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0.1 Asymptotics of the Hill-Weissman Estimator

In this section we consider the special case of extreme value theory based on the Type I or Fréchet
limit. Gnedenko [2] showed that a limit of the form

Fn(anx) → Φα(x) = exp
(
−cx−α

)
, x ≥ 0, α > 0, c > 0, (1)

holds if 1−F (x) is regularly varying with index α, and in that case an may without loss of generality
be taken as the solution of F (an) = 1− 1/n, and c = 1. Note that in this case, there is no location
parameter to the distribution (bn = 0), but for statistical purposes, it makes sense to retain c as
well as α as an unknown parameter.

In this case, Weissman’s representation [11, 12] for the asymptotic joint distribution of the k
largest order statistics m1 ≥ m2 ≥ . . .mk reduces to

L(α, c | m1, ...,mk) =

k∏
i=1

(
cαm−α−1i

)
· exp

(
−cm−αk

)
. (2)

where the notation is intended to indicate that we are thinking of (2) as a likelihood function for
the parameters α and c. The dependence on m1, ...,mk will be omitted in many of the formulas.
Taking logarithms, we want to minimize

`(α, c) = − logL(α, c) = −k logα− k log c+ (α− 1)
k∑
i=1

logmi + cm−αk .

It is quickly established that this expression is minimized when α = α̂, c = ĉ where

α̂ =

(
1

k

k∑
i=1

log
mi

mk

)−1
, ĉ = kmα̂

k . (3)

Note, in particular, the simple direct formula for the estimator of α. The derivation is the same
as that in [11], but that paper did it for the equivalent case where the limit distribution is Gumbel
(the Fréchet model is turned into the Gumbel model by taking logarithms of the observations).

An alternative, even simpler, derivation of an equivalent result was given by Hill [9]. Hill
assumed, in effect, that the relationship 1 − F (x) = cx−α is exact for x ≥ u, for some known
threshold u, but that F (x) is unspecified for x < u. If data X1, ..., Xn are ordered so that X1 ≥
X2 ≥ . . . Xk > u ≥ Xk+1 ≥ . . . Xn then the likelihood function is

L(α, c | X1, ..., Xn) =
k∏
i=1

(
αcX−α−1i

)
·
(
1− cu−α

)n−k
Taking logarithms and minimizing with respect to first c and then α leads to

α̂ =

(
1

k

k∑
i=1

log
Xi

u

)−1
, ĉ =

k

n
uα̂. (4)
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Note, in particular, the similarity of the two estimators of α: in effect, the role of the threshold u in
(4) is replaced by the kth largest order statistic in (3). (The different estimators of c arise because
of different definitions: (3) uses the limit distribution for sample maxima whereas (4) assumes the
same functional form directly for the individual observations. The two definitions differ by a factor
of n, which is reflected in the estimates.)

The estimator α̂ in (4) is widely known as Hill’s estimator but in the present section, to
emphasize the close similarity with Weissman’s [12] result, we shall call it the Hill-Weissman
estimator.

In order to develop some asymptotics for this estimator, we assume an expansion of the form

1− F (x) = cx−α
{

1 + dx−β + o(x−β)
}
, x→∞. (5)

In general, the assumption (5) may be replaced by an assumption of second-order regular variation
which allows the terms with x−α and x−β to be replaced by general regularly varying functions; see
in particular [3] for a survey of this theory and its applications (including the present one). This,
in turn, is a special case of the general sceond-order regular variation theory of [4], For the present
discussion, we mke the simpler assumption (5) which is sufficient for most practical applications,
and easier to manipulate.

Our focus will be on the condition distribution of X given X > u, for some high threshold u.
Let Yu = X/u. Then the conditional probability P{Yu > y | Yu > 1} is represented as

1− F (uy)

1− F (u)
= y−α

{
1 + du−β(y−β − 1) + o(u−β)

}
so, assuming it is valid to differentiate term by term, we calculate the density as

fYu(y) = αy−α−1 + du−β
{

(α+ β)y−α−β−1 − αy−α−1
}

+ o(u−β).

We note integrals of the form ∫ ∞
1

(log y)ky−α−1dy = α−k−1k!

where we shall mainly be interested in the cases k = 1 and 2 but for non-integer k the same formula
holds with k! replaced by Γ(k + 1). We therefore deduce

E(log Yu)k = α−kk! + du−βk!
{

(α+ β)−k − α−k
}

= o(u−β). (6)

Now let’s consider the bias and variance of 1
α̂ = 1

k

∑k
i=1 log Xi

u as an estimator of 1
α , where k is

the number of exceedances of u. Since E(log Yu) = 1
α − du

−β β
α(α+β) + o(u−β), we deduce

Bias of
1

α̂
≈ −du−β β

α(α+ β)
.
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However, we also have from the k = 1 and k = 2 cases of (6) that Var(log Yu)→ 1
α2 as u→∞ and

hence the variance of 1
α is asymptotically 1

kα2 . However if the whole sample is of size n, and k is
the random number of exceedances of u, we have k ∼ ncu−α. Therefore, in large samples we have

Variance of
1

α̂
≈ 1

α2ncu−α
.

Combining the espressions for bias and variance, and writing mean squared error (MSE) for the
sum of squared bias and variance, we deduce

MSE of
1

α̂
≈ Auα

n
+B2u−2β

where A = 1
α2c

and B = dβ
α(α+β) .

This asymptotic MSE is minimized with

u =

(
2βB2n

αA

)1/(α+2β)

which in turn leads to an asymptotic MSE of

MSE =
B2(α+ 2β)

α

(
2βB2n

αA

)−2β/(α+2β)

.

The most important consequence of this is that the MSE is of O
(
n−2β/(α+2β)

)
as n → ∞, which

could be arbitrarily slow for very small β but is of O(n−1) as β →∞ — this makes sense, because
in thaty limit the cx−α result is exact and we are back in the original case considered by Hill.

0.2 Extension to the GPD

The above calculation was relatively straightforward because of the explicit closed form of the
estimator. In most cases of interest (for example, estimating the two-parameter GPD or the
three-parameter GEV distribution), there is no closed form estimator and the MLE is obtained by
solving the likelihood equations. In such case, we may in principle proceed as follows. Suppose
the negative log likelihood function based on n observations is `n(θ) for some multidimensional
parameter θ whose true value we shall write θ0. Also write θ̂n for the MLE. The Taylor expansion

∇`n(θ̂n)−∇`n(θ0) ≈
(
θ̂n − θ0

)T
∇2`n(θ0)

leads to the approximation

θ̂n − θ0 ≈ −
(
∇2`n(θ0)

)−1∇`n(θ0).
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Now suppose that as n→∞, n−1∇2`n(θ0)
p→ J (the Fisher information matrix) and n−1∇`n(θ0)

p→
b (bias due to model misspecification; if the model is correctly specified, b = 0). Then for θ̂n we
have, for large n,

Bias ≈ J−1b, Covariance Matrix ≈ n−1J−1. (7)

Now let’s apply this to the case of the GPD, again under the assumption that the true distri-
bution satisfies (5). Note that in the case where 1− F (x) = cx−α is exact, we have

1− F (u+ y)

1− F (u)
=

(
1 +

y

u

)−α
=
(

1 + ξ
y

σ

)−1/ξ
so the two forms are identical if σ = u

α , ξ = 1
α . From now on, we treat these as the “true” GPD

parameter values in this case.

In this model, the Fisher information matrix [10] is

J =

(
1

σ2(1+2ξ)
1

σ(1+ξ)(1+2ξ)
1

σ(1+ξ)(1+2ξ)
2

(1+ξ)(1+2ξ)

)

provided 1 + 2ξ > 0, and hence

J−1 = (1 + ξ)

(
2σ2 −σ
−σ (1 + ξ)

)
Now let’s compute the b term in (7). The log likelihood for a single observation is

`(σ, ξ) = log σ +

(
1

ξ
+ 1

)
log
(

1 + ξ
y

σ

)
.

Hence,

σ
∂`

∂σ
= −1

ξ
+

(
1

ξ
+ 1

)(
1 + ξ

y

σ

)−1
,

∂`

∂ξ
= − 1

ξ2
log
(

1 + ξ
y

σ

)
+

1

ξ

(
1

ξ
+ 1

){
1−

(
1 + ξ

y

σ

)−1}
.

To calculate b, we need to find expressions for the expected values of these terms.

To recast in the notation of Section 0.1, we first make the substitutions σ = u
α , ξ = 1

α , and also
that if y denotes the excess over the threshold u, then y = u(Yu − 1) and so 1 + ξ yσ = Yu. Also, by
the same reasoning as led to (6)

E
(
Y −1u

)
=

α

α+ 1
+ du−β · β

(α+ 1)(α+ β + 1)
+ o(u−β).
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We now calculate the expectations of σ ∂`∂σ and ∂`
∂ξ , respectively, to be

−α+ (α+ 1)

{
α

α+ 1
+ du−β · β

(α+ 1)(α+ β + 1)
+ o(u−β)

}
= du−β · β

α+ β + 1
+ o(u−β)

and

−α2

{
1

α
− du−β β

α(α+ β)

}
+ α(α+ 1)

{
1

α+ 1
− du−β β

(α+ 1)(α+ β + 1)

}
+ o(u−β)

= du−β · αβ

(α+ β)(α+ β + 1)
+ o(u−β).

Therefore, we conclude

b ∼ du−β

(
1
σ

β
α+β+1
αβ

(α+β)(α+β+1)

)
,

J−1b ∼ du−β
(α+ 1)β

α(α+ β)(α+ β + 1)

(
σ(α+ 2β)

1− β

)
.

Focussing on the second entries in these vectors, we deduce that ξ̂ has asymptotic bias

du−β
(α+ 1)β(1− β)

α(α+ β)(α+ β + 1)

and asymptotic variance (based on k ≈ ncu−α exceedances of the threshold

1

k

(
α+ 1

α

)2

∼ (α+ 1)2

α2ncu−α
.

0.2.1 Comparisons with the Hill-Weissman Estimator

For the Hill-Weissman estimator, we deduced that the bias was asymptotically Bu−β, variance
Auα/n, with B = −dβ/(α(α+ β)), A = 1/(α2c).

For the GPD estimator, we get asymptotic bias B′u−β, asymptotic variance A′uα/n, where
B‘ = dβ(1− β)(α+ 1)/(α(α+ β)(α+ β + 1).

The optimal MSE is proportional to

|B|2α/(α+2β)A2β/(α+2β)

Therefore, the ratio of the optimal MSE for the GPD estimator to that of the Hill-Weissman
estimator is∣∣∣∣B′B

∣∣∣∣2α/(α+2β) ∣∣∣∣A′A
∣∣∣∣2β/(α+2β)

=

∣∣∣∣ (1− β)(α+ 1)

α(α+ β)(α+ β + 1)

∣∣∣∣2α/(α+2β)

|α+ 1|4β/(α+2β)

See Figure 1.
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Figure 1: Ratio of optimal mean squared error for the GPD estimator to that of the Hill-Weissman
estimator, for a variety of values of α and β.

0.3 Background References

The Hill estimator was introduced in [9] and the Weissman estimator, in its original form, in [12].
Asymptotic properties of the Hill estimator were obtained by [8, 5, 3] Optimality of the derived
rate of convergence was proved by [6], and an adaptive estimator to achieve the optimal threshold
was given by [7]. Many variants on the method exists, for example, [1] used a kernel-weighted
version. The comparison of the two estimators was first derived in [10]. Many other authors have
contributed to the theory and a more complete bibliography will be given later.
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