This class is often called the Fréchet class of distributions (Fréchet (1927)).

(b) The distribution function with $\gamma = 0$,

$$G_0(x) = \exp\left(-e^{-x}\right),\,$$

for all real x, is called the double-exponential or Gumbel distribution.

(c) For $\gamma < 0$ use $G_{\gamma}(-(1+x)/\gamma)$ and get with $\alpha = -1/\gamma > 0$,

$$\Psi_{\alpha}(x) := \begin{cases} \exp\left(-(-x)^{\alpha}\right) , & x < 0, \\ 1, & x \ge 0 \end{cases}.$$

This class is sometimes called the reverse-Weibull class of distributions.

Recall that if relation (1.1.1) holds with $G = G_{\gamma}$ for some $\gamma \in \mathbb{R}$, we say that the distribution function F is in the domain of attraction of G_{γ} . Notation: $F \in \mathcal{D}(G_{\gamma})$.

The result of Theorem 1.1.3 leads to the following reformulation of Theorem 1.1.2.

Theorem 1.1.6 For $\gamma \in \mathbb{R}$ the following statements are equivalent:

1. There exist real constants $a_n > 0$ and b_n real such that

$$\lim_{n \to \infty} F^{n}(a_{n}x + b_{n}) = G_{\gamma}(x) = \exp\left(-(1 + \gamma x)^{-1/\gamma}\right), \tag{1.1.19}$$

for all x with $1 + \gamma x > 0$.

2. There is a positive function a such that for x > 0,

$$\lim_{t \to \infty} \frac{U(tx) - U(t)}{a(t)} = D_{\gamma}(x) = \frac{x^{\gamma} - 1}{\gamma} , \qquad (1.1.20)$$

where for $\gamma = 0$ the right-hand side is interpreted as $\log x$.

3. There is a positive function a such that

$$\lim_{t \to \infty} t \left(1 - F(a(t)x + U(t)) \right) = (1 + \gamma x)^{-1/\gamma}, \tag{1.1.21}$$

for all x with $1 + \gamma x > 0$.

4. There exists a positive function f such that

$$\lim_{t \uparrow x^*} \frac{1 - F(t + xf(t))}{1 - F(t)} = (1 + \gamma x)^{-1/\gamma}$$
 (1.1.22)

for all x for which $1 + \gamma x > 0$, where $x^* = \sup\{x : F(x) < 1\}$.

Moreover, (1.1.19) holds with $b_n := U(n)$ and $a_n := a(n)$. Also, (1.1.22) holds with f(t) = a(1/(1 - F(t))).

Proof. The equivalence of (1), (2), and (3) has been established in Theorem 1.1.2. Next we prove that (2) implies (4).

It is easy to see that for $\varepsilon > 0$,