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1 Translation of De Haan-Stadtmiiller Result to Second-Order
Approximations for Extreme Value Distributions

Suppose n(l — F(anz + b,)) = y — the objective is to derive an asymptotic expression for y as a
function of z.
We assume b, = U(n), a, = a(n), so this equation may be rewritten

an +b, = a(n)z+U(n) = U(%)

and hence
U(z)-Um)
a(n)

§ _
- L L A H(y) + o(A(n)), ¢y

r =

First order solution: ignore A(n), solve r = 97(—1 to get
y = (1+&x)7 1%
Second-order solution: assume

y = (1+&x) 4
= (1+€2) 8 (14 (1 + €2)'76)

for some ¢ that we have to determine (asymptotically).
We calculate

v ¢ = (1+¢€x) (1—&(1 +en) ..
= 14z Le(1+Ex) ey )

where (here and subsequently) ... denotes terms that are of smaller order than those considered.
Hence

= z - e(1+Ex)HE 4 o(e?).

Comparing with (1), we deduce
e(1+Ex) 8~ AMH(™Y) ~ Am)H ((1+¢2)').
Hence
€ ~ AL+ €x) " VEH ((1+ €)%Y
Thus our result is

n(l— Flanz+bn)) = (1+&2)7 + A(n)(1 +€2) " V4H ((1+€2)%) + o( A(n)),
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By the usual argument of replacing 1 — F(a,2 +bn) by — log F(anz+by) (with an error of O(n™1)),
we also deduce that provided nA(n) — oo,

F*anz +by) = exp {(1 +£x) Y4 + A(n)(1 + &x) S-le g ((1 + E:E)I/E) + o(A(n))} .

The stipulation nA(n) = co is needed because, without it, the error of O(n~1) is as large or larger
than O(A(n)); however, as noted earlier, cases where the error rate is O(n~1) or smaller are rather
few and generally not of interest since the rate of convergence is so fast.
2 Derivation of De Haan-Stadtmiiller Result in Prior Cases
2.1 Example Model 1
Assumption:

1-Ply) = ey +dy * P +oy P, y— oo

To calculate an approximation to U(t), we need to solve ; = 1— F(y) soy = (ct)/*(1 + ¢) for
somee. Theny @ =2L(1—ae+...}sot 1411 ae)+d(et) Ao+ .. s0 €= %c 16/ay=Ble
and hence

U = ()t (1+§c-1-ﬂ/at T)

where ... means smaller order terms that are omitted.
We proceed by calculating

Ults)—U(t) = (ctz)"® {1 + gc'l'ﬁ/“(tm)'ﬁla} (ct)H/e {1 + gc'l'ﬁ/‘*t ﬁ/a} T ofgMe-Bl)
1/a Ve e\ L pja-Bla_ Aja-1-glad . 1fa-Bfa _ 1/a-B/a
1/ {(ca)!/* — ¢ }+t c ~(= 1) + o(t ). (@)

Side calculations: with £ = 1/, p = — B/, define

G(z) = ‘“56‘1 = afz/® 1),
1 {26+ -1 25-1 a fzl/e—Blx 1
H(z) = - - 2 - G
(<) p( FPEE: ) ﬂ(l/a—ﬁ/a G(“‘))
and hence
losle 1 = Loy playH) + (/o pla)C@).

Substituting in (2),

Ja
Ultz) - U(t) = tlla%—G’(m) 4 thaBle ifa-1-pe {—g(lla — BJa)H(z)+ (/e — ﬁ/a)G’(m)}

+o(t!/aPley,

(3)



Ulex)—U{t) z
We are trying to get a limit of the form —J—_}%ﬂ — H(z) which would imply
Ultz) —U(t) = G(x)a(t)+ H(z)A(t)a(t) + o A(t)a(t)).
Equating coefficients of G(z) and H(z) in (3), it suffices to take

t1/a01’°’ a—bla  dja-1-plal

a(t) = - T ¢ L1/~ B/a),
A(t)a(t) = —ti/eFlx, c”a-l-ﬂlaggu/a - B/a).

Simplifying a bit, an equivalent expression for A(t) is

d
Alt) = P, c_l_ﬁ/"—c?ﬁ(l/a ~ B/a).
It should be noted that in the case 8 = 1 (but only that case!) the expression for H(z) reduces to
%G(:{:), in other words, it is a multiple of G(x), which earlier we excluded from the theory. This
confirms our earlier result that the rate of convergence can be improved when 8 = 1, but not

otherwise.

2.2 Example Model 2
Assumption:
1-F(y) = cyl*+dlyl** + o(ly**F), y 1 0.

In this case if we solve 1 — F(y) = 1/n we find
U(ﬂ) — (TLC) 1/ En 1/ex B/ac 1-1 o8/ + 0(1’1 1/e d/a)
o
The same formula holds if n is replaced by real ¢t — oo so

4. 1/a-8fa,~1-1/a-B/a

- = (;C—lfa—ﬁ/cf 1) + oft /e Bfa}

(4)

Ultz) - U(t) = —(te) @V -1)

In this case with £ = ~1/a, p= —f/c, we have

G(z) = -alz"V*-1), H(z) = “—z(x-lla-ﬁ/ﬂ- 1) - a—z(x-lf’ﬂ- 1)
’ B(1+5) B

and hence

-1fa _ — _l —lfa—Bfa 1 _ ﬁ(1+ﬁ) _1+16

z 1 = aG(:r:), z 1 — H(z) — G(z).
Substituting into (4},

d 1 1 ;

Ui) - U@ = o) oG() - Sue-tlegi ot [BUE B gy I B gL 4 opmrva-sie)

()
To write this in the form a(¢)G(z) + a{t)A(t)H(z) + o(a(t)A(t)), it would suffice to take

a(t) = .l_(tc)'1/0_|.wt—llﬂ-ﬁlﬂc--l"lm-B/&‘ Alt) = Mt-ﬂfﬂrc—l—ﬁlﬂ. (6)
a o? o
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2.3 Example Model 3

Assumption:
Fit) =

Recall the formula that 1

®(bs) = %

d(t) (standard normal cdf), —oco <t < oo.

leads to

loglog n)

1
e - ————(log4 log 1
bn v2logn 2\/2_10_g_n(0g m 4+ log ogn)+o(m

where we write ¢ in place of n and U(¢) = b;, we deduce

1
logdm + loglogt +o( oglogt) ’

2/2logt 2logt

]

Ut) = +2logt—
and hence
Ultz) - U(t) = +2logtz — +/2logt —

Side calculations: as t — oo for fixed z,

loglogtx — loglogt =

J/2log(tz) — \/210g(2)

Also, if we define y, = 51,-, P =1

loglogtz — loglog i to (log logt)
2/(2logt V2logt/

logz 1 log® z ( 1 )
logt 2 log?t logt/’
1 llogz ( 1 )
1 — = O .
V2logt { B% logt * log? t

1

1
T €n = — g7, We have
n k2

ol

(1+.£,,,5C '““) e e'm{1+§n(1+m- m—:)+0(g§)}. ”ff‘mzeo(oa’

Yn
Therefore,
1 1log?x 1 log
Ultz) - U(t) = 1 - ——
(tz} = U®) S2logt (Og’” 4 logt ) ovaTogt logt
1 1 1log?z

- 1 = .

\/ZIogt{(1 2logt) 0BT 4 logt + }
so we set

a(t) =

Al) =

G(z) =

H(z) =
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|I It can be readily checked that this implies

|

|

" y = (c:)'-m{l+%c L-Blag-Ble Loy ”-’“)}. (2.38)

. Therefore, U(r) satisfies the right hand side of (2.38).

F w"@ Hence,

Ux) - U(r) = (cxr)”“{]+gc 1=B/% (xr) ﬂf“} —(cl)'/“{l+%c 1-pley W“}+a(:‘/°' Biay

- (C!)lja(xl,f'a_ l)+%cl,ﬁz 1-Ble /o B/a(xlfa ﬁla—l)-{—o(}‘]/a ﬂ/a)‘ (2.39)
If we define a(r) = o L(er)/®, we get

= e ;
I U(!xc)i(;)U(f) X |/a] — de VBl ﬁ,.-'a(xl,ra Bla _ 1) +olr ﬁ,-"a}’

which, however, does not give the form of limit function we are aiming at.
\ Therefore, we return to (2.39) and rewrite
\

|| U(x)- U@ty = {(c.r)lf"’-i--(--]———--m—ﬁ—)ﬁf-(:'""l 1-Blog) e W“}(x”“ 1)
Ls +“_ﬁ)dcl/a 1 ﬂ/arl.-'a Bla . a

o2 =B {xlla B/a—]—(]—ﬁ)(xlla—l)}-lro(;'fa .B,-fa)'

. PV e 4 Bd Vo-1-B/a,)ja Bja __U-Bd | pla,-Ba
TLV\‘: MS Now definea(t) = o {(c:)f + ¢ t },A(I) e ! )

then

l’b LQ \.AN—D?:Y‘ ! Ugg-u{)  alie)

y B e vy B o xl/a—,ﬂ/a_l xlla—l
I| e ) "B\ la-B/e Tja )

This is precisely of the form (2.37) withé = 1 p=—B/a.

2.5 Estimation theory based on second-order asymptotics
We focus here on a paper by Dombry and Ferreira [58], but this is just one of a series
of papers going back to the 1980s {224, 61, 56, 74, 57, 174].

Consider an IID random sequence {X;, i = 1,2,...} where the common distri-
bution function is F. Suppose the observations are grouped into blocks of length m,

and let My ,, = max{X;: (k—)m+1,... km} be the maximum of the k'th block. We
assume F is in the domain of attraction of the GEV, so that

Pr{@z—_bm- Ex} = F™amx+bm) = Gglx) = exp{—(l+§ox)):”€°}.

(2.40)
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for some “true value” & which we write that way to distinguish it from the unknown
4G
parameter & in the following likelihood analysis. We define gg, (x) = dx(x) =

(1+4&x)) 1/5-1 exp{- {1+ &ox)) '1/5"} defined whenever 1 + &x > 0 to be the
density of Gg; and let

ou, v, 8x) = logy+logge (%&) (241

be the log density for arbitrary £ when the distribution is extended to include a loca-
tion and scale parameter. The idea is that we treat the block maxima M, , for 1 <i<k
as if theit exact distribution was GEV with parameters 8 = (i, ¥, £) though we know
that for finite m this is only an approximation. Define the log likelihood

k
Lin(0) = Y 20,Min) (2.42)
=
In the following, we shall consider a sequence of sample sizes and block lengths
k,, m, where both k, and M, are indexed by n. We define 9, = (i, Py, Ea) to bE A
tocal maximizer of the log likelihood function, or just the MLE for short, if it satisfies
the likelihood equations

ILim(0)
5 0 (2.43)

and if the hessian matrix %%’- is positive definite at a,.

Dombry and Ferreira dlﬁer slightly from the notation of the previous section by
defining V = (—1/log F)* (instead of U = (1/(1 ~ F))" as previously, though in
most cases the two definitions will lead to the same asymptotics). In that context they
assume, first, that there exists a,, such that

&o
fim V(mx) -V(m) _ x 1
—yoo am éO

(2.44)

and, second, that for some positive function a() as ¢ — = and some positive or
negative function A(t) as  ~» eo with lim, 4. At} =0,

Vi) -vi oot -
. alt Lo s Eo-1, p-1 -
'll_)nl ———-————A(f) fl /; s*0 P~ lduds = Hg p(x), x> 0,(245)
where & > — %, p < 0, the function A is regularly varying with index p, and Hg, o
is given by (2.37) with & = &. As noted previously, in any case where a limit of the
form (2.45) exists, we can without loss of generality, redefining the functions a()
and A(1) is necessary, assume that the right hand side is He, o (x) for suitable p < 0.
Dombry and Ferreira consider limiting cases as k = kn — o0, 1t = ffly — & where

lim vVkeA(m,) = A€R (2.46)

H—ros
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They define 8y = (0,1, &} and then

~&o
0u) = LI e )
b 9% I
b(o.p) = | m(ﬂo,ng(S))Hgo.p("—log—s)ds,
bo92%
Iy, = fOW(OO-Qﬁo(S))d"

Note that /g, is the Fisher information for the GEV evaluated at @g; this is the same
matrix as was shown in Chapter 1 following [185].
With these preliminaries, Theorem 2.2 of [58] states:

(a) There exists a sequence of estimators é,, = fiy, li/,,,é,, such that

jim Pr {é,, isa MLE} =

Ny

ﬂn — b, 'j"n ) d | 1
Ay | e LR ]k~ = WAL D). -
" ( Ay Gmy bt ( % ) - e/\a/f &Jlsl (J} £
b If éf, = (ﬁ,‘,,y‘f,‘,,&,‘;), i = 1,2 are two sequences of estimators satisfying e

lima Pr { 8 isaMLE} - 1,
H—ro2
i i .
Iimpr{'\/k_n(maﬂ_]!&r:_§0)EHPI} - l,
n—ioo . am,

where H,, is a ball in B of center 0 and radius r,, where r, = O(k,f ), 0< 8 <
min (%,'éo + %) as # — oo, then

lim Pr {8, = ol —1.

H—ro

2.5.1 Side Section I: A heuristic on biased estimation

Suppose we have a sequence of experiments indexed by n, where in the nth exper

iment there are k, observations Xj,... Xy, whose true joint density is gu. but for
reasons of convenience or because we don’t know how to exactly calculate g, we
replace g, by a known joint density f, indexed by a parameter vector 0,,. The exam

ples of interest 10 us include the X;’s being either block maxima or exceedances over
a threshold and their density f, being approximated by a GEV or GPD density. We
will always want f, — g, -+ 0 under some suitable metric (e.g. total variation norm
or Hellinger distance) but we won't worry about precise modes of convergence for
the moment — that can come later.

Suppose we estimate 8 by defining a set of equations

ﬁT{X,;B) = 0
izl





