
{

∂`

∂θθθ

(
Mi,m−bm

am

)}
∼ A(bm)

∫ 1

0
Hξ0,ρ

(
1

− logs

)
∂ 2`

∂x∂θθθ


(
− 1

logs

)ξ0
−1

ξ0

ds.

(2.58)

The right hand side of (2.58) is A(mn) multiplied by b(ξ0,ρ) in the notation of
Dombry–Ferreira.

Equation (2.58) applies to just a single value of the likelihood function, whereas
the formula (2.42) represents the sum of k = kn similar terms. In the notation of Sec-
tion 2.5.1, we have bn = knA(mn)b(ξ0,ρ) and hence k−1/2

n bn =
√

knA(mn)b(ξ0,ρ)→
λb(ξ0,ρ). Since this case the method of estimation under the GEV model is maxi-
mum likelihood, in this case the matrices J0 and C0 of Section 2.5.1 are both I0, the
Fisher information matrix for the limiting GEV distribution. Thus, (2.50) implies√

kn

(
θ̂θθ n−θθθ 0

)
d→ N

{
λ I−1

0 b(ξ0,ρ), I−1
0
}

The Dombry-Ferreira result differs from this because it assumes the GEV maximum
likelihood estimation procedure is applied directly to the block maxima Mi,m, rather
than the normalized maxima Mi,m−bm

am
as we have written here. Nevertheless, this ar-

gument should serve to motivate their result and to define a general context to derive
similar results under different variations of the basic model and estimation procedure.

2.6 Other topics to be added

2.6.1 Method of probability weighted moments

An alternative to the maximum likelihood method that achieved popularity after a
famous paper of Hosking, Wallis and Wood [124], but theoretically do not perform
as well as maximum likelihood estimators [58, 76].

2.6.2 Corresponding results for threshold estimators

Cite paper of Smith [234]; show how results may be reinterpreted in terms of the de
Haan-Stadtmüller representation
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