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Chapter 1

Extreme Value Theory In Action

1.1 Introduction

Extreme Value Theory refers to the class of probabilistic and statistical techniques
used to extremes in random sequences and processes. It has many applications in-
cluding environmental and climate extremes, finance and insurance, reliability and
strength of materials, and even the study of sports records. In this introductory chap-
ter, we shall give some examples motivated by real data where there are natural ques-
tions concerning the probability of an extreme event that has occurred or might occur
in the future, or how large an extreme event might be expected over some period of
time. We shall introduce some of the main statistical methods that are used to study
extremes, and show how they can be used to answer such questions. In later chap-
ters, we shall develop the mathematical basis of this theory in much more detail, will
study extensions such as extremes in dependent process, multivariate extremes and
spatial extremes, and go into some of the applications in much greater depth.

1.1.1 Climate and Weather Extremes

In June and July, 2021, an extreme heatwave descended on western North America,
particularly affecting the US states of Washington and Oregon, and the Canadian
province of British Columbia. It resulted in, amongst others, a peak temperature of
49.6oC (121.3oF) in Lytton, British Columbia. Over 1,000 deaths were attributed
to the heatwave and there were extensive consequences to wildfires, damage to the
road and rail infrastructure, agriculture, and many other effects. Questions naturally
arose to what extent climate change was responsible for these events, and a paper
published online shortly afterwards [174] claimed that the event “was virtually im-
possible without human-caused climate change.”

As an illustration of a “typical” city in this region, Fig. 1.1 shows annual max-
imum temperatures from 1984–2022 in the city of Kelowna, British Columbia. As
is self-evident from the figure, the temperature for June 30, 2021, stands out very
clearly, recording 44.6oC, more than 5oC higher than the second highest annual max-
imum in the series. Even without considering the impact of climate change, natural
questions arising from this series include

1. What is the natural probability distribution of annual maximum temperatures in
this or similar locations?

1
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Figure 1.1 Annual maximum temperatures in Kelowna, BC

2. How extreme was the 2021 event? It is common to express extreme events in terms
of return values, for example, the N-year return value is often defined colloquially
at the event that occurs once in N years, though a more precise definition for cli-
mate calculations is that it is the event that occurs in an one year with probability
1/N. Based on that, what would be the appropriate N to make 44.6oC the N-year
return value?

3. Even before 2021, is there any evidence of an increasing trend in temperatures in
Kelowna, and if so, are there large-scale climate indicators (such as global mean
temperatures) that it can be related to?

In recent years, there have been many similar instances of extreme weather
events; two more are shown in Fig. 1.2, depicting the heatwave that hit the south-
ern half of the United Kingdom in July 2022, and the extreme rainfalls that followed
Hurricane Harvey in the Houston area in August 2017.

1.1.2 Insurance Risk of a Large Company

This example is based on [225], and was also featured in [224].
The data are a 15-year record of inflation-adjusted insurance claims above a cer-

tain threshold by a multinational oil company. 425 claims were in the dataset, though
some appeared to be multiple claims related to the same event and were grouped to-
gether for the analysis. The claims were grouped into seven “types”, listed in Table
1.1.

In the units adopted for the originl publication, the total of all 393 claims was
2989.6, and the ten largest claims, in order, were 776.2, 268.0, 142.0, 131.0, 95.8,
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Figure 1.2 Left: Annual maximum temperatures at Heathrow Airport, London, U.K. The peak
of 40.2oC (104.4oF) occurred on July 19, 2022. Right: Annual maxima of 7-day rainfall totals
during the hurricane season (July–November) at Houston Hobby airport, Texas, U.S.A. The
largest total of 94 cm. (37 in.) was reached during Hurricane Harvey on August 29, 2017.

Type Description Number Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Table 1.1 The seven types of insurance claim, with the total number of claims and the mean
size of claim for each type

56.8, 46.2, 45.2, 40.4, 30.7. Thus, the largest claim on its own accounted for 26%
of the total, and the ten largest claims together for 55%. This is fairly typical of
insurance data: a few of the very largest claims have by far the greatest impact, so any
statistical modeling of such data must account for the most extreme values. However,
this also raises the question of whether the most extreme claims should be treated as
outliers and analyzed separately from the rest of the data.

Some plots of this dataset are shown in Fig. 1.3: plot (a) is in effect a scatterplot
of the data (note the logarithmic scale on the vertical axis — the two largest claims
are in fact substantially larger than the rest of the data); plots (b) and (c) are meant
to illustrate the possibility of time trends (there is no visible evidence of any change
in the overall claim rate in (b); the plot of claim amounts in (c) does show a jump
in year 7, but this is largely explained by the two very large claims in that year);
plot (d) is called a mean excess over threshold plot, also known in survival analysis
as a mean residual life plot, which will be used later as a diagnostic in connection
with the Generalized Pareto distribution. Summarizing, we can outine the following
questions for discussion:
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1. What is the distribution of insurance claims, focussing particularly on the very
large claims?

2. Is there evidence of trend over time in either the claim times or the claim amounts?
3. Are there significantly different distributions among the seven claim types?
4. What is the likely distribution of future claims?

Each of these questions is important, but particularly, the likely distribution of
future claims is relevant to risk assessment and is arguably the main question of
interest to the company.

The original data on which this example are no longer accessible and were in any
case confidential data, but to allow new analyses and comparisons, a simulated set of
data has been constructed to mimic many of the properties of the original dataset.

1.1.3 Women’s Track Times

1993 saw something sensational in the world of women’s middle- and long-distance
running. At an event in Beijing, several Chinese athletes broke world records by
large margins; particular attention fell on the performances of Wang Junxia, who ran
8 minutes 6.11 seconds for the 3,000 meter event (more than 16 seconds faster than
the world record prior to this event), and 29 minutes 31.78 seconds for 10,000 meters
(41 seconds faster than the previous record). Rumors of drug use spread very rapidly,
but no athlete failed a drug test and the only evidence available at the time was in
the performances themselves. Subsequent papers by Robinson and Tawn [195] and
Smith [215] added strength to the claim that these events were indeed vary unusual,
but it was not until many years after the event that direct evidence of illegal drug use
was made public.

Fig. 1.4 shows the ten best performances by different athletes in the
women’s 3,000 meter and 1,500 meter events, for the period 1974–1993. The
data were recompiled for this publication from the World Athletics website
(https://www.worldathletics.org/records/all-time-toplists) and differ slightly from the
top-5 lists used in the original publications. In both cases, a large improvement can be
seen in 1993, more dramatically so for the 3,000 meter event than for 1,500 meters.
(The corresponding plot for 10,000 meters is not shown because detailed records are
only available from 1984 onwards, which would make statistical analysis of the re-
sults more problematic.) As in our examples for the weather and insurance datasets
discussed earlier, a key question is to characterize the probability distribution of ex-
treme events, but in this case, the focus is on the joint distribution of the best 5 or
the best 10 performances rather than the best one in each year. A minor difference
from the previous examples is that, in this case, the focus is on minima rather than
maxima, but minima are easily converted into maxima by simply reversing the signs,
so we do not need a whole separate theory for this. However, as will be seen, the joint
distribution for the best k events per year, where k > 1 (in this case, k = 5 or 10), is
a direct extension of the case k = 1, so long as the events themselves can reasonably
be treated as independent.

Given that the mere occurrence of a new world record would not, in itself, pro-
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Figure 1.4 Ten best times by different athletes in each year in the women’s 3000 m. and 1500
m. events

vide any reason to doubt its validity, the focus is more on the margin of the new
world record. Smith [215] framed the question as “Given that a new world record
occurred in 1993, what is the probability based on data prior to 1993 that the margin
of improvement is equal to or greater than what was actually observed?” The answer
to this question involved reformulating the question as one of predictive inference
and solving it through a Bayesian analysis.

1.2 Overview of Univariate Extremes

1.2.1 The Three Types Theorem and the Generalized Extreme Value Distribution

The traditional starting point of extreme value theory is the Three Types Theorem,
first stated by Fisher and Tippett [76] and later rederived (independently and more
rigorously) by Gnedenko [85]. Suppose X1,X2, . . . , are a sequence of independent,
identically distributed (i.i.d.) random variables whose common distribution function
is F , that is, F(x) = Pr{Xi ≤ x} for each i. Let Mn be the maximum of X1, . . . ,Xn. An
immediate result from the independence is

Pr{Mn ≤ x} = Fn(x). (1.1)

The result (1.1) is not, in itself, very interesting because, for any x such that 0 <

F(x) < 1, Fn(x)→ 0 as n→ ∞. Another way to express that is to say Mn
p→ ωF as

n→∞, where
p→means convergence in probability and ωF is the right-hand endpoint

of the distribution defined by F , in other words, ωF = sup{x : F(x)< 1}, which may
be finite or infinite. However, in plain English, all this is saying is that as the sample
size grows, the sample maxima get closer and closer to the right-hand endpoint of
the distribution, whether that’s finite or infinite, and this is not saying anything of
fundamental importance. (As a side comment, the convergence of Mn to ωF also
holds in other modes of convergence, such as almost sure convergence and, if second
moments are finite, L2 convergence, but in this book, when we talk about convergence
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of random variables, most of the time, this will be either convergence in probability
or convergence in distribution.)

The theory becomes much more interesting if we renormalize, that is, allow for
a scaling constant an > 0 and a location constant bn ∈ R, such that the renormalized
sample maxima converge to a limiting distribution that is nondegenerate, in other
words,

Pr
{

Mn−bn

an
≤ x
}

= Fn(anx+bn) → H(x) (1.2)

where H is a nondegenerate distribution function, that is, the distribution function of
some random variable that does not reduce to a deterministic constant (such as ωF in
our earlier discussion.)

The Three Types Theorem asserts that if nondegenerate H exists, it must be one
of three types:

H(x) = exp(−e−x) for all x ∈ R, (1.3)

H(x) =

{
0 if x < 0,
exp(−x−α) if x > 0,

(1.4)

H(x) =

{
exp(−|x|α) if x < 0,
1 if x > 0,

(1.5)

where in (1.4) and (1.5), α > 0 is any positive constant.
We should clarify what we mean by “type” here. Two distribution functions H

and H1 are said to be of the same type if

H1(x) = H(Ax+B) for all x,

for some A > 0 and B ∈ R. In other words, one distribution is derived from the other
by a simple location-scale shift. It is a fundamental property of a convergence result
like (1.2) that it can determine H only up to type, that is, if one nondegenerate H can
arise as a limit in (1.2), so can any other distribution function of the form H(Ax+B)
for A > 0 and B ∈ R. To see this, suppose (1.2) holds, and define a′n = anA, b′n =
anB+bn. Then

Fn(a′nx+b′n) = Fn(anAx+anB+bn) = Fn(an(Ax+B)+bn) → H(Ax+B),

in other words, H1(x) = H(Ax+B) can arise as a limit by simply changing the nor-
malizing constants an and bn. As a consequence of this, the most we can hope to do,
in determining the form of the limit H, is to define it up to transformations by type.
Expressed another way, if any of (1.3)–(1.5) holds as a limiting results in (1.2), so
does H(Ax+B) for any A > 0 and B ∈ R.

The distributions (1.3)–(1.5) are often called, respectively, the Gumbel, Fréchet
and Weibull distributions (or types), following fundamental early works such as [91,
78, 248]. As a side note, Weibull was an engineer with a fundamental interest in
strength of materials, and originally derived the distribution that bears his name from
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the notion that the strength of a system of independent elements may be represented
as the minimum of the strengths of the individual elements. In that form, it is often
written in the form F(x) = 0 for x < 0, 1− exp{−(x/σ)α} for x > 0, where σ > 0
is a scaling constant and α > 0 as in (1.5). However, this is just the mirror image of
(1.5), and we have already pointed out that maxima may be transformed into minima
by simply reversing the signs.

The three types may be combined into a single Generalized Extreme Value (GEV)
distribution:

H(x) =

exp
{
−
(

1+ξ
x−µ

ψ

)−1/ξ

+

}
if ξ 6= 0,

exp
{
−exp

(
− x−µ

ψ

)}
if ξ = 0,

(1.6)

where µ is a location parameter, ψ > 0 is a scale parameter and ξ is a shape pa-
rameter, and we interpret

(
1+ξ

x−µ

ψ

)
+

to be the larger of
(

1+ξ
x−µ

ψ

)
and 0. The

case ξ = 0 corresponds to the limit of the previous line as ξ → 0 and represents
the Gumbel distribution, while ξ > 0 to the Fréchet distribution with α = 1/ξ , and
ξ < 0 to the Weibull distribution with α = −1/ξ . We often refer to ξ > 0 as the
“long-tailed” case, where 1−F(x) ∝ x−1/ξ as x→∞, ξ = 0 as the “exponential tail”
case, and ξ < 0 as the “short-tailed” case, which has a finite right-hand endpoint at
ωH = µ−ξ/ψ . Note that since we have included a location parameter µ and a scale
parameter ψ in the definition of (1.6), there is no need for a separate statement about
all distributions of the same type, since all such cases are already included.

The GEV distribution was first proposed by von Mises [157] but was neglected
for many years. Its revival owes partly to the work of the British meteorologist A.F.
Jenkinson [124, 125], whose advocacy anticipated the modern treatment of this dis-
tribution with automated methods of estimation including the maximum likelihood
and probability-weighted moments (PWM) methods which we shall discuss in some
detail later.

1.2.2 Exceedances Over Thresholds

The second fundamental distributional result about extremes concerns exceedances
over a high threshold. In many contexts, the distribution of very high (or low) val-
ues is the main object of interest; for instance, temperatures over 35oC, or insurance
claims over $10 million. A natural way to think of such values is to model the ex-
ceedances over a threshold; for instance, given that the daily rainfall at a site is over
10 cm., what is the distribution of the excess, i.e. the amount by which the rainfall
on a given day exceeds 10 cm.? Mathematically, this is equivalent to considering the
distribution of X conditionally on exceeding some high threshold u:

Fu(y) = Pr(Y ≤ u+ y | Y > u) =
F(u+ y)−F(u)

1−F(u)
, y > 0,



OVERVIEW OF UNIVARIATE EXTREMES 9

where Y is a random variable with distribution function F . As u→ ωF = sup{x :
F(x)< 1}, often find a limit

lim
u→ωF

Fu

(
y

σu

)
= G(y;1,ξ ) (1.7)

where {σu} is a sequence of scaling constants and G is the Generalized Pareto Dis-
tribution (GPD)

G(y;σ ,ξ ) =

{
1−
(
1+ξ

y
σ

)−1/ξ

+
if ξ 6= 0,

1− e−y/σ if ξ = 0.
(1.8)

Although (1.7) combined with (1.8) is the correct formal definition, in practice we
often express the result more informally as

Fu(y) ≈ G(y;σu,ξ ) for y > 0 and u large. (1.9)

In (1.8), the interpretation of (. . .)+ is the same as in (1.6), i.e. the larger of the
included term or 0.

The fact that (1.7) implies (1.8) is the threshold-exceedances equivalent of the
Three Types Theorem. Pickands [178] proved that, for a given distribution function
F , (1.7) and (1.8) hold if and only if F is in a domain of attraction for sample maxima,
i.e. (1.2) holds for some non-degenerate H (which, by our previous discussion, is
necessarily of GEV form). In fact, part of Pickands’ result is that the ξ arising in (1.8)
is the same ξ as in the equivalent GEV representation arising from (1.2). Balkema
and de Haan [10] established the same result for the cases ξ ≥ 0, and other results
for what in survival analysis is known as the residual life distribution.

However, when thinking about extremes in terms of exceedances over a high
threshold, the GPD is only part of the story. We must also consider the rate of ex-
ceedances over the threshold as well. In a context like climate change, we may well
want to test whether the rate of high-threshold exceedances is increasing over time,
which is a different question from whether the distribution of excess values over the
threshold is increasing. The two may be tied together in the Poisson-GPD model for
extremes, as follows:

1. The number, N, of exceedances of the level u in any one year has a Poisson distri-
bution with mean λ ,

2. Conditionally on N ≥ 1, the excess values Y1, ...,YN are IID from the GPD.

Note that, with the inclusion of the parameter λ for the rate of exceedance, this
model again has three parameters, same as the GEV. In fact, the two are closely
related, as shown by the following argument.

Suppose x > u and ξ 6= 0. The probability that the annual maximum of the
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Poisson-GPD process is less than x is

Pr{ max
1≤i≤N

Yi ≤ x} = Pr{N = 0}+
∞

∑
n=1

Pr{N = n, Y1 ≤ x, ... Yn ≤ x}

= e−λ +
∞

∑
n=1

λ ne−λ

n!

{
1−
(

1+ξ
x−u

σ

)−1/ξ

+

}n

= exp

{
−λ

(
1+ξ

x−u
σ

)−1/ξ

+

}
. (1.10)

The right hand side of (1.10) is also of GEV form, equivalent to (1.6) with change
of parameters.

1.2.3 The r-largest Order Statistics Approach

Suppose (1.2) holds with limit H of GEV form (1.6). Suppose, instead of just con-
sidering the maximum value from a sample of size n, we consider the joint distri-
bution of the largest r order statistics, where r ≥ 1 is fixed in the limit n→ ∞. If If
Xn,1 ≥ Xn,2 ≥ . . .≥ Xn,r are the r largest order statistics from an IID sample of size n,
and an and bn are the same EVT normalizing constants as in (1.2), then(

Xn,1−bn

an
, ...,

Xn,r−bn

an

)
converges in distribution to a limiting random vector (Y1, ...,Yr), whose density is

h(y1, ...,yr) = ψ
−r

r

∏
i=1

(
1+ξ

yi−µ

ψ

)−1/ξ−1

exp

{
−
(

1+ξ
yr−µ

ψ

)−1/ξ
}

(1.11)

provided only that 1+ ξ
yi−µ

ψ
> 0 for each of i = 1, . . . ,r. The equivalent form of

(1.11) when ξ = 0 is given by

h(y1, ...,yr) = ψ
−r

r

∏
i=1

{
e−(yi−µ)/ψ

}
exp
{
−e−(yr−µ)/ψ

}
. (1.12)

Results equivalent to (1.11) or (1.12) were first developed in a series of papers on
extremal processes by Dwass [61], Lamperti [134] and Weissman [249, 251, 250];
the first paper to propose this as a statistical model was by Weissman [252] and
subsequently extended by Gomes [88], Smith and Weissman [228], Smith [214] and
Tawn [234]. As a notational point, earlier authors used k rather than r to denote the
number of order statistics, but Smith [214] wrote r to avoid confusion with the fact
that k was, at that time, used by many authors as the shape parameter of the GEV
distribution (equivalent to −ξ in the notation of (1.6)). That notation has largely
fallen out of use so the distinction seems irrelevant now.
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From an applied viewpoint, this model seems natural when the data consist of
the r or k largest or smallest values in each year, such as in our example of women’s
track times (Section 1.1.3), but it should be noted that the model only applies where
the order statistics are derived from independent observations. In the women’s track
times example, this condition has been fulfilled by listing the best times in each year
by different athletes.

1.2.4 Point Process Approach

The point process viewpoint was originally proposed by Pickands [177] and adopted
for statistical estimation purposes in [220]. For a more up to date presentation, we
refer particularly to Chapter 7 of Coles [33] and the review in [224].

The key idea is represented in Fig. 1.5. In this viewpoint, the exceedances over
a high threshold u are represented by points on a two-dimensional diagram, where
time is represented on the horizontal access and the level of the process on the ver-
tical axis. In the limit as u→ ωF and the time constant T → ∞, this point process is
approximated by a two dimensional point process, whose intensity measure is repre-
sented by the formula

Λ(A) = (t2− t1)
(

1+ξ
y−µ

ψ

)−1/ξ

+

. (1.13)

Here, A represents a set of the form (t2− t1)× (y,∞), i.e. A contains all the events
within a time interval (t1, t2) that exceed some high level y ≥ u. Λ(A) is then the
expected number of events within the set A. It can be shown that the GEV distribution
for annual maxima, the GPD for high threshold exceedances, and the formula (1.11),
can all be derived from (1.13), at least so long as we confine our attention to events
above the threshold u.

To explain this in a little more detail, we first elaborate on what the represen-
tation as a nonhomogeneous Poisson process actually means. Our explanation will
closely follow previous expositions given in [33, 224], or [191] for a more thorough
treatment of point processes in an extreme value context.

A point process on some sample space S is a stochastic process that places
points at random locations in S . Typically S is a complete separable metric space
(in all our examples, S will be a subset of Rd for some d) and will be specific by
intervalued-random variables N(A), A∈A where A is a family of subsets of S , for
example, all the Borel sets. The point process is simple if it does not have multiple
points, in other words, for any single-point set A = {x} for some x ∈ S , N(A) is
either 0 or 1. In the followingm we shal only consider simple point processes.

A point process N is said to be a nonhomogeneous Poisson process with intensity
measure Λ if it satisfies:
(i) N(A1), . . . ,N(Ak) are independent random variables for any sequence of disjoint

sets A1, . . . ,Ak (disjoint means that the intersection of Ai and A j is empty whenever
i 6= j),

(ii) Pr{N(A) = n}= Λ(A)ne−Λ(A)

n! for n = 0,1,2, . . ..
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Figure 1.5 Illustration of Point Process Model.

Property (ii) is, of course, equivalent to the statement that N(A) has a Poisson
distribution with mean Λ(A), hence the name.

Now let us suppose that Λ has a density λ (·), in other words,

Λ(A) =
∫

A
λ (x)dx, A ∈A . (1.14)

We use vector notation here because, in general, x is a vector in the d-dimensional
set S for some d ≥ 1.

Then, another property of a nonhomogenous Poisson process is this: given
N(A) = n, the conditional density of the random points X1, . . . ,Xn is

n

∏
i=1

λ (xi)

Λ(A)
. (1.15)

Combining (1.15) with the Poisson distribution for N(A), we have that the joint con-
ditional density for X1, . . . ,XN(A) is

∞

∑
n=1

n

∏
i=1

{
λ (xi)

Λ(A)

}
·Pr{N(A) = n} =

∞

∑
n=1

n

∏
i=1

{
λ (xi)

Λ(A)

}
· Λ(A)

ne−Λ(A)

n!

=
1

N(A)!
·

N(A)

∏
i=1
{λ (xi)} · e−Λ(A). (1.16)

In practice, the factor 1
N(A)! is usually omitted but the remaining terms

∏
N(A)
i=1 {λ (xi)}e−Λ(A) may be treated as the likelihood function for the process and

hence used to estimate any unknown parameters in λ (·).
Example: Application to the r largest order statistics in a time interval of unit

length. Consider Fig. 1.5 where t2 − t1 = 1 and the lower boundary of the set A
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is set at y = Y(r) where Y(1) ≥ Y(2) ≥ . . . ≥ Y(r) are the r largest heights of points
within the time interval [t1, t2]. Also assume T(1),T(2), . . . ,T(r) are the corresponding
time points, e.g. T(1) is the time point at which the largest height Y(1) is observed.
In that case, the argument x in (1.14) may be equated with (t,y) where t is time and

y is height, and the measure (1.13) implies λ (t,y) = 1
ψ

(
1+ξ

y−µ

ψ

)−1/ξ−1
defined

wherever 1+ ξ
y−µ

ψ
> 0. Note that the expression for λ (t,y) does not depend on t,

since in this simplest form of the model, the process is assumed uniform along the
time axis.

Applying formula (1.15), the joint density of (T(1),Y(1)), . . . ,(T(r),Y(r)) on the set
A is given by

r

∏
i=1

{
1
ψ

(
1+ξ

Y(i)−µ

ψ

)−1/ξ−1
}
·
(

1+ξ
Y(r)−µ

ψ

)−1/ξ

+

(1.17)

provided 1+ ξ
Y(i)−µ

ψ
> 0 for i = 1, . . . ,r. This is the same formula as (1.11) after

substituting y1, . . . ,yr for Y(1), . . . ,Y(r).

1.3 Estimation

1.3.1 GEV Model

Finding appropriate distributions for extremes of natural processes is a problem that
has been carefully studies for at least 100 years. Before the present-day interest in
weather extremes, many of the most studies applications were to extreme in hydro-
logical series, such as the annual maximum of a daily river flow series. The famous
book by Gumbel [91] was motivated by these problems, but the approach is by now
quite out of date. Briefly, Gumbel considered the three types of (1.3)–(1.5) as three
separate families of distributions, and provided moments-based estimators for the
location and scale parameters conditional on the type (and, in the case of (1.4) or
(1.5), the parameter α . For the determination of type, and if needed an estimate of α ,
Gumbel relied on probability plotting techniques, essentially, fitting a curve through
a normalized probability plot. This method had the advantage of being straightfor-
ward to apply without advanced computation, but it relied on visual judgment to
determine the appropriate curve, and in any case, equivalent computations may be
made automatically with modern computers.

In contrast, the papers of Jenkinson [124, 125] were remarkably modern in their
approach. Jenkinson [124] derived a formula equivalent to the GEV distribution,
though he was apparently unaware of the precedent of von Mises [157]. This ap-
proach was extended by Jenkinson [125] who gave the first treatment of maximum
likelihood for this problem.

In this connection, Jenkinson commented “The method of Maximum Likelihood
... is generally accepted as being the best for estimation of parameters; and although
it requires a great deal of computation it must be considered essential when impor-
tant decisions depend on the estimation, especially if the data are not a large sample
and/or they are rather irregular.” ([125], page 196). He went on to present an entirely
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hand-computation method of computing the maximum likelihood estimates, though
he also proposed a method of sextiles that very closely approproximated the MLE.
Briefly, his proposal was to calculate means in each of the sextiles of the distribution:
w1 for the mean of the lower one sixth of the order statistics, w2 for the next sixth, and
so on up to w6 for the largest sixth. He then calculated the ratio (w2−w1)/(w6−w5)
— note that this quantity is location-scale invariant and, therefore, its distribution de-
pends only on the GEV shape parameter, which we now call ξ but Jenkinson defined
instead a quantity k, equivalent to −ξ in our notation. Then, Jenkinson provided a
table that translated the value for (w2−w1)/(w6−w5) into an estimate of k that in
many cases is very close to the MLE of k.

Value Occurrences Value Occurrences Value Occurrences
12 1 19 11 25 5
14 2 20 9 26 5
15 4 21 21 27 3
16 4 22 6 28 1
17 3 23 8 29 1
18 4 24 3 30 1

Table 1.2 Jenkinson’s [125] table of annual maximum floods in Hartford, CT, 1843–1934

Example. Table 1.2 is taken from [125]. Based on 92 years of annual maximum
floods in Hartford, Connecticut, Jankinson calculated w2−w1

w6−w5
= 0.937 and, based on

his own tables, estimated ξ to be −0.26 (in Jenkinson’s own notation, k = 0.26). He
then showed how to improve that estimate by, in effect, a Newton-Raphson proce-
dure to find the exact solutions of the likelihood equations (equivalent to equations
(1.22) following). These were all hand calculations, apparently performed without
any electronic assistance. After two iterations he claimed the final result as follows
(again, translated to the notation of this chapter): µ̂ = 19.68, ψ̂ = 3.48, ξ̂ =−0.258.
He also stated, “The absolute maximum flood stage is estimated at 33.2 feet; and that
for T = 1000 years is 30.9 feet.”

For the present discussion, these values have been recalculated using the numer-
ical methods to be described in more detail below: µ̂ = 19.6809, log ψ̂ = 1.2467
(which translates to ψ̂ = 3.4788) and ξ̂ = −0.2575. The estimated endpoint is
µ̂ − ψ̂/ξ̂ = 33.193. For the T -year return value, we solve exp

{
−
(

1+ξ
y−µ

ψ

)}
=

1−1/T which leads to

RVT = µ +ψ · {− log(1−1/T )}−ξ −1
ξ

. (1.18)

Substituting µ̂, ψ̂, ξ̂ for µ,ψ,ξ in (1.18) and setting T = 1000, we deduce R̂V1000 =
30.9105, fully consistent with Jenkinson’s result.

To go into more detail about the equations for the MLE, based on the GEV model
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(1.6), we have the density

h(x ; µ,ψ,ξ ) =
dH(x)

dx

=


1
ψ

(
1+ξ

x−µ

ψ

)−1/ξ−1
exp
{
−
(

1+ξ
x−µ

ψ

)−1/ξ

+

}
if ξ 6= 0,

1
ψ

exp
{
−exp

(
− x−µ

ψ

)
− x−µ

ψ

}
if ξ = 0.

(1.19)

We have expressed the function h as a function of µ,ψ and ξ , as well as x, to facili-
tate the transition to the following discussion of the method of maximum likelihood
estimation (MLE).

From now on we consider only the case ξ 6= 0: even if we suspect that the true
value of ξ is 0, there can still be advantages to assuming a GEV with ξ 6= 0 (see the
discussion of penultimate approximations in Chapter 2) and in any case, the MLE
never leads to ξ̂ of exactly 0, though it may well be indistinguishable from 0 in the
sense that a hypothesis test of H0 : ξ = 0 against the alternative H1 : ξ 6= 0 does not
reject the null hypothesis. We shall see man examples like this later. Proceeding for
now, however, assuming ξ 6= 0, for a sample X1, . . . ,Xn, the negative log likelihood
(NLLH) is given by

`(µ,ψ,ξ | X1, . . . ,Xn) =
n

∑
i=1
{− logh(Xi) ; µ,ψ,ξ )}

=
n

∑
i=1

{
logψ +

(
1
ξ
+1
)

log
(

1+ξ
Xi−µ

ψ

)
+

(
1+ξ

Xi−µ

ψ

)−1/ξ
}

(1.20)

the whole expression being defined only when 1+ξ
Xi−µ

ψ
> 0 for each Xi (otherwise

` is technically +∞; in practice, numerical routines often set ` to a very large value,
say 1010, when the constraints are violated).

The likelihood equations based on (1.20) are given by

∂`

∂ µ
=

∂`

∂ψ
=

∂`

∂ξ
= 0, (1.21)

where algebraic expressions for the partial derivatives may be derived by routine cal-
culus manipulations, though in practice, are more often approximated numerically.
Technically, a solution of (1.22) defines only a local maximum of the likelihood
function, that is not necessarily a global maximum. In fact, it can be shown that if
ξ <−1, the global maximum of the likelihood function is +∞ (and hence `→−∞),
achieved as 1+ξ

Xmax−µ

ψ
→ 0, Xmax denoting the largest of X1, . . . ,Xn. However, this

is the extremely short-tailed version of the GEV and is generally considered unre-
alistic in practice. At the other end of the scale, ξ > 1 is the extremely long-tailed
case, corresponding to a distribution with infinite mean, and this is also considered
unrealistic in most practical applications (though not all). Therefore, in practice it
is very common to restrict |ξ | < 1 and to use a numerical optimization routine to
minimize `, which is equivalent in practice to solving the equations (1.22). In R, the
optimization functions optim or nlm have been found to work well in practice.
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This discussion assumes that there can only ever been one solution to the equa-
tions (1.22), which has never been proved, though there are no known counter-
examples. Another practical adjustment which is often made is to replace ψ by logψ ,
on the grounds that logψ is unrestricted in range, but this does not affect the theoret-
ical prioerties of the estimators and we shall ignore that here.

Once we have obtained the MLE, the logical next step is to estimate the standard
errors of the estimates. A key step here is to calculate the observed information
matrix, derived from the hessian of `, i.e. the matrix

I(µ̂, ψ̂, ξ̂ ) =


∂ 2`
∂ µ2

∂ 2`
∂ µ∂ψ

∂ 2`
∂ µ∂ξ

∂ 2`
∂ µ∂ψ

∂ 2`
∂ψ2

∂ 2`
∂ψ∂ξ

∂ 2`
∂ µ∂ξ

∂ 2`
∂ψ∂ξ

∂ 2`
∂ξ 2

 (1.22)

where all the second-order partial derivatives are evaluated at the maximum likeli-
hood estimators (µ̂, ψ̂, ξ̂ ). Again, it is possible but extremely tedious to calcuate all
the second-order derivatives by direct calculus methods, but it is common in practice
to do this numerically as well, for example, using the hessian=T option with the
numerical routines optim or nlm.

Once we have the observed information matrix I(µ̂, ψ̂, ξ̂ ), according to con-
ventional maximum likelihood theory, its inverse I−1(µ̂, ψ̂, ξ̂ ) is considered a good
(asymptotic) approximation to the variance-covariance matrix of (µ̂, ψ̂, ξ̂ ). In partic-
ular, the square roots of the diagonal entries of I−1(µ̂, ψ̂, ξ̂ ) are often displayed as
the standard errors of µ̂ , ψ̂ and ξ̂ .

We can go further and calculate the Fisher information matrix, defined as

In(µ,ψ,ξ ) =


E ∂ 2`

∂ µ2 E ∂ 2`
∂ µ∂ψ

E ∂ 2`
∂ µ∂ξ

E ∂ 2`
∂ µ∂ψ

E ∂ 2`
∂ψ2 E ∂ 2`

∂ψ∂ξ

E ∂ 2`
∂ µ∂ξ

E ∂ 2`
∂ψ∂ξ

E ∂ 2`
∂ξ 2

 (1.23)

where E denotes expected value, the partial derivatives are evaluated at the true val-
ues µ,ψ,ξ , and the expression is written In to denote also the dependence on sample
size n. Because the observations are IID, In = nI1, and very often we refer to I1
as the Fisher information matrix.

The Fisher information matrix has a similar interpetation to the observed infor-
mation matrix: in particular, I −1

n is an approximation to the variance-covariance
matrix of (µ̂, ψ̂, ξ̂ ), and its diagonal entries may also be quoted as standard errors
of the MLEs. Ever since a famous paper of Efron and Hinkley [65], the approxima-
tion based on the observed information matrix is generally considered superior to
the approximation based on the Fisher information matrix, though the latter remains
important for theoretical calculations.

The first theoretical calculations of the Fisher information matrix for the GEV
were due to Prescott and Walden [180, 181]. In particular, [180] showed that the
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Fisher information matrix I1 is finite when ξ >− 1
2 , and derived the matrix itself as

I1(µ,ψ,ξ ) =


p

ψ2
Γ(2+ξ )−p

ψ2ξ
− 1

ψξ

(
q− p

ξ

)
Γ(2+ξ )−p

ψ2ξ

1
ψ2ξ 2 {1−2Γ(2+ξ )+ p} − 1

ψξ 2

{
1− γ + 1−Γ(2+ξ )

ξ
−q+ p

ξ

}
− 1

ψξ

(
q− p

ξ

)
− 1

ψξ 2

{
1− γ + 1−Γ(2+ξ )

ξ
−q+ p

ξ

}
1

ξ 2

{
π2

6 +
(

1− γ + 1
ξ

)2
− 2q

ξ
+ p

ξ 2

}


(1.24)

where p = (1 + ξ )2Γ(1 + 2ξ ), q = Γ(2 + ξ ){Ψ(1+ξ )+1/ξ +1}, Γ(x) is the
gamma function, Ψ(x) = d logΓ(x)

dx is the digamma function, and γ = 0.5772157.. is
Euler’s constant.

A formal statement of the asymptotic normality of MLEs is given as

√
n


 µ̂n

ψ̂n

ξ̂n

−
 µ

ψ

ξ

 d→ N

 0
0
0

 ,I −1
1

 . (1.25)

Focusing on the case ξ < 0 and a wide class of distributions including the GEV, Smith
[217] provided the first detailed treatment of the result (1.25) and corresponding
results for the cases where ξ ≤− 1

2 .
Recently, some gaps in the proof have been noted and corrections provided [56,

23, 57, 260].

1.3.2 GPD and Poisson-GPD Models

Suppose we have n observations Y1, . . . ,Yn from the GPD model, G(y ; σ ,ξ ) =

1−
(
1+ξ

y
σ

)−1/ξ

+
. The density is g(y ; σ ,ξ ) = dG(y ; σ ,ξ )

dy = 1
σ

(
1+ξ

y
σ

)−1/ξ−1
+

and
hence the NLLH is given by

`n(σ ,ξ | Y1, . . . ,Yn) = n logσ +

(
1
ξ
+1
)

∑ log
(

1+ξ
Yi

σ

)
(1.26)

defined when 1+ξ
Yi
σ
> 0 for all i.

The previous calculations, in which we minimize ` by numerical optimization, or
equivalently, solve the likelihood equations ∂`

∂σ
= ∂`

∂σ
= 0, remain valid for this model

as well. Once again, we can define the Fisher information matrix to be 1
n times the

matrix of expected second-order partial derivatives(
∂ 2`n
∂σ2

∂ 2`n
∂σ∂ξ

∂ 2`n
∂σ∂ξ

∂ 2`n
∂ξ 2

)

which was calculated explicitly in the appendix of [219] as

I1 =

(
1

σ2(1+2ξ )
1

σ(1+2ξ )(1+ξ )
1

σ(1+2ξ )(1+ξ )
1

(1+2ξ )(1+ξ )

)
(1.27)
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provided ξ > − 1
2 ; [219] also went into details about what happens when ξ ≤ − 1

2 .
Again as with the GEV case, provided ξ >− 1

2 , the asymptotic covariance matrix of
the MLEs is given by n−1I −1

1 where an explicit expression for I −1 is (see [50])

I −1
1 = (1+ξ )

(
2σ2 −σ

−σ 1+ξ

)
. (1.28)

(These formulas incorporate a change of notation from the original papers which,
following what was originally Jenkinson’s notation, wrote k in place of our −ξ .)

[50] noted that the minimization of (1.26) can be simplified, as follows: if we
write σ = ξ

τ
, (1.26) may be rewritten as

`n(τ,ξ | Y1, . . . ,Yn) = n logξ −n logτ +

(
1
ξ
+1
)

∑ log(1+ τYi) (1.29)

whose minimum with respect to ξ , for fixed τ , can be calculated directly as

ξ̂τ =
1
n

n

∑
i=1

log(1+ τYi) (1.30)

again provided 1+ τYi > 0 for all i. Substituting (1.30) into (1.29) reduces the prob-
lem to a one-parameter optimization, for which simpler numerical algorithms exist.
However, this simplification of the MLE does not typically apply when the model is
extended to include covariates, so the result is of limited utility.

The Poisson-GPD model is only a small extension of this. Suppose the number
of exceedances in a given year is N, with a distribution which is assume Poisson with
mean λ , and the exceedances Y1, . . . ,YN are independent GPD(σ ,ξ ) given N. The
likelihood function for this model is

λ Ne−λ

N!
·

N

∏
i=1

g(Yi ; σ ,ξ )

which immediately factorizes into the likelihood function for N (with MLE λ̂ = N)
and the same likelihood as just discussed for the GPD component. These models
become more complicated when covariates are introduced [50].

1.3.3 The r Largest Order Statistics Model

The asymptotic distribution of the r largest order statistics from a sample was already
given in (1.11) and (1.13). The idea of using this model for estimation was first
recognized in the 1970s; the paper by Weissman [252] was particulary influential in
showing that this approach could lead to estimation and testing procedures distinct
from those using the classical three types of extreme value limit distributions. Since
then, the idea has been used for many more general models in extreme value theory.
As we shall see, there is a close connection with threshold exceedances in the GPD,
but the two approaches are sufficiently distinct to warrant separate treatment.
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There are two ways to think about this problem. One is to treat the entire dataset
as a single sample and pick out the r largest order statistics from that. The other
is to subdivide the data into blocks, such as blocks of one year, and pick out the r
largest order statistics in each block. For example, our previous example of women’s
track times is of this form, with r = 5 or 10 representing the number of extreme
performances each year that are included in the sample. The two approaches require
somewhat different approaches to estimation, so we treat them separately.

1.3.3.1 Single Sample

Consider the case of a single sample of r largest order statistics Y1 ≥ Y2 ≥ . . . ≥ Yr
when the parent distribution is Gumbel, or the ξ = 0 subcase of the GEV distribu-
tion. The joint distribution (1.12) may then be treated as a likelihood function, and
maximized to find estimators of the parameters µ and ψ . Writing the negative log
likelihood as

`(µ,ψ | Y1, . . . ,Yr) = r logψ +
r

∑
i=1

Yi−µ

ψ
+ exp

(
−Yr−µ

ψ

)
. (1.31)

Setting ∂`
∂ µ

= ∂`
∂ψ

= 0 leads quickly to the estimators

ψ̂ =
1
r

r

∑
i=1

(Yi−Yr),

µ̂ = Yr + ψ̂ logr, (1.32)

a pleasing (and rather rare) case in extreme value theory where it is possible to ob-
tain closed-form expressions for the maximum likelihood estimators. This result is
due to Weissman [252], who also used the joint distribution (1.12) to investigate the
statistical properties of the estimators.

Another case of a rather similar problem (in fact a simple transformation of the
one just given) arises when the appropriate extreme value limit is of “two-parameter
Fréchet” form, i.e. H(x) = exp{−(x/σ)−α for x > 0, σ > 0, α > 0. (We could also
introduce a location parameter into this problem, i.e. replace x by x− µ for some
unknown µ , but this has the same tail behavior and it is most common in practice
just to assme µ = 0.) In this case, the joint density formula corresponding to (1.11)
is

h(y1, . . . ,yr) = σ
−r

r

∏
i=1

{
α

(yi

σ

)−α−1
}

exp
{
−
(yr

σ

)−α
}

(1.33)

defined on the order statistics y1 ≥ . . .≥ yr > 0. Replacing the yi’s by sample values
Yi’s, we define the negative log likelihood in this case to be

`(σ ,α| Y1, . . . ,Yr) = r logσ − r logα +(α +1)
r

∑
i=1

log
(

Yi

σ

)
+

(
Yr

σ

)−α

. (1.34)
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Minimization of (1.34) with respect to σ and α leads to the closed-form estimators

α̂ =

{
1
r

r

∑
i=1

(logYi− logYr)

}−1

,

σ̂ = r1/α̂Yr (1.35)

which is in fact very similar to (1.32) (replace Yi in (1.32) by logYi in (1.35).
There is even a third formulation that does not directly use extreme value theory

at all, but assumes we have an “exact Pareto tail” above some threshold u: the full
sample X1, . . . ,Xn are IID from a distribution function F that satisfies

F(x) = 1− cx−α , x≥ u, (1.36)

where c> 0, α > 0, and u is a known threshold, with F(x) undefined for x< u. In this
case, the natural formulation of the likelihood function is to assume order statistics
Y1 ≥ . . .≥Yr > u in [u,∞), treating the observations below u as censored. In that case
the joint density is

r

∏
i=1

(
αcY−α−1

i
)(

1− cu−α
)n−r

.

The corresponding negative log likelihood in this case is

`(c,α | Y1, . . . ,Yr,u) =−r logα− r logc+(α +1)
r

∑
i=1

logYi− (n− r) log(1− cu−α).(1.37)

Setting d`
dc =

d`
dα

= 0 in this case produced the closed-form estimators

α̂ =

{
1
r

r

∑
i=1

(logYi− logu)

}−1

,

ĉ =
r
n

uα̂ . (1.38)

The estimators (1.38) were first derived by Hill [113] and in particular α̂ is often
called Hill’s estimator, but the close resemblence between α̂ in (1.38) and (1.35) (in
the one case, conditioning on the threshold u, and in the other case, on Yr) shows that
they are really the same estimator, so henceforth we shall refer to either estimator as
the Hill-Weissman estimator.

The corresponding case of a GEV distribution with all three parameters unknown
does not lead to closed form estimators, but it is still possible to treat (1.11) as a like-
lihood function and find maximum likelihood estimators µ̂, ψ̂, ξ numerically. The
special case where this procedure is used to estimate the endpoint of the distribution
was analyzed in detail by Smith and Weissman [228].
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1.3.3.2 Multiple Samples

The “multiple samples” version of this analysis applies when the data are divided into
blocks and we are taking into account the r largest order statistics within each block.
In environmental and some other examples (including our track records dataset) the
“block” is usually equated with one year of data. For convenience, in the following
discussion we shall refer to the blocks as year, but the theory of course does not
require that each block is exactly one year in length. This model is of greatest interest
when there are additional covariates, so that the distributions are not the same in all
blocks, but we first treat the simplest case where that possibility is ignored.

Suppose, then, we have observations in year t ordered as Yt,1 ≥ . . . ≥ Yt,r and
assume the distribution for annual maxima in year t is GEV with parameters µ, ψ, ξ .

1.3.4 Point Process Approach

1.4 Analysis of Data in Kelowna

Consider the Kelowna data from Fig. 1.1. We are trying to characterize the distri-
bution of the annual maximum temperatures with a view towards assessing how ex-
treme was the 2021 event. In performing such an analysis, it makes sense to exclude
the 2021 event itself — we are trying to assess how plausible the 2021 event was
from the point of view of never having seen such an extreme event before. With this
objective, it makes sense to fit a distribution to the data from 1984 to 2020 (37 years).
Based on our earlier discussion of extreme value distributions, a natural model would
appear to be the GEV distribution (1.6), where the parameters µ,ψ,ξ are unknown
and estimated by maximum likelihood.

An initial maximum likelihood fit produces the estimates in Table 1.3.

Parameter Estimate S.E. t-value p-value
µ 35.7119 0.3098 115.2624 0

logψ 0.5477 0.1305 4.1962 2.7×10−5

ξ –0.4203 0.1007 –4.1718 3.0×10−5

Table 1.3 Fitting the initial GEV model to the Kelowna data, 1984–2021.

The second column gives the maximum likelihood estimates; the third column
the standard errors; the fourth column the t values (estimate divided by its standard
error) and the fifth column the p-value, assuming a normal distribution for the esti-
mate itself (which is certainly not an exact result, but good enough for the present
discussion). The p-values for µ and logψ are not especially meaningful since there
is no a priori reason to expect either of these parameters to be 0, but the p-value
for ξ is of interest because the case ξ < 0 is the “short-tailed” case while ξ > 0
would be “long-tailed”. In this case we see ξ̂ < 0 and the associated p-value shows
a clear-cut rejection of the null hypothesis ξ = 0 (or ξ ≥ 0). The distribution there-
fore has a finite upper endpoint, and the MLE fit leads to the estimated endpoint
µ̂ − ψ

ξ
= 35.7119 + e0.5477

0.4203 ≈ 39.83. This is less than the observed 2021 value of
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Figure 1.6 Correlation of annual maximum temperatures in Kelowna with (a) anomalies from
global mean summer temperature, (b) anomalies from a regional mean summer temperature
based on 40–55oN latitude, 110–125oW longitude.

44.6oC. Although the analysis given here is only for one station and not necessarily
representative for the entire region, it is results of this nature than have given rise to
statements suggesting that this heatwave was “virtually impossible without human-
caused climate change” [174].

A more extensive version of the analysis would be to consider possible covari-
ates. We know that global temperatures are rising; as a first step to considering the
influence of climate change on extreme events, it is natural to consider how the fit-
ted GEV distribution correlates with measure of global temperature rise. Indeed, this
kind of analysis has been presented in [174] and similar references, though the ver-
sion presented here is more limited because it only presents a single station (but the
underlying themes are the same). Specifically, [174] considered global mean surface
temperature (GMST) as a covariate. There are several publicly accessible datasets for
global temperatures; the analysis considered here is from the Climate Research Unit
of the University of East Anglia (known as the HadCRUT5 dataset). As with most
datasets of this nature, the observations are represented as anomalies, which essen-
tially means that stations included in the analysis are first standardized to the means
from 1961–1990 before being aggregated spatially (the HadCRUT5 website gives
detailed information about how the dataset was constructed and the reason for com-
puting anomalies). Fig. 1.6(a) shows the Kelowna annual maxima plotted against the
GMST summer (average of June, July, August monthly mean) anomalies. The corre-
lation of 0.4 suggests that it would be worthwhile developing a more detailed model
for the association between the two series.

One possible approach to this problem is to extend the model (1.6) to one of the
form

Pr{Yt ≤ y} = exp

{
−
(

1+ξt
x−µt

ψt

)−1/ξt

+

}
(1.39)

where Yt represents annual maximum temperature in year t and µt , ψt , ξt are the
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GEV parameters in year t. (We are not writing ξt = 0 as a separate case here, but if
it were the case, it would reduce to the Gumbel distribution as in (1.6)). We write
the model in this way to clarify the point that any combination of the three GEV
parameters may be time dependent, but here, we use the simplest form of this model,
with

µt = β0 +β1xt ,

logψt = logψ, (1.40)
ξt = ξ ,

i.e. µt depends linearly on the covariate xt while ψt and ξt are independent of t. We
represent this model in terms of logψt , rather than simply ψt , to ensure we fulfil the
constraint ψt > 0, and this would be even more relevant if we had covariates in ψt as
well (not included here, but will be in later analyses).

We therefore fit the model (1.40) with xt the GMST anomaly, with the results in
Table 1.4. It can be seen that the parameter β1 is indeed statistically significant, with
a p-value of 0.02, which confirms that global temperature means are associated with
extreme temperatures in Kelowna (whether the association is strictly “causal” is a
point we shall not address here), but the result is possibly not as convincing as we
would like.

In this case we can estimate the maximum possible temperature for 2021 as β̂0 +

β̂1x∗−ψ̂/ξ̂ where x∗ is the observed GMST anomaly for 2021 (0.762). This however
leads to an estimate of 41.6oC, still well below the observed value of 44.6oC.

Parameter Estimate S.E. t-value p-value
β0 34.3983 0.6427 53.5175 0.0000

logψ 0.4088 0.1292 3.1632 0.0016
ξ –0.2879 0.1101 –2.6139 0.0090
β1 2.6448 1.1503 2.2992 0.0215

Table 1.4 Fitting the initial GEV model to the Kelowna data, 1984–2021.

A second analysis of this form is illustrated by Fig. 1.6(b) and Table 1.5. Instead
of GMST as the covariate xt , we have used a regional mean, defined the same way
as for the GMST but based on the region between latitudes 40–55oN and longitudes
110–125oW (the HadCRUT5 date are conveniently aggregated into 5o×5o grid cells
so that this type of series is easy to calculate). Fig. 1.6(b) shows a much stronger
correlation between this series and the Kelowna annual maxima, in this case, the
sample correlation coefficient is 0.73. Table 1.5 also shows a much more convincing
relationship in the parameter β1 (a two-sided p-value of 4 ×10−12 against the null
hypothesis that this parameter is zero). This gives us some confidence that the as-
sociation between these two variables, when combined with forwards or backwards
projections of the regional mean, can be used to characterize long-term changes in
the Kelowna anual maxima — a theme that will be developed elsewhere. In this
case, the estimated “maximum possible temperature” for 2021 is 44.5oC, just below
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Figure 1.7 Posterior Densities of β1 and ξ , Model (1.40) with xt the Regional Mean.

the observed 44.6oC. This takes us closer to being able to “explain” the 2021 event,
but still does not give us a quantitative probability for the event itself.

Parameter Estimate S.E. t-value p-value
β0 34.8340 0.2385 146.0587 0.0000

logψ 0.0381 0.1385 0.2751 0.7832
ξ –0.2140 0.1463 –1.4381 0.1504
β1 1.8431 0.2660 6.9277 4 ×10−12

Table 1.5 Fitting the initial GEV model to the Kelowna data, 1984–2021.

An alternative approach to this whole analysis is Bayesian. With a prior dis-
tribution that is essentially uniform for (β0, logψ,ξ ,β1) over a large subset of the
parameter space, we run a Markov chain Monte Carlo (MCMC) algorithm using
Haario’s [104] “adaptive Metropolis” procedure. In this context, the advantage of a
Bayesian approach over the maximum likelihood method is better representation of
the uncertainty of the estimates, especially with regard to predictive probabilities. As
an illustration, Fig. 1.8 shows the posterior densities of β1 and ξ . In the case of β1,
nearly all the posterior density lies between 1 and 3, confirming the conclusion from
Table 1.5 that it is overwhelmingly likely that β1 > 0. As for ξ , approximately 11%
of the posterior density lies to the right of 0, confirming that, although the evidence
still points towards ξ < 0, this is by no means certain.

These calculations do not directly address the probability of exceeding 44.6oC,
the temperature that was actually observed in 2021. Let P be the probability of ex-
ceeding 44.6oC in 2021, based on Kelowna data up to 2020 and the regional mean

temperature for 2021. We may write P = 1−exp
[
−
(

1+ξ
y∗−β0−β1x∗

ψ

)−1/ξ

+

]
where

y∗ and x∗ are respectively the observed values for 2021 of the Kelowna temperature
(44.6) and the regional mean. This P is a nonlinear function of the model parameters
(β0, logψ,ξ ,β1) so its posterior density may be estimated from the MCMC run al-
ready computed. We have computed the posterior probability that P > 0 to be 0.56,
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Figure 1.8 Conditional Posterior Densities of Exceeding 44.6oC in 2021, Based on Regional
Mean Summer Temperature.

and the posterior mean of P to be 0.0035. (Because of the randomness of the MCMC
algorithm, these numbers may differ slightly from one run to another.) To summarize
the interpretation of these numbers:

1. The event P > 0 is equivalent to the statement that the right-hand end of the dis-
tribution is greater than the observed 44.6 — in particular, this includes that part
of the posterior distribution where ξ ≥ 0. So, at least is this case where we are
conditioning on the regional mean, the probability of this event is quite substan-
tial. However, the probability that we actually observe such an extreme event is
more relevant to the interpretation of extreme weather events than the event being
within theoretical bounds, so the next calculation is more meaningful:

2. The posterior mean of P is arguably our “best guess” for the actual probability
of interest. As is known from decision theory, the posterior mean minimizes the
Bayes risk under squared error and a number of other loss functions. There are
other Bayesian outputs (in particular, credible intervals) that capture the uncer-
tainty of Bayesian estimates, but for problems of this nature, the lower bound of a
Bayesian credible interval is nearly always 0 (in particular, if the posterior prob-
ability that P = 0 is > 0.025, as it is here, then a two-sided 95% credible interval
will necessarily have lower bound 0).

3. The posterior mean of P being about 0.0035 corresponds very roughly to a return
period of about 300 years, conditional on the regional mean. In contrast, using
different data and statistical methods (but based on the same heatwave event),
Philip et al. [174] commented, “In the most realistic statistical analysis the event is
estimated to be about a 1 in 1000 year event in today’s climate.” The two estimates
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are based on different data and different assumptions about the analysis, but they
are still of the same order of magnitude.

4. An alternative way to represent the uncertainty is through posterior density plots
conditional on P > ε , where ε is a small positive number (we don’t take ε = 0
because of the large spike in the posterior density as P→ 0). Fig. 1.8 shows such
a plot with ε = 0.0001. Although there is still a large spike near 0, the plot shows
a non-negligible posterior probability for values of P out to about 0.03 (in fact, the
posterior probability that P > 0.03 is itself about 0.03, by no means negligible).

[Further material, possibly to be added later. In a Royal Statistical Society dis-
cussion paper that I only learned about after completing my initial calculations for
Kelowna, Clarkson et al. [28] used a threshold exceedances approach including the
GPD, and concluded that with this method, the problem of the estimated right-hand
endpoint of the distribution being greater than the observed value no longer exists,
supposedly because of the greater precision of GPD estimates because of them taking
in more data. Again, this was for a different dataset than the one considered here, but
based on the same heatwave event. I have not independently verified their conclusion
and am somewhat skeptical that it is a general resolution of this issue, but it would
be interesting to check this approach.]

1.5 Analysis of Insurance Data

1.6 Analysis of Women’s Track Data

1.7 Software: the extRemes Package

1.8 Summary of Chapter

1.9 Exercises

1. Show that the three cases of (1.6), with ξ = 0, ξ > 0, ξ < 0, are equivalent to
(1.3), (1.4) and (1.5), respectively, with suitable choices of µ, ψ and ξ .

2. Show that the argument leading to (1.10) also holds when ξ = 0, and show the
equivalence of (1.10) and (1.6), i.e. exactly how are the parameters (λ ,σ ,ξ ) from
(1.10) related to the parameters (µ,ψ,ξ ) from (1.6)?

[Answer: ξ is the same while σ = ψ +ξ (u−µ),λ =
(

1+ξ
u−µ

ψ

)−1/ξ

, assuming

ψ +ξ (u−µ)> 0.]
3. Prove the statements at the end of Section 1.2.4, concerning the equivalence of

the point process approach to the three other approaches mentioned.



Chapter 2

Domains of Attraction, Rates of
Convergence and Optimal Statistical

Estimation

2.1 The Theory of Gnedenko and de Haan

In this chapter, we begin by exploring in more detail the implications of the limit
relationship (1.2), which we restate here as

Pr
{

Mn−bn

an
≤ x
}

= Fn(anx+bn) → H(x). (2.1)

Here, Mn = max(X1, . . . ,Xn), where X1,X2, . . . are IID random variables with com-
mon distribution function F , an and bn are normalizing constants, and H is a non-
degenerate limit. In Chapter 1, we asserted without detailed justification that the
possible limits H are given by (1.3)–(1.5), or equivalently (1.6). Because (1.3)–(1.5)
represent three different types of distributions (recall that two distribution functions
are said to be of the same type if one can be obtained from the other by a location-
scale transformation), this is known as the Three Types Theorem.

In this chapter, we explore in more detail the implications of these results. The
original statement of the Three Types Theorem was given, without rigorous proof,
by Fisher and Tippett [76] and, in the form (1.6), by von Mises [157]. A rigorous
proof was first given by Gnedenko [85], who also derived necessary and sufficient
conditions on F for a relation of the form (2.1) to be true. This is known as a domain
of attraction problem: given a fixed H of the form (1.3)–(1.5) or (1.6), the domain
of attraction of H is the class of all distribution functions F for which (2.1) holds for
some an > 0, bn ∈ R.

The basic theory has been given in many previous books, for example [140, 189,
99], and our intention here is not to repeat detailed proofs that can be readily found
elsewhere. Rather, the aim of this chapter is to explore some of the ramifications of
these results, especially concerning rates of convergence, with the intention of giving
greater insight into how extreme value approximations work in practice. Our objec-
tive is both probabilistic (e.g. deriving a rate of convergence in (2.1)) and statistical
(providing detailed justifications for some of the statistical procedures in Chapter 1,

27
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and considering optimality results such as the asymptotically best choice of threshold
in threshold methods).

The first result is to establish a stability property for the possible limits H in
(2.1). Suppose Fn, n≥ 1 and suppose there exist sequences an > 0, bn ∈ R and also
αn > 0, βn ∈ R and distribution functions H1 and H2 such that

Fn(anx+bn)→ H1(x), Fn(αnx+βn)→ H2(x).

Then there exist constants A > 0, B ∈ R such that

αn

an
→ A,

βn−bn

an
→ B

and then

H2(x) = H1(Ax+B). (2.2)

This result is known as Khinchine’s Lemma which we shall not prove here as it has
been given numerous times by previous authors, for instance [70], page 253 or [140],
page 7.

Now let’s see what this implies for the special case Fn = Fn. Let k > 1 be a fixed
integer and consider limits of Fnk as n→ ∞. By applying (2.1) twice, we get

Fkn(aknx+bkn)→ H(x), Fkn(anx+bn)→ Hk(x).

Hence there exist Ak > 0 and Bk ∈ R such that an
ank
→ Ak,

bn−bnk
ank
→ Bk, and

Hk(x) = H(Akx+Bk). (2.3)

A distribution function H that satisfies (2.3) is said to be max-stable. This leads us
to:

Theorem 2.1. If H is a max-stable distribution function, then H must be of the
same type as one of (1.3)–(1.5), or equivalently, (1.6).

We shall not give the proof as this has been given many times in previous texts.
Gnedenko’s original paper [85] is still well worth reading (see [133] for an English
translation) but a much simplified proof was given by de Haan [97]. A modern proof
has been given by de Haan and Ferreira [99], Theorem 1.1.3.

We now state the main domain of attraction condition of Gnedenko [85]:

Theorem 2.2. Suppose (2.1) holds with H(x) one of (1.3)–(1.5).
(i) If H(x) is of the form (1.4) with given α > 0, then a necessary and sufficient

condition for (2.1) to hold for some an > 0, bn ∈ R is that ωF = sup{x : F(x)<
1}= ∞ and

lim
t→∞

1−F(xt)
1−F(t)

= x−α for any x > 0. (2.4)

In this case we may, without loss of generality, define bn = 0, an = inf{x : 1−
F(x)≤ 1/n}.
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(ii) If H(x) is of the form (1.5) with given α > 0, then a necessary and sufficient
condition for (2.1) to hold for some an > 0, bn ∈ R is that ωF = sup{x : F(x)<
1}< ∞ and

lim
t→0

1−F(ωF − xt)
1−F(ωF − t)

= xα for any x > 0. (2.5)

In this case we may define bn = ωF , an = ωF − inf{x : 1−F(x)≤ 1/n}.
(iii) If H(x) is of the form (1.3), then a necessary and sufficient condition for (2.1)

to hold for some an > 0, bn ∈ R is that there exists a function ψ(t), defined for
t ≤ ωF ,

lim
t→ωF

1−F(t + xψ(t))
1−F(t)

= e−x for any x > 0. (2.6)

In this case ωF may be finite or infinite and we may define bn = inf{x : 1−F(x)≤
1/n}, an = ψ(bn).
A weakness of Gnedenko’s result was that he did not give an explicit expression

for the function ψ(t). However, De Haan [96] showed that, when ψ exists, it may be
given by

ψ(t) =

∫
ωF

t {1−F(s)}ds
1−F(t)

. (2.7)

(It is part of the condition that the integral be finite.)
There have been numerous equivalent conditions given by authors such as Mej-

zler [154], Marcus and Pinsky [147], de Haan [96] and Pickands [179].
Although a full proof that the conditions of Theorem 2 are both necessary and

sufficient is rather long-winded, we can rather quickly prove that the conditions are
sufficient, which will serve to motivate the basic idea of how we test whether a dis-
tribution function F is in a domain of attraction.

In (i), the condition on an implies that n{1− F(an)} → 1 as n → ∞. This is
immediate if F is continuous, because then we can find an so that n{1−F(an)}= 1.
For F not everywhere continuous, we can still derive the same result by noting that,
for any ε > 0, the condition 1− ε < n{1−F(an)} < 1+ ε holds for all sufficiently
large n; since ε is arbitrary, this can only be true if the limit is 1. Similarly in case
(ii), n{1−F(ωF −an)}→ 1, and in case (iii), n{1−F(bn)}→ 1. Then in case (i),

lim
n→∞

n{1−F(anx)} = lim
n→∞

{
1−F(anx)
1−F(an)

}
= x−α .

Next, we note that because 1−F(anx)→ 0 as n→ ∞, we must have − logF(anx)
1−F(anx) → 1,

and hence

lim
n→∞

n logF(anx) = −x−α .
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Taking exponentials on both sides leads to

lim
n→∞

Fn(anx) = exp(−x−α)

whenever x > 0. Cases (ii) and (iii) are similar.

2.1.1 Convergence of threshold exceedances to the Generalized Pareto
Distribution

We can also show that each of the conditions (2.4)–(2.6) implies convergence of
threshold exceedances to the corresponding Generalized Pareto Distribution (GPD).
Specifically, if X is a random variable whose distribution function is F , and if u is a
high threshold, we want to show that

Pr{X−u≥ yσu | X > u}→ (1+ξ y)−1/ξ (2.8)

as u→ ωF , for suitable ξ and σu, for any y such that 1+ξ y > 0.
Consider first (2.4). We set σu =

u
α

, then

Pr{X−u≥ yσu | X > u} =
1−F

(
u+ yu

α

)
1−F(u)

→
(

1+
y
α

)−α

.

This is of the form (2.8) with ξ = 1
α

.
Next, assume (2.5). Suppose we have a threshold u = ωF − t for some small t.

Suppose we have 0 < y < α and define σu =
t
α

. Then

Pr{X > u+ yσu | X > u} =
1−F

(
u+ yt

α

)
1−F(u)

=
1−F

(
ωF − t + yt

α

)
1−F(ωF − t)

→
(

1− y
α

)α

.

This is of the form (2.8) with ξ =− 1
α

.
Finally, assume (2.6). Let σu = ψ(u), Then

Pr{X > u+ yσu | X > u} =
1−F (u+ yψ(u))

1−F(u)
→ e−y,

which is the limiting form of (2.8) as ξ → 0.
Therefore, in all three cases, we get the GPD as a limiting distribution for ex-

ceedances over a threshold.

2.2 Examples

2.2.1 The t distribution and extensions

The pdf of the t distribution with ν degrees of freedom is given by

f (t; ν) =
Γ((ν +1)/2)√

νπΓ(ν/2)

(
1+

t2

ν

)−(ν+1)/2

, −∞ < t < ∞. (2.9)
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This is symmetric about t = 0, so it suffices to consider the limits as t → +∞. Ex-
panding in Taylor series,

f (t; ν) =
Γ((ν +1)/2)√

νπΓ(ν/2)
t−(ν+1)

ν−(ν+1)/2

{
1− ν(ν +1)

2t2 +O
(

1
t4

)}
=

Γ((ν +1)/2)νν/2
√

πΓ(ν/2)

{
t−(ν+1)− ν(ν +1)

2
t−(ν+3)+O(t−(ν+5))

}
Integrating term by term,

1−F(t; ν) =
Γ((ν +1)/2)νν/2−1
√

πΓ(ν/2)
t−ν

{
1− ν2(ν +1)

2(ν +2)
t−2 +O(t−4)

}
.

(2.10)

To put (2.10) on a broader footing, consider an expansion of the form

1−F(t) = ct−α +dt−α−β +o(t−α−β ) (2.11)

where α, β , c and d are all constants, the first three being > 0. In the case of the t
distribution, we have α = ν , β = 2.

If we define an = (nc)1/α , we have, for any x > 0,

n{1−F(anx)} ∼ nc(anx)−α = x−α

from which it follows by arguments already given that, first, n logF(anx)→−x−α

and, second,

Fn(anx) = exp(−x−α), x > 0, (2.12)

which confirms the limit of the form (1.4).
Given the extra term in (2.11), we can go further. Still defining an = (nc)1/α , we

have

n{1−F(anx)} = x−α +n−β/α c−1+β/α dx−α−β +o(n−β/α).

If β < α (more on this condition in a moment) the same expansion also holds for
−n log{F(anx)} and so

Fn(anx) = exp(−x−α)
{

1−n−β/α c−1+β/α dx−α−β +o(n−β/α)
}
, (2.13)

valid for all x > 0. Equation (2.13) is our first instance of a rate of convergence re-
sult in extreme value theory, and raises numerous issues such as whether the rate
of convergence is uniform and whether there is any possibility of achieving a faster
rate of convergence by a different normalization. Both questions were addressed by
[216], with an affirmative answer about uniformity and a negative answer, with one
exception, to the question of a faster rate. From a practical point of view, the impor-
tance of a result like (2.13) is that it gives some concrete answers to how good the
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extreme value distributions are as approximations, which, as we shall see, also plays
into questions about statistical estimation.

The one exception in this discussion is when β = 1. Consider the case when bn
is a fixed constant b, and consider

n{1−F(anx+b)} = c(anx+b)−α +d(anx+b)−α−1 +o(a−α−1
n )

= c(anx)−α

(
1− αb

anx

)
+da−α−1

n x−α−1 +o(a−α−1
n ).

If we set b = d/(αc), then central two terms cancel and we deduce

n{1−F(anx+b)} = c(anx)−α +o(a−α−1
n ).

Again defining an = (nc)1/α , the same argument as led to (2.13) shows that

Fn(anx+b) = exp(−x−α)
{

1+o(n−1/α)
}
, (2.14)

in other words, the error rate is o(n−1/α) rather than O(n−1/α). However, the case
β = 1 is the only case where an improvement in the rate of convergence is possible
[216].

The reader may be wondering why we restricted to the case 0 < β < α . Note
that in this case, the rate of convergence in (2.13) is O(n−β/α), which is slower than
O(1/n). However, the transformation from 1−F(anx) to − log{F(anx)} induces an
additional error term of O(1/n), which would mess up the result if β ≥ α . However,
if the rate of convergence is as good as O(1/n), this is already a very fast rate of
convergence, so we should not worry about trying to improve it.

Remark. In (2.13), [216] used a different definition of an which leads to a slightly
different formula. The present derivation is more direct since it does not require the
full theory developed in [216].

2.2.2 The beta distribution and extensions

As in the previous section, we use the beta distribution as a motivating example but
the intention is to explore a wider class of distributions.

Suppose

f (t; a,b) =
1

B(a,b)
ta−1(1− t)b−1, 0 < x < 1, (2.15)

where a > 0, b > 0 and B(a,b) = Γ(a)Γ(b)
Γ(a+b) .

This distribution has finite endpoint ωF = 1 and we can easily check that as t ↑ 1,

1−F(t; a,b) =
1

B(a,b)

{
(1− t)b

b
− (a−1)(1− t)b+1

b+1
+O((1− t)b+2)

}
.

This is a special case of the general formula

1−F(t) = c(ωF − t)α +d(ωF − t)α+β +o(ωF − t)α+β , t ↑ ωF < ∞, (2.16)
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where α, β and c are all > 0, so we take (2.16) as our starting point.
In this case, define bn = ωF , an = (nc)−1/α , then for x < 0,

n{1−F(anx+bn)} = n{1−F(ωF −an|x|)}
= ncaα

n +ndaα+β
n |x|α+β + . . .

= |x|α +n−β/α dc−1−β/α |x|α+β +o(n−β/α).

By the same argument as in the previous section,

Fn(anx+bn) → exp(−|x|α) (x < 0) (2.17)

and if 0 < β < α ,

Fn(anx+bn) = exp(−|x|α
(

1−n−β/α dc−1−β/α |x|α+β +o(n−β/α

)
. (x < 0)

(2.18)

So (2.17) establishes that the limit distribution is (1.5), and (2.18) shows the rate of
convergence (as in the previous section, if β ≥ α the rate of convergence is O(1/n)).

Here again, [216] gave a slightly different version of the same result, as part of a
more general theory. In this case, there is no improvement on the rate of convergence
by a different choice of an and bn.

Remark. The more usual context for this result is for sample minima in the case of
a distribution where F(t)∼ ctα as x ↓ 0, which is a common assumption in reliability
theory. If we assume F(t) = ctα +dtα+β +o(tα+β ) for small t, we again define an =
(nc)−1/α when nF(anx) = xα +n−β/α dc−1−β/α xα+β +o(n−β/α) for x > 0. Writing
F(anx) ∼ − log(1−F(anx)) we deduce that if X1,X2, . . . are IID with distribution
function F ,

Pr{min(X1, . . . ,Xn)≤ anx} = 1−{1−F(anx)}n → 1− exp(−xα).

This is the well-known Weibull distribution, often used for strength of materials and
similar applications.

2.2.3 Normal distribution

At the time that Fisher and Tippett [76] wrote their foundational paper about extreme
value theory, there was a much stronger belief than there is today that the normal dis-
tribution is ubiquitous in nature. Hence, the bulk of their paper, and much subequent
theory, has been focused on extreme from normally distributed sample. It turns out
that this case is, in fact, one of the most complex examples of extreme value theory.

To fix notation, we let φ(x) = 1/
√

2πe−x2/2 be the density of a standard normal
distribution, and Φ(x) =

∫ x
−∞

φ(t)dt the standard normal distribution function. The
following theory relies critically on the expansion

1−Φ(x) =
φ(x)

x

(
1− 1

x2 +
3
x4 −

15
x6 + . . .

)
(2.19)
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([69], page 193).
Assume ψ(t) is an arbitrary function of real variable t such that ψ(t)

t → 0 as
t→ ∞. Using (2.19), we calculate

1−Φ(t + xψ(t))
1−Φ(t)

∼ φ(t + xψ(t))
φ(t)

= exp
{
− (t + xψ(t))2

2
+

t2

2

}
= exp

{
−txψ(t)− x2ψ2(t)

2

}
.

If we set ψ(t) = 1
t , this converges to e−x as t → ∞. This is Gnedenko’s condition

(2.6), and therefore establishes that Φ is in the domain of attraction of the Gum-
bel distribution (1.3). Moreover, Gnedenko’s theory also implies that we may define
an, bn by 1−Φ(bn) =

1
n , an = ψ(bn) =

1
bn

.
Application of (2.19) implies that

1
n

=
φ(bn)

bn

(
1− 1

b2
n
+

3
b4

n
− 15

b6
n
+ . . .

)
(2.20)

We shall use the result (2.20) in two ways. First, we use it to derive an asymptotic
approximation to bn. A crude first guess would ignore bn in the denominator and set
φ(bn) =

1
n , which would imply bn ∼

√
2logn. However, this would not achieve the

desired result 1−Φ(bn) ∼ 1
n so we need to refine the approximation. We do that by

writing

bn =
√

2logn+ cn

and trying to find a good approximation to cn. The argument assumes (and will later
verify) that cn√

2logn → 0.
In this case, (2.20) implies

φ(bn)

bn
∼ 1√

2πbn
e−

1
2 (
√

2logn−cn)
2

=
1√

2πbn
e−

1
2 (2logn−2cn

√
2logn−c2

n)

so bn must satisfy

1
n
∼ 1√

2πbn
e−

1
2 (
√

2logn−cn)
2

=
1√

4π logn
· 1

n
· e−cn

√
2logn+ 1

2 c2
n)

If we ignore the term 1
2 c2

n, we can solve directly for cn =− 1
2
√

2logn (log4π+ log logn)
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(which incidentally does prove that cn√
2logn → 0) so we deduce the approximation

bn =
√

2logn− 1
2
√

2logn
(log4π + log logn)+o

(
log logn√

2logn

)
. (2.21)

In fact, if we ignore the term o
(

log logn√
2logn

)
, then bn defined by (2.21), together with

an = 1
bn

, are often taken as the normalizing constants for extreme value theory for
the normal distribution, but Hall [106] showed that this is not the optimal choice for
an and bn.

We therefore take the alternative approach recommended by Hall, and use (2.20)
to motivate the alternative definition of bn as the value that satisfies

φ(bn)

bn
=

1
n
. (2.22)

Of course, with modern computers, an effectively exact solution to (2.22) is quickly
obtained for any likely value of n, a statement that was not true at the time of Fisher
and Tippett. So it’s reasonable to take (2.22) as the modern definition of bn.

Now let’s proceed further with an expansion based on (2.19). We have,

1−Φ

(
bn +

x
bn

)
=

(
bn +

x
bn

)−1

φ

(
bn +

x
bn

){
1−
(

bn +
x
bn

)−2

+3
(

bn +
x
bn

)−4

− . . .

}

Expanding each of the terms as far as O
(

1
b4

n

)
,

(
bn +

x
bn

)−1

=
1
bn

(
1− x

b2
n
+

x2

b4
n
+ . . .

)
,

φ

(
bn +

x
bn

)
= φ (bn)e−x

(
1− x2

2b2
n
+

x4

8b4
n

)
,

1−b−2
n

(
bn +

x
bn

)−2

+3b−4
n = 1− 1

b2
n
+

2x+3
b4

n
+ . . .

so

1−Φ

(
bn +

x
bn

)
=

φ(bn)

bn
e−x
{

1− 1
b2

n

(
1+ x+

x2

2

)
+O

(
1
b4

n

)}
.

But φ(bn)
bn

= 1
n by definition, so if we also define an =

1
bn

we have

n{1−Φ(anx+bn)} = e−x
{

1− 1
b2

n

(
1+ x+

x2

2

)
+O

(
1
b4

n

)}
. (2.23)

As with our previous examples, we can replace {1−Φ(anx+bn)} by− log{Φ(anx+bn)}
with an error of O

( 1
n

)
, and hence we deduce from (2.23) that Φn(anx + bn) →
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exp(−e−x) with an error of O
(

1
b2

n

)
= O

(
1

logn

)
since bn ∼

√
2logn as n→ ∞. How-

ever, this is a very slow rate of convergence, and many practical examples over the
years have shown that this is not a good approximation to the distribution of maxima
of normally distributed random variables.

This discussion raises the question of whether we could use the explicit form
of the O

(
1
b2

n

)
term in (2.23) to get a better approximation. We could, for example,

incorporate that term directly into the approximation, but there is a better way.
The idea is to investigate whether we could rewrite the first two terms in the right

side of (2.23)

e−x
{

1− 1
b2

n

(
1+ x+

x2

2

)}
,

in the form appropriate for a GEV limit(
1+ξn

x−µn

ψn

)−1/ξn

,

still with error O
(

1
b4

n

)
, where we have written the GEV parameters µn, ψn, ξn as

functions of n since we know we need µn→ 0, ψn→ 1, ξn→ 0 in order to achieve
the correct limit e−x as n→ ∞.

At first sight, this idea might seem crazy, since the last two expressions are of
completely different functional forms. However, if we take logarithms of both sides
and equate

−x− 1
b2

n

(
1+ x+

x2

2

)
≈ − 1

ξn
log
(

1+ξn
x−µn

ψn

)
≈ −x−µn

ψn
+

ξn

2

(
x−µn

ψn

)2

,

we can see that both sides of the approximation are quadratic in x, so if we can find
µn, ψn, ξn to equate the coefficients of 1, x and x2 (with error of o(1/b2

n)), we will
indeed have the result we want. The reader can quickly check that this is true if we
set

µn =−
1
b2

n
, ψn = 1− 1

b2
n
, ξn =−

1
b2

n
(2.24)

and, in that case, the error of the approximation is O
(

1
b4

n

)
= O

(
1

log2 n

)
.

We therefore deduce that, with µn, ψn, ξn defined by (2.24),

Φ
n(anx+bn) = exp

(
1+ξn

x−µn

ψn

)
+O

(
1

log2 n

)
. (2.25)

These arguments have been presented in a heuristic way but they can be made
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rigorous. For the O
(

1
logn

)
error in the Gumbel approximation, Hall [106] showed

that the convergence is uniform over x and he derived a numerical upper bound for the
error. He also showed that the rate of convergence cannot be improved by a different
choice of an and bn. The corresponding results for (2.24) were derived by Cohen
[30]. Numerical calculations confirm that, not only is (2.24) a superior approximation
asymptotically, but it produces a far better approximation in practice.

Equation (2.25) is known as the penultimate approximation to normal extremes.
Remarkably, the idea (and the name) goes back to Fisher and Tippett [76]. The no-
tation and detailed calculation were different, but they recognized and stated that the
Weibull-type of approximation is a better fit to the distribution of normal extremes
than the Gumbel model. The practical implications for statistics are twofold:
1. Even though the Gumbel limit (ξ = 0 in the GEV) may be the “ultimate” limiting

approximation, the GEV with ξ 6= 0 still fits the data better. Therefore, statisticians
should just fit the GEV, and not try to formally distinguish the different model
classes.

2. In the case of normal extremes, the best-fitting GEV has finite upper endpoint,
even though the distribution being approximated is unbounded. This has implica-
tions for datasets like the temperature extreme datasets discussed in Chapter 1 —
even though the statistical modeling may point towards a distribution with finite
upper endpoint, this is not necessarily the correct conclusion.

2.2.4 Lognormal distribution

Assume X is lognormal, i.e. log X ∼N [µ,σ2] for some µ and σ2. There is again
no loss of generality in assuming µ = 0 but we allow σ2 to be flexible because the
value of σ2 does affect the shape of the distribution. We therefore write

F(x) = Φ(δ logx) (2.26)

where δ = 1/σ and Φ is again the standard normal distribution function.
Suppose t→ ∞ and define ψ(t) = t

δ 2 log t . Starting from (2.19), by Taylor expan-
sion and considerable algebraic manipulation, we deduce

log
{

1−F(t + xψ(t))
1−F(t)

}
= −x+

x2

2δ 2 log t
− x

δ 2 log2 t
− x2

2δ 2 log2 t
− x3

3δ 4 log2 t
+O

(
1

log3 t

)
.

(2.27)

Define bn by n{1−F(bn)}= n{1−Φ(δ logbn)} and an =ψ(bn). Then n{1−F(anx+bn)}→
e−x so we have convergence to the Gumbel limit Fn(anx+ bn)→ exp(−e−x). The
rate of convergence is O

(
1

logbn

)
. However, since we previously showed that the so-

lution of n{1−Φ(bn)} = 1 satisfies bn ∼
√

2logn, it follows that the solution of
n{1−Φ(δ logbn)} = 1 satisfies δ logbn ∼

√
2logn. Therefore, as a function of n,

the error in the Gumbel approximation is O
(

1√
logn

)
.
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As with the previous example, we attempt to improve on this via a penultimate
approximation. Rewriting (2.27) in the form

log [n{1−F(anx+bn)}] =−x+
x2

2δ 2 logbn
− x

δ 2 log2 bn
− x2

2δ 2 log2 bn
− x3

3δ 4 log2 bn
+O

(
1

log3 bn

)
,

(2.28)

we aim to approximate the left hand side of (2.28) by an expression of the form
− 1

ξn
log
(

1+ξn
x−µn

ψn

)
: by the same argument that we have now used several times,

this will lead to a GEV approximation for Fn(anx + bn). Taking µn = 0, ψn =(
1+ 1

δ 2 log2 bn

)−1
, ξn =

1
δ 2 logbn

− 1
δ 2 log2 bn

, we deduce

− 1
ξn

log
(

1+
ξnx
ψn

)
= − x

ψn
+

ξnx2

2ψ2
n
− ξ 2

n x3

3ψ3
n
+O

(
1

log3 bn

)
= −x− x

δ 2 log2 bn
+

x2

2δ 2 logbn
− x2

2δ 2 log2 bn
− x3

3δ 4 log2 bn
+O

(
1

log3 bn

)
whereas for the right side of (2.28), the same operation yields

−x+
x2

2δ 2 logbn
− x

δ 2 log2 bn
− x2

2δ 2 log2 bn
− x3

3δ 4 log2 bn
+O

(
1

log3 bn

)
.

so the two expressions agree to O
(

1
log3 bn

)
. Exponentiating back,

n{1−F(anx+bn)} =

(
1+

ξnx
ψn

)−1/ξn

+O
(

1
log3 bn

)
and hence

Fn(anx+bn) = exp

{
−
(

1+
ξnx
ψn

)−1/ξn
}
+O

(
1

log3 bn

)
. (2.29)

Thus, in this case, the penultimate approximation not only kills the O
(

1
logbn

)
term

but the O
(

1
log2 bn

)
, making the final rate of convergence O

{
(logn)−3/2

}
. This re-

markable fact was discovered by Cohen [29], who also proved that the rate is uniform
in x ∈ R.

2.2.5 An example of a distribution with finite ωF in the Gumbel domain of
attraction

Consider 1−F(t) = exp(1/t) for t < 0. Then F(t)→ 1 as t ↑ 0 so ωF = 0. Define
ψ(t) for t < 0 so that ψ(t)

t → 0 as t ↑ 0. Then

1−F(t + xψ(t))
1−F(t)

= exp
{

1
t + xψ(t)

− 1
t

}
= exp

{
−xψ(t)

t(t + xψ(t))

}
.
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If we define ψ(t) = t2, then the exponent→ x as t ↑ 0. By Gnedenko’s condition, F
is in the domain of attraction of the Gumbel distribution.

Earlier, we argued that by means of the penultimate approximation, normal ex-
tremes (which have infinite range) could be approximated by a GEV with finite range.
This shows the opposite behavior: that the extremes from a distribution with finite
range could still tend to the Gumbel distribution as n→ ∞. Put another way, fitting
a Gumbel distribution to data does not preclude the possibility that the true distribu-
tion may have finite range. This may be relevant, for example, in the case of rainfall
extremes, where extreme value theory often produces a distribution of infinite upper
endpoint but meteorologists argue that there is a “probable maximum precipitation”,
reflecting the physical fact that there is an upper limit to the amount of moisture that
the atmosphere can hold. The two statements are not contradictory.

2.2.6 An example of a continuous distribution not in any domain of attraction

Consider 1−F(x) = 1
logx for x > 1. Since this distribution has ωF = ∞, the limit

(1.5) is ruled out. For (1.4), Gnedenko’s condition (2.4) would imply 1−F(tx)
1−F(t) → xα

as t→ ∞ for some α > 0. But 1−F(tx)
1−F(t) → 1 so this cannot hold (the case α = 0 is not

allowed). Likewise, de Haan’s condition (2.7) would require that
∫

∞

t (1−F(s))ds =∫
∞

t
1

logs ds be finite, but it obviously is not. Therefore, this distribution cannot be in
any domain of attraction.

2.2.7 Discrete distributions

Another class of distributions where classical extreme value theory typically does
not hold is for discrete distributions such as geometric and Poisson. Essentially, these
distributions are too lumpy for smooth limits to exist, but there other things one can
do. Anderson [3, 4] classified the limit behavior in a number of such cases. These
results have found applications in probability problems such as the longest run of
heads in a sequence of coin tosses, or the longest run of matching genes in tissue
samples [45, 89, 7].

Other methods are based on the Stein-Chen (or Chen-Stein) method of Poisson
approximation, see e.g. [12, 5, 6, 8, 198].

2.3 Reformulation in Terms of Inverse Functions

The crux of de Haan’s conditions for convergence of extreme value distribution is
to reformulate the problem in terms of inverse functions. Here, we are essentially
following de Haan and Ferreira [99].

Let f be a non-decreasing function on R. Define f←(x) = inf{y : f (y)≥ x}.
Then f←(x) is the left-continuous inverse of f (if f (x) is a constant y on an interval
a < x < b, then f←(y) = a).
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Following [99], we define

U(t) =

(
1

1−F

)←
(t) = inf

{
y : F(y)≥ 1− 1

t

}
. (2.30)

Note that in many of our extreme value theory examples so far, either an or bn is
defined to be U(n).

Much of the theory is concerned with relations of the form

lim
t→∞

U(tx)−U(t)
a(t)

=
xξ −1

ξ
for any x > 0, (2.31)

where the limit ξ → 0 is defined to be logx.
Example 1. Suppose 1−F(x)∼ cx−α as x→ ∞. Then 1−F(x) = 1

n corresponds
to x ∼ (nc)1/α ; for present discussion we define it so that U(t) = (tc)1/α exactly.
Define a(t) = α−1(ct)1/α . Then

U(tx)−U(t)
a(t)

=
(txc)1/α − (tc)1/α

α−1(ct)1/α
=

x1/α −1
α−1

of form (2.31) with ξ = 1
α

.
Example 2. Suppose 1−F(x) ∼ c|x|α as x ↑ 0. Then 1−F(x) = 1

n corresponds
to x ∼ −(nc)−1/α ; again we assume that the asymptotic relation is exact so U(t) =
(tc)−1/α . Define a(t) = α−1(ct)−1/α . Then

U(tx)−U(t)
a(t)

=
−(txc)−1/α +(tc)−1/α

α−1(ct)−1/α
=

x−1/α −1
(−α−1)

of form (2.31) with ξ =− 1
α

.
Example 3. Suppose F(x) = Φ(x), the standard normal distribution. Define U(t)

by (1−Φ(U(t)) = 1
t for all t > 0. This corresponds to one of the definitions of bn

in Section 2.2.3, so in particular U(n) = bn. But we already saw that bn ∼
√

2logn,
hence U(t)∼

√
2logn. But in that case,

U(tx)−U(t) ≈
√

2log(tx)−
√

2log(t)

=
√

2log(t)

{(
1+

logx
log t

)1/2

−1

}

∼
√

2log(t)
logx
2log t

=
logx√
2log t

.

So with a(t) = 1√
2log t ,

U(tx)−U(t)
a(t)

→ logx,

the ξ = 0 case of (2.31).
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Thus, at least in these extremely simple cases, all three domains of attraction are
covered by (2.31).

The importance of (2.31) is given by the following:

Theorem 2.3. Suppose F is a distribution function and that U(t) is defined by
(2.30). Then a necessary and sufficent condition for the existence of constants an > 0
and bn ∈R such that Fn(anx+bn)→ (1+ξ x)−1/ξ

+ as n→∞, is that (2.31) holds for
a suitable function a(t).

We shall not give the proof as this is one of many equivalent statements of Gne-
denko’s theorem, as reformulated by de Haan. One reference for this specific result
is Theorem 1.1.6 of [103].

Suppose (2.31) holds. Consider the limit two ways of

U(txy)−U(tx)
a(t)

→ (xy)ξ − xξ

ξ

U(txy)−U(tx)
a(tx)

→ yξ −1
ξ .

This is possible only if

lim
t→∞

a(tx)
a(t)

= xξ for all x > 0. (2.32)

all three limits being as y→∞. Thus the function a(t) is regularly varying with index
ξ .

Definition. Let a(t) be a positive function defined on t > 0. Then a(·) is said to
be regularly varying of index ξ if (2.32) is valid for all x > 0.

The case ξ = 0 is called slowly varying.

2.4 Second-order Approximations

This relies on a remarkable theorem of de Haan and Stadtmüller [103]. Our treatment
here relies heavily on Appendix B.3 of [99].

Suppose (2.31) holds. To derive a comprehensive theory for rates of convergence,
we need to consider how to extend (2.31) to include second-order terms. Accordingly,
consider limiting results of the form

lim
t→∞

U(tx)−U(t)
a(t) − xξ−1

ξ

A(t)
= H(x), (2.33)

valid for all x > 0, where A(t) is some rate function with A(t)→ 0 as t → ∞, and
H(x) is some non-zero limit function. The problem is essentially this: if we assume
that a limit of the form (2.33) exists, what can we deduce about the functions A(t)
and H(x)?
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The first step is to exclude limits of the form H(x) = c xξ−1
ξ

for some c 6= 0. In
that case, we can rearrange (2.33) to give

lim
t→∞

U(tx)−U(t)
a(t)(1+cA(t)) −

xξ−1

ξ

A(t)
= 0,

but this clearly does not provide useful information about the rate of convergence
in (2.31). Therefore, we exclude cases in which the limit function H is of the form
c xξ−1

ξ
for some c ∈ R.

With this, the main theorem in [103] states:

Suppose U is a measurable function and functions a(t) > 0, A(t) > 0 hold such
that the limit (2.33) holds for all x > 0 where H(x) is not a multiple of xξ−1

ξ
. Then

there exist real constants c1, c2 and ρ ≤ 0 such that

lim
t→∞

U(tx)−U(t)
a(t) − xξ−1

ξ

A(t)
= c1

∫ x

1
sξ−1

∫ s

1
uρ−1duds+ c2

∫ x

1
sξ+ρ−1ds. (2.34)

Moreover, if (2.34) holds, we also have,

lim
t→∞

a(tx)
a(t) − xξ

A(t)
= c1xξ xρ −1

ρ
, (2.35)

lim
t→∞

A(tx)
A(t)

= xρ . (2.36)

Moreover, c1 6= 0 if ρ = 0.
Remark B.3.5 of [99] notes that if (2.34) holds, we can also redefine the functions

a(t) and A(t) so that c1 = 1 and c2 = 0. In that case, we get the specific form

H(t) =
∫ x

1
sξ−1

∫ s

1
uρ−1duds

=



1
ρ

(
xξ+ρ−1

ξ+ρ
− xξ−1

ξ

)
if ρ < 0,ξ 6= 0,

1
ξ

(
xξ logx− xξ−1

ξ

)
if ρ = 0, ξ 6= 0,

1
ρ

(
xρ−1

ρ
− logx

)
if ρ < 0, ξ = 0,

1
2 (logx)2 if ρ = ξ = 0.

(2.37)

2.4.1 Examples

Let us first consider the case where 1−F has the expansion (2.11).
In this case both F and its inverse are continuous, so U(t) = y if 1−F(y) = t−1.

Applying (2.11), we need

t−1 = cy−α +dy−α−β +o(y−α−β ).
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It can be readily checked that this implies

y = (ct)1/α

{
1+

d
α

c−1−β/α t−β/α +o(t−β/α)

}
. (2.38)

Therefore, U(t) satisfies the right hand side of (2.38).
Hence,

U(tx)−U(t) = (cxt)1/α

{
1+

d
α

c−1−β/α(xt)−β/α

}
− (ct)1/α

{
1+

d
α

c−1−β/α t−β/α

}
+o(t1/α−β/α)

= (ct)1/α(x1/α −1)+
d
α

c1/α−1−β/α t1/α−β/α(x1/α−β/α −1)+o(t1/α−β/α). (2.39)

If we define a(t) = α−1(ct)1/α , we get

U(tx)−U(t)
a(t)

− x1/α −1
1/α

= dc−1−β/α t−β/α(x1/α−β/α −1)+o(t−β/α),

which, however, does not give the form of limit function we are aiming at.
Therefore, we return to (2.39) and rewrite

U(tx)−U(t) =

{
(ct)1/α +

(1−β )d
α

c1/α−1−β/α t1/α−β/α

}
(x1/α −1)

+
(1−β )d

α2 c1/α−1−β/α t1/α−β/α · α

1−β

{
x1/α−β/α −1− (1−β )(x1/α −1)

}
+o(t1/α−β/α).

Now define a(t)=α−1
{
(ct)1/α + βd

α
c1/α−1−β/α t1/α−β/α

}
, A(t)=− (1−β )d

β
c−1−β/α t−β/α ,

then

lim
t→∞

U(tx)−U(t)
a(t) − x1/α−1

(1/α)

A(t)
= −α

β

(
x1/α−β/α −1
1/α−β/α

− x1/α −1
1/α

)
.

This is precisely of the form (2.37) with ξ = 1
α
, ρ =−β/α .

2.5 Estimation theory based on second-order asymptotics

We focus here on a paper by Dombry and Ferreira [57], but this is just one of a series
of papers going back to the 1980s [219, 60, 55, 73, 56, 170].

Consider an IID random sequence {Xi, i = 1,2, . . .} where the common distri-
bution function is F . Suppose the observations are grouped into blocks of length m,
and let Mk,m = max{Xi : (k−1)m+1, . . . ,km} be the maximum of the k’th block. We
assume F is in the domain of attraction of the GEV, so that

Pr
{

Mk,m−bm

am
≤ x
}

= Fm(amx+bm) → Gξ0
(x) = exp

{
−(1+ξ0x))−1/ξ0

+

}
.

(2.40)
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for some “true value” ξ0 which we write that way to distinguish it from the unknown

parameter ξ in the following likelihood analysis. We define gξ0
(x) =

dGξ0
(x)

dx =

(1+ξ0x))−1/ξ0−1 exp
{
−(1+ξ0x))−1/ξ0

}
defined whenever 1+ ξ0x > 0 to be the

density of Gξ0
and let

`(µ,ψ,ξ ;x) = logψ + loggξ

(
x−µ

ψ

)
(2.41)

be the log density for arbitrary ξ when the distribution is extended to include a loca-
tion and scale parameter. The idea is that we treat the block maxima Mi,m for 1≤ i≤ k
as if their exact distribution was GEV with parameters θθθ =(µ,ψ,ξ ) though we know
that for finite m this is only an approximation. Define the log likelihood

Lk,m(θθθ) =
k

∑
i=1

`(θθθ ,Mi,m) (2.42)

In the following, we shall consider a sequence of sample sizes and block lengths
kn, mn where both kn and Mn are indexed by n. We define θ̂θθ n = (µ̂n, ψ̂n, ξ̂n) to be a
local maximizer of the log likelihood function, or just the MLE for short, if it satisfies
the likelihood equations

∂Lk,m(θθθ)

∂θθθ
= 0 (2.43)

and if the hessian matrix ∂ 2Lk,m

∂θθθ∂θθθ
T is positive definite at θ̂θθ n.

Dombry and Ferreira differ slightly from the notation of the previous section by
defining V = (−1/ logF)← (instead of U = (1/(1−F))← as previously, though in
most cases the two definitions will lead to the same asymptotics). In that context they
assume, first, that there exists am such that

lim
m→∞

V (mx)−V (m)

am
=

xξ0 −1
ξ0

(2.44)

and, second, that for some positive function a(t) as t → ∞ and some positive or
negative function A(t) as t→ ∞ with limt→∞ A(t) = 0,

lim
t→∞

V (tx)−V (t)
a(t) − xξ0−1

ξ0

A(t)
=

∫ x

1

∫ s

1
sξ0−1uρ−1duds = Hξ0,ρ(x), x > 0,(2.45)

where ξ0 > − 1
2 , ρ ≤ 0, the function A is regularly varying with index ρ , and Hξ0,ρ

is given by (2.37) with ξ = ξ0. As noted previously, in any case where a limit of the
form (2.45) exists, we can without loss of generality, redefining the functions a(t)
and A(t) is necessary, assume that the right hand side is Hξ0,ρ(x) for suitable ρ ≤ 0.

Dombry and Ferreira consider limiting cases as k = kn→∞, m = mn→∞ where

lim
n→∞

√
knA(mn) = λ ∈ R. (2.46)
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They define θθθ 0 = (0,1,ξ0) and then

Qξ0
(s) =

(− logs)−ξ0 −1
ξ0

, s ∈ (0,1)

b(ξ0,ρ) =
∫ 1

0

∂ 2`

∂x∂θθθ
(θθθ 0,Qξ0

(s))Hξ0,ρ

(
1

− logs

)
ds,

Iξ0
= −

∫ 1

0

∂ 2`

∂θθθ∂θθθ
T (θθθ 0,Qξ0

(s))ds.

Note that Iξ0
is the Fisher information for the GEV evaluated at θθθ 0; this is the same

matrix as was shown in Chapter 1 following [180].
With these preliminaries, Theorem 2.2 of [57] states:

(a) There exists a sequence of estimators θ̂θθ n = µ̂n, ψ̂n, ξ̂n such that

lim
n→∞

Pr
{

θ̂θθ n is a MLE
}

= 1,√
kn

(
µ̂n−bmn

amn

,
ψ̂n

amn

−1, ξ̂n−ξ0

)
d→ N

(
λ I−1

ξ0
b, I−1

ξ0

)
.

(b) If θ̂θθ
i
n = (µ̂ i

n, ψ̂
i
n, ξ̂

i
n), i = 1,2 are two sequences of estimators satisfying

lim
n→∞

Pr
{

θ̂θθ
i
n is a MLE

}
= 1,

lim
n→∞

Pr
{√

kn

(
µ̂ i

n−bmn

amn

,
ψ̂ i

n

amn

−1, ξ̂ i
n−ξ0

)
∈ Hn

}
= 1,

where Hn is a ball in R3 of center 0 and radius rn, where rn = O(kδ
n ), 0 < δ <

min
( 1

2 ,ξ0 +
1
2

)
as n→ ∞, then

lim
n→∞

Pr
{

θ̂θθ
1
n = θ̂θθ

2
n

}
= 1.

2.5.1 Side Section 1: A heuristic on biased estimation

Suppose we have a sequence of experiments indexed by n, where in the nth exper-
iment there are kn observations X1, . . . ,Xkn whose true joint density is gn, but for
reasons of convenience or because we don’t know how to exactly calculate gn, we
replace gn by a known joint density fn indexed by a parameter vector θθθ n. The exam-
ples of interest to us include the Xi’s being either block maxima or exceedances over
a threshold and their density fn being approximated by a GEV or GPD density. We
will always want fn− gn → 0 under some suitable metric (e.g. total variation norm
or Hellinger distance) but we won’t worry about precise modes of convergence for
the moment — that can come later.

Suppose we estimate θθθ by defining a set of equations

kn

∑
i=1

T(Xi;θθθ) = 0
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where T(Xi;θθθ) is a vector of the same length as θθθ that form a set of unbiased esti-
mating equations in the sense that

E{T(Xi;θθθ)} = 0 when Xi ∼ fn(· ; θθθ).

The classical case is when T is the vector of first-order derivatives of the log like-
lihood but we are writing the formula in this alternative format to allow for other
possible estimators (in particular, in the case of extreme value theory, probability
weighted moments estimators or PWMs, which are a popular alternative to maxi-
mum likelihood estimation).

We also define a matrix W (Xi) with entries wrs(Xi) =
∂Tr(Xi)

∂θs
where Tr is the rth

component of T and θs is the sth component of θθθ . In standard maximum likelihood
theory, W is the hessian matrix of the log likelihood function (for a single obser-
vation), also known as the observed information matrix, and the expectation of W
when θθθ = θθθ 0 is I0, the Fisher information matrix assuming the model fn is correct
with parameter vector θθθ = θθθ 0.

Assuming suitable regularity conditions,

0 =
kn

∑
i=1

T(Xi; θ̂θθ n)

≈
kn

∑
i=1

T(Xi;θθθ 0)+W (Xi;θθθ 0)(θ̂θθ n−θθθ 0)

and hence

θ̂θθ n−θθθ 0 ≈ −

{
kn

∑
i=1

W (Xi;θθθ 0)

}−1{ kn

∑
i=1

T(Xi;θθθ 0)

}
. (2.47)

If we assume
(i) The mean of W (Xi;θθθ 0) is J0 for each i,

(ii) The covariance matrix of T(Xi;θθθ 0) is C0 for each i,
and assume fn is the true density, we will have√

kn

(
θ̂θθ n−θθθ 0

)
d→ N (0,J−1

0 C0J−1
0 ). (2.48)

Formula (2.48) is widely known as the information sandwich formula. When estima-
tion is by maximum likelihood, J0 and C0 both reduce to I0, the Fisher information
matrix, and (2.48) is the standard asymptotic distribution for maximum likelihood
estimators.

Now, however, suppose the true density is gn rather than fn. Typically, the
following is true: the covariance matrix of ∑

kn
i=1 T(Xi;θθθ 0) and the mean of

∑
kn
i=1 W (Xi;θθθ 0) are still asymptotic to knC0(θθθ) and knJ0(θθθ) respectively, but the mean

of ∑
kn
i=1 T(Xi;θθθ 0) is non-zero. To be precise the mean is bn. In that case, the CLT for
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∑
kn
i=1 T(Xi;θθθ 0) takes the form

kn
−1/2

kn

∑
i=1

T(Xi;θθθ 0) ∼ N [kn
−1/2bn,C0(θθθ 0)](1+op(1))

and the final result for θ̂θθ n becomes√
kn(θ̂θθ n−θθθ 0)+ kn

−1/2J−1
0 bn

d→ N [0,J−1
0 C0J−1

0 ]. (2.49)

Note that there are different special cases of this result depending on the asymptotic
behavior of kn

−1/2bn. If kn
−1/2bn → 0 then the asymptotic bias of θ̂θθ n is negligi-

ble compared with its statistical variability as represented by the Fisher information
matrix. In effect, this means we can ignore the discrepancy between fn and gn. Con-
versely, if n−1/2bn→ ∞ in at least one component, the bias dominates the variance,
which has the practical interpretation that we can’t really use the standard results in
this case. However if kn

−1/2bn → c for some vector c whose components are finite
and not all zero, we can rewrite the result (2.49) as√

kn(θ̂θθ n−θθθ 0)
d→ N [−J−1

0 c,J−1
0 C0J−1

0 ]. (2.50)

This is a true case of “bias-variance tradeoff” which can be the basis for various de-
cision processes, such as the choice of a threshold in a peaks over threshold analysis
(the ultimate objective of [219]).

2.5.2 Side section 2: Asymptotics of the Hill-Weissman Estimator

In this section we consider the special case of extreme value theory based on the
Type I or Fréchet limit. Gnedenko [85] showed that a limit of the form

Fn(anx) → Φα(x) = exp
(
−cx−α

)
, x≥ 0, α > 0, c > 0, (2.51)

holds if 1−F(x) is regularly varying with index α , and in that case an may without
loss of generality be taken as the solution of F(an) = 1−1/n, and c = 1. Note that in
this case, there is no location parameter to the distribution (bn = 0), but for statistical
purposes, it makes sense to retain c as well as α as an unknown parameter.

In this case, Weissman’s representation [250, 252] for the asymptotic joint distri-
bution of the k largest order statistics m1 ≥ m2 ≥ . . .mk reduces to

L(α,c | m1, ...,mk) =
k

∏
i=1

(
cαm−α−1

i
)
· exp

(
−cm−α

k

)
. (2.52)

where the notation is intended to indicate that we are thinking of (2.52) as a likelihood
function for the parameters α and c. The dependence on m1, ...,mk will be omitted in
many of the formulas. Taking logarithms, we want to minimize

`(α,c) = − logL(α,c) = −k logα− k logc+(α−1)
k

∑
i=1

logmi + cm−α

k .
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It is quickly established that this expression is minimized when α = α̂, c = ĉ where

α̂ =

(
1
k

k

∑
i=1

log
mi

mk

)−1

, ĉ = kmα̂
k . (2.53)

Note, in particular, the simple direct formula for the estimator of α . The deriva-
tion is the same as that in [250], but that paper did it for the equivalent case where
the limit distribution is Gumbel (the Fréchet model is turned into the Gumbel model
by taking logarithms of the observations).

An alternative, even simpler, derivation of an equivalent result was given by Hill
[113]. Hill assumed, in effect, that the relationship 1−F(x) = cx−α is exact for x≥ u,
for some known threshold u, but that F(x) is unspecified for x < u. If data X1, ...,Xn
are ordered so that X1 ≥ X2 ≥ . . .Xk > u≥ Xk+1 ≥ . . .Xn then the likelihood function
is

L(α,c | X1, ...,Xn) =
k

∏
i=1

(
αcX−α−1

i
)
·
(
1− cu−α

)n−k

Taking logarithms and minimizing with respect to first c and then α leads to

α̂ =

(
1
k

k

∑
i=1

log
Xi

u

)−1

, ĉ =
k
n

uα̂ . (2.54)

Note, in particular, the similarity of the two estimators of α: in effect, the role of
the threshold u in (2.54) is replaced by the kth largest order statistic in (2.53). (The
different estimators of c arise because of different definitions: (2.53) uses the limit
distribution for sample maxima whereas (2.54) assumes the same functional form
directly for the individual observations. The two definitions differ by a factor of n,
which is reflected in the estimates.)

The estimator α̂ in (2.54) is widely known as Hill’s estimator but in the present
section, to emphasize the close similarity with Weissman’s [252] result, we shall call
it the Hill-Weissman estimator.

In order to develop some asymptotics for this estimator, we assume an expansion
of the form

1−F(x) = cx−α

{
1+dx−β +o(x−β )

}
, x→ ∞. (2.55)

In general, the assumption (2.55) may be replaced by an assumption of second-order
regular variation which allows the terms with x−α and x−β to be replaced by general
regularly varying functions; see in particular [87] for a survey of this theory and its
applications (including the present one). This, in turn, is a special case of the general
sceond-order regular variation theory of [103], For the present discussion, we mke
the simpler assumption (2.55) which is sufficient for most practical applications, and
easier to manipulate.

Our focus will be on the condition distribution of X given X > u, for some high
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threshold u. Let Yu = X/u. Then the conditional probability P{Yu > y | Yu > 1} is
represented as

1−F(uy)
1−F(u)

= y−α

{
1+du−β (y−β −1)+o(u−β )

}
so, assuming it is valid to differentiate term by term, we calculate the density as

fYu(y) = αy−α−1 +du−β

{
(α +β )y−α−β−1−αy−α−1

}
+o(u−β ).

We note integrals of the form∫
∞

1
(logy)ky−α−1dy = α

−k−1k!

where we shall mainly be interested in the cases k = 1 and 2 but for non-integer k the
same formula holds with k! replaced by Γ(k+1). We therefore deduce

E(logYu)
k = α

−kk!+du−β k!
{
(α +β )−k−α

−k
}
= o(u−β ). (2.56)

Now let’s consider the bias and variance of 1
α̂
= 1

k ∑
k
i=1 log Xi

u as an estimator of
1
α

, where k is the number of exceedances of u. Since E(logYu) =
1
α
−du−β β

α(α+β ) +

o(u−β ), we deduce

Bias of
1
α̂
≈ −du−β β

α(α +β )
.

However, we also have from the k = 1 and k = 2 cases of (2.56) that Var(logYu)→ 1
α2

as u→ ∞ and hence the variance of 1
α

is asymptotically 1
kα2 . However if the whole

sample is of size n, and k is the random number of exceedances of u, we have k ∼
ncu−α . Therefore, in large samples we have

Variance of
1
α̂
≈ 1

α2ncu−α
.

Combining the espressions for bias and variance, and writing mean squared error
(MSE) for the sum of squared bias and variance, we deduce

MSE of
1
α̂
≈ Auα

n
+B2u−2β

where A = 1
α2c and B = dβ

α(α+β ) .
This asymptotic MSE is minimized with

u =

(
2βB2n

αA

)1/(α+2β )
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which in turn leads to an asymptotic MSE of

MSE =
B2(α +2β )

α

(
2βB2n

αA

)−2β/(α+2β )

.

The most important consequence of this is that the MSE is of O
(

n−2β/(α+2β )
)

as

n→ ∞, which could be arbitrarily slow for very small β but is of O(n−1) as β → ∞

— this makes sense, because in thaty limit the cx−α result is exact and we are back
in the original case considered by Hill.

2.5.2.1 Extension to the GPD

The above calculation was relatively straightforward because of the explicit closed
form of the estimator. In most cases of interest (for example, estimating the two-
parameter GPD or the three-parameter GEV distribution), there is no closed form
estimator and the MLE is obtained by solving the likelihood equations. In such case,
we may in principle proceed as follows. Suppose the negative log likelihood function
based on n observations is `n(θ) for some multidimensional parameter θ whose true
value we shall write θ0. Also write θ̂n for the MLE. The Taylor expansion

∇`n(θ̂n)−∇`n(θ0) ≈
(
θ̂n−θ0

)T
∇

2`n(θ0)

leads to the approximation

θ̂n−θ0 ≈ −
(
∇

2`n(θ0)
)−1

∇`n(θ0).

Now suppose that as n→ ∞, n−1∇2`n(θ0)
p→ J (the Fisher information matrix) and

n−1∇`n(θ0)
p→ b (bias due to model misspecification; if the model is correctly spec-

ified, b = 0). Then for θ̂n we have, for large n,

Bias ≈ J−1b, Covariance Matrix ≈ n−1J−1. (2.57)

Now let’s apply this to the case of the GPD, again under the assumption that the
true distribution satisfies (2.55). Note that in the case where 1−F(x) = cx−α is exact,
we have

1−F(u+ y)
1−F(u)

=
(

1+
y
u

)−α

=
(

1+ξ
y
σ

)−1/ξ

so the two forms are identical if σ = u
α
, ξ = 1

α
. From now on, we treat these as the

“true” GPD parameter values in this case.
In this model, the Fisher information matrix [219] is

J =

(
1

σ2(1+2ξ )
1

σ(1+ξ )(1+2ξ )
1

σ(1+ξ )(1+2ξ )
2

(1+ξ )(1+2ξ )

)
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provided 1+2ξ > 0, and hence

J−1 = (1+ξ )

(
2σ2 −σ

−σ (1+ξ )

)
Now let’s compute the b term in (2.57). The log likelihood for a single observation
is

`(σ ,ξ ) = logσ +

(
1
ξ
+1
)

log
(

1+ξ
y
σ

)
.

Hence,

σ
∂`

∂σ
= − 1

ξ
+

(
1
ξ
+1
)(

1+ξ
y
σ

)−1
,

∂`

∂ξ
= − 1

ξ 2 log
(

1+ξ
y
σ

)
+

1
ξ

(
1
ξ
+1
){

1−
(

1+ξ
y
σ

)−1
}
.

To calculate b, we need to find expressions for the expected values of these terms.
To recast in the notation of Section 2.5.2, we first make the substitutions σ =

u
α
, ξ = 1

α
, and also that if y denotes the excess over the threshold u, then y= u(Yu−1)

and so 1+ξ
y
σ
= Yu. Also, by the same reasoning as led to (2.56)

E
(
Y−1

u
)

=
α

α +1
+du−β · β

(α +1)(α +β +1)
+o(u−β ).

We now calculate the expectations of σ
∂`
∂σ

and ∂`
∂ξ

, respectively, to be

−α +(α +1)
{

α

α +1
+du−β · β

(α +1)(α +β +1)
+o(u−β )

}
= du−β · β

α +β +1
+o(u−β )

and

−α
2
{

1
α
−du−β β

α(α +β )

}
+α(α +1)

{
1

α +1
−du−β β

(α +1)(α +β +1)

}
+o(u−β )

= du−β · αβ

(α +β )(α +β +1)
+o(u−β ).

Therefore, we conclude

b ∼ du−β

(
1
σ

β

α+β+1
αβ

(α+β )(α+β+1)

)
,

J−1b ∼ du−β (α +1)β
α(α +β )(α +β +1)

(
σ(α +2β )

1−β

)
.

Focussing on the second entries in these vectors, we deduce that ξ̂ has asymptotic
bias

du−β (α +1)β (1−β )

α(α +β )(α +β +1)
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and asymptotic variance (based on k ≈ ncu−α exceedances of the threshold

1
k

(
α +1

α

)2

∼ (α +1)2

α2ncu−α
.

2.5.2.2 Comparisons with the Hill-Weissman Estimator

For the Hill-Weissman estimator, we deduced that the bias was asymptotically Bu−β ,
variance Auα/n, with B =−dβ/(α(α +β )), A = 1/(α2c).

For the GPD estimator, we get asymptotic bias B′u−β , asymptotic variance
A′uα/n, where B‘ = dβ (1−β )(α +1)/(α(α +β )(α +β +1).

The optimal MSE is proportional to

|B|2α/(α+2β )A2β/(α+2β )

Therefore, the ratio of the optimal MSE for the GPD estimator to that of the
Hill-Weissman estimator is∣∣∣∣B′B
∣∣∣∣2α/(α+2β ) ∣∣∣∣A′A

∣∣∣∣2β/(α+2β )

=

∣∣∣∣ (1−β )(α +1)
α(α +β )(α +β +1)

∣∣∣∣2α/(α+2β )

|α +1|4β/(α+2β )

See Figure 5.1.

2.5.2.3 Background References

The Hill estimator was introduced in [113] and the Weissman estimator, in its original
form, in [252]. Asymptotic properties of the Hill estimator were obtained by [109,
105, 87] Optimality of the derived rate of convergence was proved by [107], and
an adaptive estimator to achieve the optimal threshold was given by [108]. Many
variants on the method exists, for example, [43] used a kernel-weighted version. The
comparison of the two estimators was first derived in [219]. Many other authors have
contributed to the theory and a more complete bibliography will be given later.

2.5.3 Outline Derivation of Dombry-Ferreira result

Health warning: This is not the proof. For that, we refer to the original paper [57].
The intention here is to motivate the result, and to show how it follows logically from
the asymptotic approximations we have been developing in this chapter.

First, let us assume that the relationship (2.44) is exact, i.e. the left and right hand
sides are identical for every m. Since Mi,m has the distribution function Fm, by the
probability integral transformation we can write Fm(Mi,m) = S where S is uniform
on (0,1). In that case − 1

logF(Mi,m)
= m
− logS . But − 1

logF(·) was defined to be the inverse

of V , so Mi,m = V
(

m
− logS

)
. We also define bm = V (m), am = a(m). If we assume

(2.44 is exact, then

Mi,m−bm

am
=

(
− 1

logS

)ξ0
−1

ξ0
.
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Figure 2.1 Ratio of optimal mean squared error for the GPD estimator to that of the Hill-
Weissman estimator, for a variety of values of α and β .

But the right hand side has the GEV distribution:

Pr


(
− 1

logS

)ξ0
−1

ξ0
≤ y

 = Pr
{

S≤ e−(1+ξ y)−1/ξ
}

= e−(1+ξ y)−1/ξ

(provided 1+ξ y > 0).

Now, however, suppose (2.45) holds instead of (2.44) being exact. In that case, we
can write

Mi,m−bm

am
=

(
− 1

logS

)ξ0
−1

ξ0
+A(bm)Hξ0,ρ

(
1

− logS

)
+op(A(bm)).

Suppose we want to find the expectation of h
(

Mi,m−bm
am

)
, where h is some nonlinear

continuously differentiable function. We proceed formally, assuming limiting opera-
tions are valid without rigorous proof. By Taylor expansion, we write

h
(

Mi,m−bm

am

)
= h


(
− 1

logS

)ξ0
−1

ξ0

+A(bm)Hξ0,ρ

(
1

− logS

)
h′


(
− 1

logS

)ξ0
−1

ξ0

+op(A(bm)).

Taking expectations term by term

E
{

h
(

Mi,m−bm

am

)}
=

∫ 1

0
h


(
− 1

logs

)ξ0
−1

ξ0

ds+
∫ 1

0
A(bm)Hξ0,ρ

(
1

− logs

)
h′


(
− 1

logs

)ξ0
−1

ξ0

ds

+op(A(bm)).

Now suppose the function h is any of d`
dµ

, d`
dψ

, d`
dξ

, where ` is given by (2.41). Because
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h is a derivative of the log likelihood of the GEV model,
∫ 1

0 h

{(
− 1

logs

)ξ0−1

ξ0

}
ds = 0

and we are left with

E
{

h
(

Mi,m−bm

am

)}
∼ A(bm)

∫ 1

0
Hξ0,ρ

(
1

− logs

)
∂h
∂x


(
− 1

logs

)ξ0
−1

ξ0

ds.

Representing `(µ,ψ,ξ ;x) = `(θθθ ,x) where θθθ = ( θ1 θ2 θ3 and θ1 = µ, θ2 =
ψ, θ3 = ξ , we therefore have

E
{

∂`

∂θθθ

(
Mi,m−bm

am

)}
∼ A(bm)

∫ 1

0
Hξ0,ρ

(
1

− logs

)
∂ 2`

∂x∂θθθ


(
− 1

logs

)ξ0
−1

ξ0

ds.

(2.58)

The right hand side of (2.58) is A(mn) multiplied by b(ξ0,ρ) in the notation of
Dombry–Ferreira.

Equation (2.58) applies to just a single value of the likelihood function, whereas
the formula (2.42) represents the sum of k = kn similar terms. In the notation of Sec-
tion 2.5.1, we have bn = knA(mn)b(ξ0,ρ) and hence k−1/2

n bn =
√

knA(mn)b(ξ0,ρ)→
λb(ξ0,ρ). Since this case the method of estimation under the GEV model is maxi-
mum likelihood, in this case the matrices J0 and C0 of Section 2.5.1 are both I0, the
Fisher information matrix for the limiting GEV distribution. Thus, (2.50) implies√

kn

(
θ̂θθ n−θθθ 0

)
d→ N

{
λ I−1

0 b(ξ0,ρ), I−1
0
}

The Dombry-Ferreira result differs from this because it assumes the GEV maximum
likelihood estimation procedure is applied directly to the block maxima Mi,m, rather
than the normalized maxima Mi,m−bm

am
as we have written here. Nevertheless, this ar-

gument should serve to motivate their result and to define a general context to derive
similar results under different variations of the basic model and estimation procedure.

2.6 Other topics to be added

2.6.1 Method of probability weighted moments

An alternative to the maximum likelihood method that achieved popularity after a
famous paper of Hosking, Wallis and Wood [116], but theoretically do not perform
as well as maximum likelihood estimators [55, 71].

2.6.2 Corresponding results for threshold estimators

Cite paper of Smith [219]; show how results may be reinterpreted in terms of the de
Haan-Stadtmüller representation
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2.6.3 Estimating probabilities of extreme events

In most cases the real interest is not in estimating the GEV/GPD parameters but
in applying them to estimate probabilities of extreme events or, equivalently, return
values corresponding to given extreme probabilities. We will review results where, in
addition to the kinds of asymptotics ocnsidered here, we also have tail probabilities
pn→ 0 as n→ ∞.

2.6.4 Adaptive choice of block size or threshold

2.6.5 Practical examples

e.g. [2]





Chapter 3

Extremes in Dependent Sequences

3.1 Extremes in stationary sequences

The random sequence {Xn}, where the index n ranges over all non-negative integers
or over all integers, is called stationary if, for any n, k ≥ 1 and x1, ...,xk,

Pr{Xn+1 ≤ x,...,Xn+k ≤ xk} = Pr{X1 ≤ x,...,Xk ≤ xk}. (3.1)

It follows that, if all the means and covariances of the process exist, then they
satisfy

E{Xn}= µ, Cov{Xn,Xn+k}= ρk independent of n. (3.2)

A process that satisfies (3.2) without (3.1) is called weakly or second-order sta-
tionary. In much of time series analysis and linear prediction theory, second-order
stationarity suffices, but in extreme value theory, except for the special case of Gaus-
sian processes (when the two concepts coincide), we do need full stationarity of the
process. Therefore, from now on, by stationarity we shall mean (3.1).

A stationary sequence is strong mixing if there exists a function g(k), k = 1,2, . . .,
such that g(k)→ 0 as k→ ∞ and

|Pr{AB}−Pr{A}Pr{B}| ≤ g(k) (3.3)

whenever A ∈F n
−∞ B ∈F ∞

n+k+1 for some n. Here F n
m for −∞≤m≤ n≤ ∞ denotes

the σ -algebra generated by {X j, m≤ j ≤ n}, i.e. the set of all events determined by
the random variables {X j, m ≤ j ≤ n}. If there exists m ≥ 0 such that g(k) = 0 for
all k > m, then the sequence is said to be m-dependent.

One useful concept in talking about a stationary sequence is that of an associated
independent sequence, i.e. a sequence {X̂n} of independent random variables with
the same marginal distribution as {Xn}. Let

Mn = max{X1, . . . ,Xn}, M̂n = max{X̂1, . . . , X̂n}.

Much of the theory concerns asymptotic results of the form

Pr{Mn ≤ un}−Pr{M̂n ≤ un}→ 0 as n→ ∞ (3.4)

for suitable increasing {un}. Early results of this form were those of Watson [247] for

57
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m-dependent sequences and Loynes [146] for strong mixing sequences, in each case
under an additional condition which essentially ensures that high-level exceedances
of the process occur in isolation rather than as dependent clusters. In the case of
Gaussian sequences, Berman [17] proved (3.4) under the condition rn logn→ 0. This
is not strictly speaking a necessary condition — indeed, Berman also gave the alter-
native sufficient condition ∑r2

n < ∞ — but it is almost necessary in the sense that
if rn logn→ c 6= 0 then a different limit arises. Moreover, in the case of a Gaussian
sequence, this is much weaker condition than strong mixing, so it became clear that
Loynes’ conditions were not the best possible. The problem of unifying these dif-
ferent conditions was essentially solved by Leadbetter [137, 138] who showed that
a significantly weaker form of mixing condition covered the results of both Loynes
and Berman. The description which follows is based on [140].

For any sequence of real values {un}, Condition D(un) is said to hold if, for any
integers i1 < ... < ip < j1 < ..., jq with j1− ip > `, we have

|Pr{Xi1 ≤ un, ...,Xip ≤ un,X j1 ≤ un, ...,X jq ≤ un}−
Pr{Xi1 ≤ un, ...,Xip ≤ un}Pr{X j1 ≤ un, ...,X jq ≤ un}| ≤ αn,` (3.5)

where αn,`n → 0 for some sequence `n = o(n). Without loss of generality, αn,` may
be taken non-increasing in ` for each n, and the condition αn,`n → 0 may be replaced
by

αn,bnλc→ 0 for each λ > 0.

Here b·c denotes integer part.
The main result about condition D(un) is that it suffices for the Extremal Types

theorem: if an > 0, bn are such that

Pr{Mn ≤ anx+bn}→ G(x)

where G is non-degenerate, and if D(un) holds for each sequence of the form un =
anx + bn for fixed x, then G is one of the three extreme value types described in
Chapter 1

Under a further condition denoted D′(un), defined by

limsup
n→∞

n
bn/rc

∑
j=2

Pr{X1 > un,X j > un}→ 0 as r→ ∞ (3.6)

it follows that (3.4) holds and hence that the limiting distribution is the same as in the
independent case. An alternative way of stating the result is that if both D(un) and
D′(un) hold for a particular sequence {un}, then for 0≤ τ < ∞,

Pr{Mn ≤ un}→ e−τ if and only if nPr{X1 > un}→ τ. (3.7)

This result is exactly of the form (3.4). The condition D′(un) represents precisely
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what is meant by saying that high-level exceedances do not cluster, a concept which,
as has already been mentioned, was present in earlier work of Watson and Loynes.

Putting all these results together, we have:

Theorem. If D(un) and D′(un) hold whenever un = anx+bn for fixed x, and if G
is a nondegenerate distribution function, then

Pr{Mn ≤ anx+bn}→ G(x) if and only if Pr{M̂n ≤ anx+bn}→ G(x).

For proofs we refer to Leadbetter, Lindgren and Rootzén [140], Chapter 3.
One direct application of these results is to Gaussian sequences. If {Xn} is a

stationary Gaussian sequence satisfying Berman’s condition rn logn→ 0, and if {un}
is such that nPr{X1 > un} is bounded. then both D(un) and D′(un) hold and so Mn
and M̂n have the same limiting distribution. This is described in Chapter 4 of [140].

To summarise, if D(un) holds for suitable sequences {un}, then the only possi-
ble limit laws are the classical extreme value distributions, but Mn and M̂n do not
necessarily converge to the same limit under the same normalisation. Under the ad-
ditional condition D′(un), the two limits are the same and the asymptotic extreme
value theory is the same as if the two sequences were independent. Neither of the
conditions D(un) or D′(un) is universal. For example, exchangeable sequences of
random variables typically have a component that persists through the whole series,
thereby violating D(un). The book by Galambos [81] contained a thorough review
of this class of processes. Our own point of view, however, is that D(un) is quite a
mild condition which we would expect to be satisfied for the great majority of nat-
ural processes, whereas D′(un) is much more questionable. The bulk of the rest of
the chapter will therefore be devoted to cases in which D(un) holds but D′(un) does
not. The key concept in handling these cases is what has come to be known as the
extremal index.

3.2 The extremal index

The intuitive concept is that if high-level exceedances occur in clusters, then it is
only the cluster maxima that have any bearing on the extreme value distribution.
Consequently, the calculations must be scaled by a factor which depends on the mean
number of exceedances in a cluster. Heuristic arguments of this form go back at least
as far as Cartwright [25], and were made more precise by Newell [161] and Loynes
[146]. For example, Loynes showed that if {Xn} is strong mixing and, for each τ ,
un(τ) is defined by

Pr{X1 > un(τ)} ≤ τ/n≤ Pr{X1 ≥ un(τ)} (3.8)

then the only possible non-degenerate limits of Pr{Mn ≤ un(τ)}, 0 < τ < ∞ are of
the form e−θτ with 0 < θ ≤ 1. O’Brien [165] showed that all such values of θ are
possible, and O’Brien [166] extended the theory to cover the case θ = 0. Later Davis
[46] and ultimately Leadbetter [139] extended the theory to the case where the only
mixing condition assumed is D(un), and Leadbetter coined the term extremal index
for the parameter θ .
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The main results are as follows [139]:

Theorem 1. Suppose (3.8) holds, and that D(un(τ0)) holds for some τ0 > 0. Then
there exist constants θ and θ ′ such that

limsup
n→∞

Pr{Mn ≤ un(τ)} = e−θτ ,

liminf
n→∞

Pr{Mn ≤ un(τ)} = e−θ ′τ ,

for all τ ≤ τ0. Hence, if Pr{Mn ≤ un(τ)} converges for at least one τ ≤ τ0, then it
does so for all τ ≤ τ0 and θ = θ ′. In that case, the extremal index exists and is θ .

Theorem 2. Suppose {Xn} has extremal index θ . Let {vn} denote any sequence
of constants and let 0≤ ρ ≤ 1. Then

(i) If θ > 0, then

Pr{M̂n ≤ vn}→ ρ if and only if Pr{Mn ≤ vn}→ ρ
θ .

(ii) If θ = 0, then

liminf
n→∞

Pr{M̂n ≤ vn}> 0⇒ Pr{Mn ≤ vn}→ 1

and

limsup
n→∞

Pr{Mn ≤ vn}< 1⇒ Pr{M̂n ≤ vn}→ 0.

O’Brien [168] gave an alternative approach which showed that θ may also be
defined as

θ = lim
n

Pr{max(X2, ...,Xpn)≤ un|X1 > un} (3.9)

for suitable sequences {un}, {pn}. The conditions for this are as follows:

(i) the sequence {un} must satisfy one of the conditions

liminfFn(un)> 0

or

liminfPr{max(X2, ...,Xpn)≤ un|X1 > un}> 0;

(ii) the process must satisfy D(un) (O’Brien actually used a slightly weaker form of
this which encompasses certain periodic processes);

(iii) pn = o(n), `n = o(pn) and nαn,`n = o(pn) where `n, αn,`n are as in (3.5).

Rootzén [196] obtained a similar result when θ > 0: if {un} is such that nPr{X1 >
un} → τ > 0 and if D(un) holds, then a necessary and sufficient condition for {Xn}
to have extremal index θ is that

lim
ε↓0

limsup
n→∞

|Pr{max(X2, ...,Xbnεc)≤ un|X1 > un}−θ |= 0.
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We now give three examples for which it is possible to calculate the extremal
index exactly.

Example 1.

Let {Zn, −∞ < n < ∞} denote a doubly infinite sequence of independent random
variables with common distribution function Pr{Zn ≤ z} = exp(−z−α), z > 0, and
let {c j, j ≥ 0} denote an increasing sequence of positive numbers with c0 = 1 and
c j→ ∞ as j→ ∞. Define

Xn = max
j≥0

Zn− j/c j. (3.10)

It is readily checked that the distribution function of Xn is

Pr{Xn ≤ x}= exp(−Kx−α) (3.11)

where K = ∑n c−α
n , which we assume to be finite. If an = (nK)1/α then

nPr{X1 > anx} ∼ nK(anx)−α = x−α

so Pr{M̂n ≤ anx} → exp(−x−α). Now, the event {Mn ≤ x} may be written as A∩B
where

A = ∩n
j=1{Z j ≤ x}, B = ∩0

j=−∞{Z j ≤ c1− jx}.

By (3.11), Pr{B} → 1 as x→ ∞ while P{A} → exp(−nx−α). Hence with {an} as
above,

Pr{Mn ≤ anx} ∼ exp{−n(anx)−α}= exp(−K−1x−α).

Thus the extremal index is K−1, which can be any value in (0,1].

Example 2. This example is similar in structure to the previous one, but results

in θ = 0. Suppose {Zn} is as in Example 1, and let {c j, j ≥ 0} denote an increasing
sequence with c0 = 0, c j→ ∞ as j→ ∞. Let

Xn = max
j≥0
{Zn− j− c j}.

Then

Pr{Xn ≤ x}= exp{−∑
j
(x+ c j)

−α}.

Suppose further c j ∼ K j1/β as j→ ∞, where K > 0 and 0 < β < α . An argument
given below shows that

∑
j
(x+ c j)

−α ∼ K−β Γ(α−β )Γ(β +1)
Γ(α)

xβ−α as x→ ∞. (3.12)
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Hence with suitable ân = O{n1/(α+β )} we have

Pr{M̂n ≤ ânx}→ exp(−xβ−α).

But Pr{Mn ≤ x} ∼ Pr{max(Z1, ...,Zn)≤ x} as in Example 1, so with an = n1/α ,

Pr{Mn ≤ anx}→ exp(−x−α).

This is a case where Mn and M̂n converge to different limits at different rates of
convergence, and θ = 0. This example is due to L. de Haan (see [139]).

Proof of (3.12). Extend {c j} to a monotonically increasing function c(t), 0≤ t <
∞ with c( j) = c j for each integer j. Let K1 = inft>0{t−1/β c(t)} (positive and finite)
and consider∫

∞

0
{x+ c(t)}−α dt = K−β xβ

∫
∞

0
{x+ c(K−β xβ t)}−α dt

= K−β xβ−α

∫
∞

0

{
1+

c(K−β xβ t)
x

}−α

dt

∼ K−β xβ−α

∫
∞

0
(1+ t1/β )−α dt

by the dominated convergence theorem (the integrand is dominated by the expression
(1+K1K−1t1/β )−α ). The integral is bounded above and below by the sums

∞

∑
0
(x+ c j)

−α ,
∞

∑
1
(x+ c j)

−α ,

and hence is asymptotic to either. Finally, the substitution t = u−β (1− u)β shows
that ∫

∞

0
(1+ t1/β )−α dt =

Γ(α−β )Γ(β +1)
Γ(α)

from which (3.12) follows.

Example 3.

This is motivated by examples in [54, 168], and shows an alternative mecha-
nism which results in θ = 0. Suppose {Wn} is the Markov chain with state space
{1,2,3, ....} and transition probabilities

Pr{Wn+1 = j|Wn = i}=


{i/(i+1)}β , if j = i+1,
1−{i/(i+1)}β , if j = 1,
0, otherwise,

where 1 < β < 2. This is positive recurrent with stationary distribution

Pr{Wn = i}= ci−β , i≥ 1,
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where c = 1/∑i i−β .
Now suppose {Xn} is another sequence of random variables, conditionally inde-

pendent given {Wn}, where

Pr{Xn ≤ x|Wj, all j}= Pr{Xn ≤ x|Wn = m}= exp(−mx−α) (x > 0,α > 0).(3.13)

Direct calculations given below show that

Pr{Xn > y} ∼ c1yα−αβ as y→ ∞, where c1 = c
∫

∞

0
z−β (1− e−z)dz, (3.14)

lim
y→∞

Pr{Wn ≤ yα w|Xn = y}=
∫ w

0

z1−β e−z

Γ(2−β )
dz, (3.15)

and

Pr{max(X2, ...,Xp+1)≤ y|X1 = y}→ (p+1)β−2 as y→ ∞. (3.16)

The probability in (3.16) may be made arbitrarily small by taking p sufficiently large.
Moreover, replacing the conditioning event X1 = y by X1 ≥ y makes it even smaller.
Hence by O’Brien’s condition (3.9), the extremal index is 0 for this process.

Although this example has been artifically constructed, it is intended to illustrate
a general scenario in which extremal index 0 may arise, namely one in which there
is a slowly moving “background noise” process {Wn} which highly influences the
values of {Xn}.

Proofs of (3.14)-(3.16). For fixed w1, w2, x1 > 0 and x2, as y→ ∞,

Pr{w1yα ≤Wn ≤ w2yα , x1y≤ Xn ≤ x2y}

=
j=bw2yα c

∑
j=bw1yα c

c j−β [exp{− j(x2y)−α}− exp{− j(x1y)−α}]

∼ c
∫ w2yα

w1yα

z−β [exp{−z(x2y)−α}− exp{−z(x1y)−α}]dz

= cyα−αβ

∫ w2

w1

z−β [exp{−z(x2)
−α}− exp{−z(x1)

−α}]dz. (3.17)

Setting w1 = 0, w2 =∞, x1 = 1, x2 =∞ gives (3.14). Dividing (3.18) by the same
expression with w1 = 0, w2 = ∞ and letting x2→ 1, x1→ 1 we have

Pr{w1yα ≤Wn ≤ w2yα |Xn = y}→
∫ w2

w1

z1−β e−z

Γ(2−β )
dz

which is (3.15). Finally, given X1 = y (large) we have W1 ≈ yα Z with Z having a
Gamma(2−β ,1) distribution. For fixed p, the probability that Wj =W1 + j−1 for all
j = 2, ..., p+1 tends to 1 as y→ ∞. Hence

Pr{max(X2, ...,Xp+1)≤ y|Z} ∼ [exp{−(yα Z)y−α}p] = e−pZ

and integrating with respect to the distribution of Z gives (3.16).
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3.3 Infinitely divisible random measures

In studying the point processes generated by exceedances in stationary sequences, an
important concept is that of an infinitely divisible point process or, more generally,
random measure. We give here a brief non-rigorous account of the basic representa-
tion theorem for such processes and refer to a text such as Kallenberg [130] for full
details.

Suppose η is a random measure on a set S. If f is a non-negative measureable
function on S, we write

η( f ) =
∫

S
f (x)η(dx) (3.18)

and define the Laplace transform of η by

Lη( f ) = E{e−η( f )}.

In the case that η is a counting measure, or in other words a point process with points
at {Ti} say, (3.18) is equivalent to

η( f ) = ∑
i

f (Ti).

Here are two examples:

(i) Let η be a non-homogeneous Poisson process on a Euclidean space with inten-
sity ν(x), x ∈ S, with respect to Lebesgue measure. Suppose the support of f is
contained in a set A (i.e. f (x) = 0 outside A) where

µ =
∫

A
ν(x)dx < ∞.

The process ν , restricted to A, may be constructed as follows: first let N, the total
number of points in A, have a Poisson distribution with mean µ , then let T1, ...,TN
be conditionally independent given N, each with density ν(x)/µ, x ∈ A. Thus

E

{
exp

(
−

N

∑
i=1

f (Ti)

)
|N

}
=

{
µ
−1
∫

A
e− f (x)

ν(x)dx
}N

and hence, since E{zN}= e−µ(1−z) for any z > 0, we have

Lη( f ) = exp
[
−
∫

A

{
1− e− f (x)

}
ν(x)dx

]
(3.19)

= exp
[
−
∫

S

{
1− e− f (x)

}
ν(x)dx

]
(3.20)

The final formula does not depend on A and hence, by monotone convergence
arguments, remains valid without the initial restriction of f to a set A on which
µ < ∞.
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(ii) Let {Ti} denote a homogeneous Poisson process on S, with intensity ν , and let
{Yi} denote an independent sequence of independent, identically distributed non-
negative random variables with Laplace transform φ(t) = E{exp(−tYi)}. Let η

denote the compound Poisson process that puts mass Yi at each Ti, so that

η( f ) = ∑
i

Yi f (Ti).

To calculate the Laplace transform in this case, suppose f is restricted to a set A
with Lebesgue measure µ < ∞. If T1, ...,TN are the points of the Poisson process
in A, then N has a Poisson distribution with mean µν and, conditionally on N,
T1, ...,TN are independent uniform over A. So

E{exp(−η( f ))|T1, ...,TN} =
N

∏
i=1

φ{ f (Ti)},

E{exp(−η( f ))|N} =

[
µ
−1
∫

A
φ{ f (x)}dx

]N

and hence

Lη( f ) = exp
[
−ν

∫
S
{1−φ( f (x))}dx

]
. (3.21)

Again, the fact that this formula is independent of A shows that it may be extended
to cases in which the support of f is not restricted to a bounded set.

These two examples are both examples of infinitely divisible random measures.
A random measure η is infinitely divisible if, for any positive integer n, it can be
written η = η1+ ...+ηn where η1, ...,ηn are i.i.d. random measures. Equivalently, η

is infinitely divisible if, for each n, {Lη( f )}1/n is the Laplace transform of a random
measure. It is obvious that both (3.20) and (3.21) have this property.

In general, if we let M denote the class of all locally finite measures on S, then
any infinitely divisible random measure on S has the Laplace transform

− logLη( f ) = α( f )+
∫

M−{0}
[1− exp{−µ( f )}]λ (dµ) (3.22)

where α ∈M , 0 denote the null measure that assigns mass 0 to every set, and λ is
an arbitrary measure on M satisfying∫

M−{0}
[1− exp{−µ(IB)}]λ (dµ)< ∞ for each bounded set B (3.23)

where IB denotes the indicator function of the set B. Proof of this formula is given by
Kallenberg [130], Theorem 6.1.

To see that (3.20) and (3.21) are both of the form (3.22):

(i) Let λ be concentrated on the Dirac (delta) measures on S and identify µ( f ) with
f (x), λ (dµ) with ν(x)dx when µ = δx for some x ∈ S. Then (3.22) with α = 0
reduces to (3.20).
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(ii) First suppose the Lebesgue measure |S| is finite. Define a random element µ of M
by first choosing T uniformly distributed on S, then putting mass Y on T where Y
is chosen independently with the same distribution as the {Yi}. Let λ denote ν |S|
times the probability measure of this random element. Let µ( f ) = Y f (T ). Then∫

M−{0}
[1− exp{−µ( f )}]λ (dµ) = ν |S|E{e−Y f (T )}= ν

∫
S

φ{ f (x)}dx.

With this identification (and α = 0), (3.22) reduces to (3.21). The case where S is
unbounded may be handled by writing S = ∪Sn, where each Sn is bounded, and
taking limits in the above representation.

The general form of (3.22) shows that any infinitely divisible random measure
may be written as the sum of a non-random α (it is obvious that any non-random
measure is infinitely divisible) and a form of generalised compound Poisson process
in which random measures on S are chosen corresponding to an intensity measure λ .

Another interpretation is given by Kallenberg (1983), Section 6.2. Suppose η is
given by (3.23) and write M = ∪Mn where the Mn are disjoint and, for each n,
λ (Mn) < ∞. For each n, let Nn have a Poisson distribution with mean λ (Mn) and,
conditionally on Nn, let {ξn j} (1≤ j ≤ Nn) be independent random members of Mn
with distribution λ (dµ)/λ (Mn), µ ∈Mn. Then η has the representation

η = α +∑
n

Nn

∑
j=1

ξn j.

3.4 Exceedances of a single level

Let {Xn} denote a stationary sequence and let Mn = max(X1, ...,Xn). For an increas-
ing sequence of thresholds {un}, define {Nn} to be the point process on [0,1] which
puts a point at j/n if X j > un, 1 ≤ j ≤ n. In this section we describe the limiting
behaviour of the point processes {Nn}.

If nPr{X1 > un} → τ (0 < τ < ∞), and if D(un) and D′(un) hold as defined
by equations (3.5) and (3.6), then Nn converges weakly to a homogeneous Poisson
process with intensity τ ([140], Theorem 5.2.1). Under a slightly stronger condition,
both the definition of Nn and the Poisson convergence may be extended from [0,1] to
[0,∞).

Now suppose D(un) holds but D′(un) does not. In describing this situation we
follow Hsing, Hüsler and Leadbetter [121]. They assume a slightly stronger form of
D(un), as follows: given the sequence {un}, define B(i, j) to be the σ -field generated
by the events {Xm ≤ un, i≤ m≤ j}, and let

α(n, `) = max{|Pr{AB}−Pr{A}Pr{B}| : A ∈B(1,k), B ∈B(k+ `,n), 1≤ k ≤ n− `}(3.24)

for n≥ 1, `≥ 1. Condition ∆(un) is said to hold if there exist `n, n≥ 1 such that

`n = o(n), α(n, `n)→ 0. (3.25)
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This is nominally a stronger condition than D(un), but it is not clear whether there
actually exist processes satisfying D(un) but not ∆(un).

Hsing, Hüsler and Leadbetter showed that if anNn converges to a limiting random
measure N, for some sequence of positive constants {an}, then N necessarily has the
properties

(i) N is stationary — in particular, if A = (a,b) and B = (a + h,b + h) for some
0≤ a≤ b≤ b+h≤ 1, then N(A) and N(B) have the same distribution,

(ii) N has no fixed atoms, i.e. N({x}) = 0 with probability 1 for each fixed x,
(iii) N is infinitely divisible.

By combining properties (i) and (ii) with the general representation (3.22), they
deduced the representation

− logLN( f ) = α

∫ 1

0
f (x)dx+

∫ 1

0

∫
∞

0
{1− e−y f (x)}ν(dy)dx (3.26)

where α ≥ 0 and ν is a measure on (0,∞) satisfying∫
∞

0
(1− e−y)ν(dy)< ∞.

Thus, N consists of αm (m = Lebesgue measure) plus a sequence of point masses
Yi > 0 at points Ti ∈ [0,1], where {(Ti,Yi), i = 1,2, ...,} for a Poisson process on
[0,1]× (0,∞) with intensity measure m×ν . In the case where ν is a finite measure
this reduces to a compound Poisson process as described in example (ii) of Section
3.3.

Here are some examples to illustrate the application of this result.

1. Consider example 1 of Section 3.2. Let un = (n/τ)1/α for some fixed τ , so that
Pr{Mn ≤ un}→ e−τ . Suppose Z j > un. Now

Pr{Z j > uny|Z j > un}→ y−α as un→ ∞ for y > 1.

Hence for fixed r ≥ 1,

Pr{X j+r > un|Z j > un} ∼ Pr{Z j/cr > un|Z j > un}→ c−α
r .

Consequently, each exceedance by the process {Z j} over un gives rise indepen-
dently to a random number R of exceedances by {X j} over un, where as n→ ∞,

Pr{R = r}→ π(r) = c−α

r−1− c−α
r (r ≥ 1).

Thus Nn converges to a limit N which is a compound Poisson process with Laplace
transform

− logLN( f ) = τ

∫ 1

0
[1−φ{ f (x)}]dx,

φ(t) =
∞

∑
r=1

e−rt
π(r).
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The mean cluster size in the limit is

∞

∑
r=0

Pr{R > r}=
∞

∑
r=0

c−α
r = K

where, as shown in Section 3.2, K is the reciprocal of the extremal index. Note
that any distribution of cluster size with finite mean can arise through this scheme.

2. Consider example 2 of Section 3.2 with un = (n/τ)1/α again. In this case

Pr{X j+r > un|Z j > un} ∼ Pr{Z j > un + cr|Z j > un} ∼
(

1+
cr

un

)−α

which tends to 1 as un→ ∞ for any fixed r. Thus the clusters are asymptotically
of infinite size. To obtain a non-degenerate result we must renormalise: if r =
y(un/K)β for fixed y > 0 then

Pr{X j+r > un|Z j > un}→ (1+ y1/β )−α .

Thus Nn is approximately a Poisson process of clusters having intensity τ , where
each cluster size is of the form Y (un/K)β with Pr{Y > y} = (1+ y1/β )−α . The
mean cluster size is O(uβ

n ) = O(nβ/α), which is o(n) since we assumed β < α .
To obtain a limiting process in this case, let an = Kβ u−β

n . Then anNn→ N where
N is the compound Poisson process {Ti,Ni}, with {Ti} a homogeneous Poisson
process on [0,1] with intensity τ , and {Yi} independent with common distribution
function 1− (1+y1/β )−α . This is a case where the limiting measure is not a point
process.

3. Let {Xn} be any ergodic stationary process un ≡ u a fixed threshold and suppose
α = Pr{X1 > u}. Then Nn/n converges to α times Lebesgue measure. This trivial
example shows that the case α > 0 in (3.26) cannot be dispensed with.

If {Nn} converges without any renormalisation, i.e. if we may take an ≡ 1, then
N is necessarily a point process and the Laplace transform is given by

LN( f ) = exp
[
−ν

∫ 1

0
{1−φ( f (x))}dx

]
(3.27)

where ν > 0 and φ is of the form

φ(t) =
∞

∑
j=1

e−t j
π( j), (3.28)

where π(·) is a probability distribution on the positive integers. This corresponds to
a clustered point process in which the clusters form a homogeneous Poisson process
with intensity ν and the independent cluster sizes have distribution π . In this case,
some more specific results due to [121] were as follows:
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(i) If (3.25) is strengthened to

kn`n = o(n), knα(n, `n)→ 0

for some sequence kn→ ∞, and define rn = bn/knc,

πn( j) = Pr

{
rn

∑
i=1

I(Xi > un) = j|
rn

∑
i=1

I(Xi > un)> 0

}
for j = 1,2, ... If ∆(un) holds and Nn converges to N, then the distribution π(·) in
(3.29) is defined by

π( j) = lim
n→∞

πn( j), j = 1,2, . . . (3.29)

Conversely, if Pr{Mn ≤ un} → e−τ and both ∆(un) and (3.29) hold, then Nn con-
verges to a point process N with Laplace transform (3.27).

(ii) Suppose {un(τ), τ > 0, n ≥ 1} is a sequence of thresholds such that nPr{X1 >
un(τ)} → τ for each τ , and ∆(un(τ)) holds for each τ . If Nn(τ) converges for
at least one τ > 0, then it does so for all τ and the limiting process has Laplace
transform

LN( f ) = exp
[
−θτ

∫ 1

0
{1−φ( f (x))}dx

]
where both θ and φ(t) = ∑

∞
j=1 e−t jπ( j) are independent of τ . Here θ is the ex-

tremal index, which also satisfies

θ
−1 = lim

n→∞

∞

∑
j=1

jπn( j). (3.30)

If ∑
∞
j=1 jπn( j)→ ∑

∞
j=1 jπ( j) then we also have

θ
−1 =

∞

∑
j=1

jπ( j). (3.31)

giving a direct interpretation of the extremal index as the reciprocal of the mean
cluster size in the limiting point process. It is possible, however, for (3.30) to hold
without (3.31); Smith (1988a) had an explicit counterexample.

An application of these results is to the limiting distribution of the k’th largest
order statistic. Suppose the preceding results holds and there exist an, bn such that

Pr{Mn ≤ anx+bn}→ G(x) (3.32)

with nondegenerate G. Then if M(k)
n denotes the k’th largest order statistic in

{X1, ...,Xn} for fixed k ≥ 1, we have

Pr{M(k)
n ≤ anx+bn}→ G(x)

[
1+

k−1

∑
j=1

k−1

∑
i= j

{− logG(x)} j

j!
π
∗ j(i)

]
(3.33)
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where π∗ j denotes the j-fold convolution of π . To see this, if un = anx + bn and
ν =− logG(x), then Pr{Mn ≤ un}→ e−ν , hence N is compound Poisson with cluster
intensity ν and cluster size distribution π . We want to calculate

lim
n→∞

Pr{M(k)
n ≤ un}= Pr{N(0,1)≤ k−1}.

Let J denote the number of clusters. Then

Pr{N(0,1)≤ k−1|J}=


1, if J = 0,

∑
k−1
i= j π∗ j(i), if J = j, 0 < j < k,

0, if J = j ≥ k.

Hence

Pr{N(0,1)≤ k−1}= e−ν

{
1+

k−1

∑
j=1

k−1

∑
i= j

ν jπ∗ j(i)
j!

}

which is (3.33). If θ = 1 then π(1) = 1 and (3.33) reduces to

Pr{M(k)
n ≤ anx+bn}→ G(x)

[
1+

k−1

∑
j=1

{− logG(x)} j

j!

]
, (3.34)

exactly as in the independent case.
Some parallel results under rather different assumptions were obtained by Dzi-

ubdziela [63, 64].

3.5 The two-dimensional exceedance process

We now consider the two-dimensional point process generated by the high-level ex-
ceedances os a stationary sequence {Xn}. Suppose un(τ) is continuous and strictly
decreasing in τ for each n, and satisfies

Pr{Mn ≤ un(τ)}→ e−τ as n→ ∞ for each τ > 0. (3.35)

Let u−1
n (·) denote the inverse function of un(·). For each n, define a point process Nn

on the plane by putting a point at each ( j/n,u−1
n (X j)), 1≤ j ≤ n. In the independent

case, Pickands [177] and Resnick [187] showed that Nn converges in distribution to a
homogeneous Poisson process N on R× (0,∞) (section 1.8). This was extended by
Adler [1] and by Leadbetter, Lindgren and Rootzén [140], Section 5.7, to processes
satisfying a version of condition D(un(τ)), together with D′(un(τ)) for each τ . Adler
showed that this covers stationary Gaussian sequences satisfying Berman’s condition
ρn logn→ 0. As in the previous section, we shall concentrate on the case when D′

does not hold. This has been developed by Hsing [119, 120] following earlier work
by Mori [158]. The mean number of points of Nn in any bounded subset of the plane
is finite (and bounded as n→∞), so it makes sense to look for a limiting point process
N. Our interest is in characterising this limit when it exists.
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We know from the previous section that the projection of this two-dimensional
process onto the time axis is a one-dimensional clustered Poisson process, so the
two-dimensional process must consist of columns of points with a common time
coordinate. The case where each column contains exactly one point is the case of
extremal index 1, when N is homogenous Poisson. In general, however, N is not
Poisson.

Hsing [119] approached this problem by first listing the invariance properties
thet N must have, and then characterising all processes N having these properties.
Mori [158] obtained the same characterization of the limit, under more restrictive
assumptions on the original process. Hsing’s assumptions are essentially an extension
of condition ∆(un) (section 3.4) so that it applies simultaneously to all un(τ), 0 <
τ < ∞.

Under such assumptions, Mori and Hsing showed that the limiting process must
be infinitely divisible and have points of the form (Si, TiYi j) (i ≥ 1, j ≥ 1) where
{(Si, Ti), i ≥ 1} are the points of a two-dimensional homogeneous Poisson process
of intensity 1 and, for each i, (Yi j, j = 1, ...,Ki) is a point process on [1,∞) with
Yi1 = 1 and a random number of points Ki. The processes {Yi} are independent for
each i, and identically distributed.

Thus, the columns of points in Fig. 3.1 are characterised by the property that the
points at the base of each column form a homogeneous Poisson process, and the ratio
of each column to the height of its base form independent, identically distributed
point processes on [1,∞). Mori showed by example that any process having this
structure may arise as the limiting exceedance process of a strong mixing process.

To illustrate these concepts, consider again Example 1 of section 3.2. It suffices
for (3.35) to take un(τ) = (n/τ)1/α and hence un(x)−1 = nx−α . Suppose m is such
that Xm = Zm = z, where z is very large. Then, for fixed r/ge0 we will have

Pr{Xm+r = c−1
r Zm | Zm = z}→ 1 as z→ ∞

and hence u−1
n (Xm+r)/u−1

n (Xm) = cα
r with conditional probability tending to 1 as

z→ ∞ for any fixed r. The processes {Yi j will simply be given by

Yi j = cα
j−1, all i, j = 1,2, . . . ,

In this case, therefore, the Yi j turn out to be non-random. Each column consists of
infinitely many points, though of course there are only a finite number of points in
any finite region. Mori [158] gave a rather similar construction in which the constants
cr, r≥ 1 are replaced by random variables, and used this to show that any distribution
of {Yi j, j ≥ 1} with Yi1 = 1 can arise in the limiting process from a construction of
this nature.

Hsing [118] gave a more detailed treatment of our Example 1, expanding it to the
case where the common distribution of Zi has any regularly varying tail.

Example 2 of section 3.2 illustrates a case in which the Mori-Hsing theory fails,
but a limiting random measure nevertheless exists under a different renormalization.
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Again let u−1
n (x) = nx−α and fix m such that Xm = Zm = z, where z is large. In the

limiting process this will correspond to a point (Si,Ti) where Si = m/n, Ti = nZ−α
m .

For a large number of r ≥ 1 we will have

Pr{Xm+r = Zm− cr | Zm = z}→ 1 as z→ ∞

so each such value will give rise to a point ((m+ r)/n, n(Zm− cr)
−α which also

converges to (Si,Ti) in the limit. Thus, Nn looks like a clustered point process with
cluster sizes tending to infinity. However, for fixed y≥ 1 we have

∞

∑
r=0

I{n(Zm− cr)
−α ≤ Tiy} ∼

(
Zm

K

)β

(1− y−1/α)β

= nβ/α T−β/α

i Kβ (1− y−1/α)β (3.36)

so n−β/α Nn converges to a random measure with Laplace transform

− logLn( f ) =
∫

∞

−∞

∫
∞

0

[
1− exp

{
−
∫

∞

0
f (s, ty)t−β/α K−β d((1− y−1/α)β

}]
dsdt.(3.37)

Essentially, (E3.35) is of the form (E3.19) in which γ = 1, S = R× (′,∞) and

φ( f (s, t)) = exp
{
−
∫

∞

0
f (s, ty)t−β/α K−β d((1− y−1/α)β

}
is the Laplace transform of a single column of the process in the renormalized limit.

This example illustrated the general point that, when the extremal index is 0, a
more general theory involving convergence of the rescaled point process to a random
measure is required. The presence of T−β/α

i in (E3.34), and of t−β/α in (E3.35),
shows that this random measure has different scaling properties from the point pro-
cess N considered by Mori and Hsing.

One area of application of these results is to the limiting joint distribution of k
largest order statistics, for fixed k ≥ 1 as n→ ∞. Let M(1)

n ≥ ... ≥M(k)
n denote the k

largest order statistics from X1, ...,Xn and suppose an, bn are such that

Pr{M(1)
n ≤ anx+bn}→ G(x)

where G is one the of extreme value distributions. In this case we may define
u−1

n (x) = Ψ((x−bn)/an) where Ψ(y) =− logG(y). For,

Pr{u−1
n (Mn)≤ τ} = Pr{Mn ≤ anΨ

−1(T )+bn}
→ G(Ψ−1(T )) = e−τ

satisfying (3.35). Note that, since G is an extreme value distribution, Ψ is strictly
increasing and hence there is no problem about the existence of Ψ−1.

Suppose the point process Nn, which puts mass 1 at ( j/n, Ψ((X j−bn)/an)) for
each j between 1 and n, converges to a limiting point process N. Let us enumerate
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the points of N as (Ui, Vi) for i ≥ 1, where V1 ≤ V2 ≤ V3 ≤ ... Then the limiting
distribution of [

M(1)
n −bn

an
, ...,

M(k)
n −bn

an

]

is the same as that of [
Ψ
−1(V1), ...,Ψ

−1(Vk)
]
.

If {Xn} satisfies Dn and D′n, then N is homogeneous Poisson and the limiting
joint distribution is the same as for the independent case. This result, under a strong
mixing assumption and without the point process interpretation, was first obtained
by Welsch [253].

In the more general case in which N is the process described by Mori and Hsing,
one would in principle obtain the full class of joint distributions. In general this is
rather complicated, however, so we content ourselves with the case k = 2. In this case
Welsch [254] showed that, if the two limits

H(x,y) = limPr{M(1)
n ≤ anx+bn,M

(2)
n ≤ anx+bn}, G(x) = limPr{M(1)

n ≤ anx+bn}

both exist, then H is related to G by

H(x,y) =

{
G(x), y≥ x,
G(y){1−ρ(logG(x)/ logG(y)) logG(y)}, y < x

(3.38)

where ρ is a concave, non-increasing function satisfying 0≤ ρ(s)≤ 1−s for 0≤ s≤
1. The independent (or D′) case corresponds to ρ(s) = 1−s. Mori (1976) showed that
any ρ satisfying Welsch’s conditions can occur, and also gave an example in which
G exists but the limiting joint distribution of (M(i)

n −bn)/an, i = 1,2, does not.

To derive (3.38), suppose Nn→ N and write τ1 = Ψ(x), τ2 = Ψ(y). We consider
only the case y < x, i.e. τ1 < τ2, when (E3.36) is equivalent to the statement

Pr{V1 > τ1, V2 > τ2}= e−τ2{1+ρ(τ1/τ2)τ2}. (3.39)

Suppose, following Mori and Hsing, the point process N consists of points
(Si, TiYi j) with (Si, Ti) homogeneous Poisson and {Yi j, j ≥ 1} independent and
identically distributed for each i, with Yi1 = 1. Let G̃ denote the distribution func-
tion of Yi2. The event (V1 > τ1, V2 > τ2) can arise in one of two ways. Either there
is no point in (0,1)× (0,τ2) with probability e−τ2 , or there is exactly one point at
(s, t) (t > τ1), with probability e−τ2{1− G̃(τ2/t)}dsdt. Consequently

Pr{V1 > τ1, V2 > τ2}= e−τ2

[
1+

∫
τ2

τ1

{
1− G̃

(
τ2

t

)}
dt
]
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which is of the form (3.39) with

ρ(u) =
∫ u

1

{
1− G̃

(
1
s

)}
ds. (3.40)

It is easy to verify that ρ has the required properties, and moreover that any such ρ

arises in the form (3.40) for some (possibly improper) G̃.
This derivation is due to Mori [158], and has been generalised by Hsing [120] to

cover all cases in which ((M(1)
n − bn)/an, (M

(k)
n − bn)/an) converges to a bivariate

limiting distribution for some fixed k > 1.

3.6 Markov chains

Many interesting processes can be formulated either as Markov chains or as (deter-
ministic or random) functions of Markov chains. Extremes of discrete-state Markov
chains were studied by Anderson [3]. In this case the discreteness of the process
means that, in most cases, a limiting distribution for the extreme values does not
exist, but bounds and approximations may still be obtained. A generalisation is to
consider chain-dependent processes in which {Sn} is a Markov chain and {Xn} is a
sequence of random variables, conditionally independent given {Sn}, with a distri-
bution of the form

Pr{Xn ≤ x | Sm, −∞ < m < ∞}= Pr{Xn ≤ x | Sn = i}= Hi(x).

Extremes in such processes were studies by Resnick and Neuts [188] for the case
when the state space of Sn is finite, and extended by Denzel and O’Brien [54] to
countably infinite state spaces.

O’Brien [168] and Rootzén [196] studied extremes of Markov chains, and func-
tions of Markov chains, under the assumption that the chain is regenerative in a cer-
tain sense.

The theory of Markov chains on general state spaces has been developed in a
number of books such as Nummelin [163] and Meyn and Tweedie [155]. We follow
here Section VI.3 of Asmussen [9].

A stochastic sequence {Xn} defined on a general set E is called a Markov chain
if, for any measurable subset F of E,

Pr{Xn+1 ∈ F | X j, j ≤ n}= P(Xn,F)

where, for each x ∈ E, P(x, ·) is a probability measure on E. The function P is called
the transition kernel of the process. It is easily extended to an r’th-order transition
kernel

Pr(x,F) = Pr{Xn+r ∈ F | Xn = x}.

If A is an event depending on the whole sequence {Xn, n ≥ 0}, we write Px(A) for
the probability of the event A given X0 = x.
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We may also define the hitting time of a set: if R is a measurable subset of E then

τ(R) = inf{n≥ 1 : Xn ∈ R}.

In the case when Xn /∈ R for all n≥ 1, we write τR =+∞. The set R is called recurrent
if

Px{τR < ∞}= 1 for all x ∈ E.

In other words, R is recurrent if it is certain to be visited by the process regardless of
its initial state.

A related concept is that of a regeneration set. Asmussen defines R to be a regen-
eration set if it is recurrent and there exists ε.0, r≥ 1 and a probability measure λ on
E such that

Pr{x,B)≥ ελ (B) for all x ∈ R, measurable B⊆ E.

Finally, the chain is called Harris recurrent (or just a Harris chain) if there exists a
regeneration set.

Any discrete-state recurrent chain is Harris, because we may take R = {x} for
any recurrent state x and define λ (B) = Pr(x,B). However, the application is much
wider than that, and covers many continuous-state processes.

A stochastic sequence {Xn} is called regenerative if there exist integer-valued
variables 0 < T0 < T1 < ... breaking up the process into cycles

Ci = {Xn : Ti−1 < n≤ Ti}, i≥ 1.

It is required that the post-Tk process

{(Ci,Ti), i > k}

be independent of T1, ...,Tk, with the same distribution for each k.
A discrete-state recurrent Markov chain is trivially regenerative: define Tk to be

the (k+1)’st time the chain hits a fixed recurrent state x. The {Ci} are then indepen-
dent.

For a Harris chain, the main result is that the process is regenerative. The {Ci}
are not necessarily independent, but they may be taken to be 1–dependent, i.e. if A
is an event depending only on {C j, j ≤ i− 1} and B is an event depending only
on {C j, j ≥ i+ 1} then A and B are independent. An informal proof of this is as
follows. Let R be a regenerative set, and let the process run until Xn ∈ R. Let Jn
be independent of the past with Pr{Jn = 1} = 1− Pr{Jn = 0} = ε . If Jn = 1, let
Xn+r be chosen according to the measure λ . If Jn = 0, choose Xn+r according to the
measure {Pr(Xn, ·)− ελ (·)}/(1− ε). Then let Xn+1, ...,Xn+r−1 be chosen from their
joint conditional distribution given Xn and Xn+r.

It is obvious that this construction preserves the structure of {Xn}. Moreover, the
time points {n : Xn ∈R, Jn = 1} constitute regeneration points (the Ti’s). If r = 1 then
the cycles Ci of values between regeneration points are independent, but if r > 1 then
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the first r−1 values of each cycle depend on the last value of the previous cycle. For
this reason, the cycles cannot in general be independent, but they are 1-dependent.

A Harris chain is called aperiodic if the common distribution of Ti−Ti−1, i =
1,2, ..., is aperiodic. This property does not depend on the specific choice of R, ε or
λ . A measure ν on E is called stationary for P if

ν(F) =
∫

ν(dx)P(x,F) for all measurable F ⊆ E.

Any Harris chain has a stationary measure which is unique up to a multiplicative
constant. If ν(E)<∞ the chain is positive recurrent. In this case ν may be normalised
to be a probability measure, and we write π in place of ν . An aperiodic, positive
recurrent Harris chain is called Harris ergodic. For a Harris ergodic chain we have

Pn(x,F)→ π(F) for all x ∈ E, measurableF ⊆ E. (3.41)

We now consider extreme value theory for Harris chains, and for functions de-
fined on Harris chains. One obvious question is whether such processes satisfy Con-
dition D. This question would be easy to answer if it were possible to make state-
ments of the form

Pr{Xn+1 ≤ x | X j ≤ x, j = 1, ...,n}= Pr{Xn+1 ≤ x | Xn ≤ x}. (3.42)

However (3.42) is in general false — this point has caused some confusion in the
literature. The correct statement is due to O’Brien [168]. If the chain is Harris ergodic
and in its stationary distribution, then it is strong mixing (recall (3.3)) with mixing
function

g(k) =
∫

E
||Pk(x, ·)−π(·)||π(dx) (3.43)

which tends to 0 by (3.41). Here || · || denote total variation of a measure, i.e.

||µ||=
∫

E
|µ(dx)|= sup

f : | f |≤1

∫
| f (x)|µ(dx).

To see (3.43), suppose A and B are events depending on {X j, j ≤ n}, {X j, j ≥
n+ k} respectively. Then A and B are conditionally independent given Xn and Xn+k.
Moreover, the marginal distributions of Xn and Xn+k are each π (by stationarity),
while the joint distribution is πPk. Hence

Pr(AB) =
∫ ∫

E×E
Pr{A | Xn = x}Pr{B | Xn+k = y}π(dx)Pk(x,dy),

Pr(A)Pr(B) =
∫ ∫

E×E
Pr{A | Xn = x}Pr{B | Xn+k = y}π(dx)π(dy),

so |Pr(AB)− Pr(A)Pr(B)| is bounded by the total variation of π(dx){Pk(x,dy)−
π(dy), which is (3.43).

In the case of a periodic chain, strong mixing and condition D do not hold, but
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O’Brien [168] defined a version of these conditions which is satisfied by periodic,
postivie recurrent Harris chains, and which also suffices for the usual extreme value
results.

Another question is what happens if the Markov chain starts from an arbitrary ini-
tial state instead of its stationary distribution. Suppose Mn = max{ f (X1), ..., f (Xn)}
when the process is started from an arbitrary initial state, and M′n is the same thing
for the stationary process. O’Brien showed that

Pr{Mn ≤ un}−Pr{M′n ≤ un}→ 0

whenever {un} is such that

Pr{ f (Xk)} ≤ un}→ 0, for each k ≥ 1.

Rootzén [196] took a different approach to the study of Harris chains, breaking
them up into regenerative cycles, as device first used by Berman [16] and Anderson
[3]. Suppose {Xk} is a stationary regenerative process with mean cycle length µ < ∞.
This includes positive recurrent Harris chains as well as processes defined on such
chains. Let Zi denote the i’th cycle maximum

Zi = max{Xn : Ti−1 < n≤ Ti} (i≥ 1).

If there are S(n) cycles amongst the first n observations (so that TS(n) ≤ n < TS(n)+1)
then Mn may be approximated by

max{Zi : 1≤ i≤ S(n)}

and this in turn may be approximated by the maximum over n/µ values of Zi. Recall
S(n)/n→ 1/µ almost surely, by standard renewal theory. If the Zi are independent
we have

Pr{Mn ≤ un}→ e−τ if and only if
n
µ

Pr{Z1 > x}→ τ. (3.44)

In this case the extremal index of the process is given by

θ =
1
µ

lim
x→x∗

Pr{Z1 > x}
Pr{X1 > x}

(3.45)

provided the limit exists.
Analogues of the results in Section 3.4 also hold in such processes. Suppose Y (u)

denotes the number of exceedances for each level u during a single cycle and suppose

π( j) = lim
u→x∗

Pr{Y (u) = j | Y (u)> 0} ( j = 1,2, ....,)

exists. Define φ(t) = ∑ j e−t jπ( j). Let {un} be such that Pr{Mn ≤ un} → e−ν and
let Nn denote the point process which puts a point at j

n whenever X j > un, 1≤ j ≤ n,
Then Nn converges on [0,1] to a limiting point process N with Laplace transform
(3.27).
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In the case that the Zi are 1-dependent instead of independent, the results are
more complicated. For example, the extremal index is now defined by

θ =
1
µ

lim
x→x∗

Pr{Z1 > x, Z2 ≤ x}
Pr{X1 > x}

(3.46)

instead of (3.45).
As an illustration of these concepts, let us again consider example 3 of section

3.2. The process is obviously independent regenerative, with a new cycle beginning
whenever Wn = 1. Let M denote the length of a cycle, Z the maximum value of X
over one cycle. Also write µ = E{M}< ∞. Then

Pr{M > m} =
m

∏
i=1

(
i

i+1

)β

= (m+1)−β ,

Pr{M = m} = m−β − (m+1)−β ∼ βm−β−1 (m→ ∞),

Pr{Z ≤ z |M = m} = exp

(
−

m

∑
j=1

jz−α

)
= exp

{
−m(m+1)

2
x−α

}
.

Also define Vz = z−α M2/2. Calculations given below establish that:–

(i) The tail distribution of Z is given by

Pr{Z > z} ∼ β2−β/2−1z−αβ/2
∫

∞

0
v−β/2−1(1− e−v)dv. (3.47)

(ii) The conditional density of Vz given Z > z converges as z→ ∞ to

K1v−β/2−1(1− e−v) (0 < v < ∞) (3.48)

where K1 is a normalising constant.
(iii) The conditional density of Vz given Z = z converges as z→ ∞ to

v−β/2e−v

Γ(1−β/2)
(0 < v < ∞). (3.49)

(iv) Fixing z, Vz = v and hence M, let ηz(v) denote a point process with points at
X−αβ/2

j zαβ/2, 1 ≤ j ≤ M, where (X1, ...,Xm) denotes a single cycle. As z→ ∞

with v fixed, ηz(v) converges to a Poisson process with intensity

λ (y;v) =
2v
β

y2/β−1, 0 < y < ∞. (3.50)

Rewrite (3.47) as Pr{Z > z} ∼ K0z−αβ/2, then define

un(τ) =

(
nK0

µτ

)2/αβ

.
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Thus
n
µ

Pr{Z > un(τ)→ τ

and so

Pr{Mn ≤ un(τ)}→ e−τ . (3.51)

Alternatively, let an = un(1) and write

Pr{Mn ≤ anx}→ exp(−x−αβ/2).

Note that Mn = Op(n2/αβ ) whereas (Section 3.2) we have M̂n = Op(n1/(αβ−α)).
Since

2
αβ

<
1

αβ −α

it follows that Mn << M̂n, providing direct proof that the extremal index is 0.
Now consider the point process of exceedances of a single level, as in Section 3.4.

Let Nn bethe point process that puts a point at j
n whenever X j > un(τ), 1 ≤ j ≤ n.

We apply (ii) and (iv) with z = un(τ). Given Vz = v, the number of exceedances in a
single cycle converges to a Poisson distribution with mean∫ 1

0
λ (y,v)dy = v.

Hence the number of exceedances in a single cycle, conditioned on being at least 1,
has distribution

π( j) =
∫

∞

0

v je−v

(1− e−v) j!
·K1v−β/2−1(1− e−v)dv (3.52)

=
K1Γ( j−β/2)

j!
, j = 1,2, . . . (3.53)

This is a proper distribution but with infinite mean.
In this case the point process Nn converges to a compound Poisson process N, in

which the clusters form a Poisson process of unit intensity on (0,1), and the cluster
sizes are independently distributed according to (3.53).

Now consider the two-dimensional point process of Section 3.5. Since

u−1
n (x) = nK0µ

−1x−αβ/2,

we define the process Nn on (0,1)× (0,∞) by putting a point at each of(
k
n
,

nK0

µ
X−αβ/2

k

)
, k = 1,2, ...,n.

We can also define a process Ñn, which consists of those points of Nn which corre-
spond to cycle maxima.
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Define N and Ñ to be the limits of Nn and Ñn as n→∞. By standard arguments, Ñ
will be a Poisson process with unit intensity. Let the points of Ñ be (Si,Ti), i= 1,2, ...
As explained in Section 3.5, the process N consists of points (Si, TiYi j) where, for
each i, we have that (Yi j, j ≥ 1) is an independent point process on [1,∞) with an
atom at 1. Intuitively, the points TiYi j ( j≥ 1) correspond to all the points in the cycle
that gave rise to Ti. This is a cycle in which the maximum is Z1 = zi =(nK0/µTi)

2/αβ .
The Yi j’s correspond to values of (X j/z)−αβ/2 where X j’s are other points in the cycle
that gave rise to Ti. Let Mi denote the length of this cycle, and define Vi = z−α

i M2
i /2.

The density of Vi is given asymptotically by (3.49).
The conditional distribution of {Yi j, j ≥ 1} given Zi and Vi is given by property

(iv), modified by the knowledge that min(Yi j)=1. Thus, Yi1 = 1 and Yi j, j ≥ 2 are the
points of a Poisson process on (1,∞) with intensity given by (3.51) in this range. So,
if f is a non-negative function on (0,1)× (0,∞), by (3.20) we have

E

{
exp

(
−∑

i
f (S,TiYi j)

)
| Si = s, Ti = t, Vi = v

}

= exp
[
− f (s, t)− v

∫
∞

1

{
1− e− f (s,ty)

} 2
β

y2/β−1dy
]
.

Since E{exp(−θVi)}= (1+θ)β/2−1 from (3.49), we have

E

{
exp

(
∑

j
f (Si,TiYi j)

)
| Si = s, Ti = t

}

= e− f (s,t)
{

2+
∫

∞

1
e− f (s,ty) 2

β
yβ/2−1dy

}β/2−1

= e−g(s,t) (say). (3.54)

Finally, for the Laplace transform of the whole process we have

E

{
exp

(
∑

i
∑

j
f (Si,TiYi j)

)}

= E

{
exp

(
−∑

i
g(Si,Ti)

)}

= exp
{
−
∫

∞

0

∫ 1

0

(
1− e−g(s,t)

)
dsdt

}
,

with g related to f as in (3.54). This is the Laplace transform of an infinitely divisible
process.

For this example, in contrast to example 2 of sections 3.4 and 3.5, the point
processes Nn converge to a limiting point process N without any renormalisation.
The process N has only finitely many points in any finite set with probability one,
but, because E(Vi) = +∞, the expected number of points in any finite set is ∞. This
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shows that both kinds of behaviour are possible when the extremal index is 0, i.e. Nn
may converge to a limiting point process or anNn (for some sequence an→ ∞) may
converge to a more general random measure.

Proof of the statements (i)–(iv).

First calculate, for 0≤ w1 < w2 < ∞,

Pr{w−1/α

2 < Z < w−1/α

1 , v1 <Vz < v2}

=
d
√

v2zα e

∑
b
√

v1zα c
Pr{M = m}

[
exp
{
−w1m(m+1)

2
z−α

}
− exp

{
−w2m(m+1)

2
z−α

}]

∼
∫ √v2zα

√
v1zα

βm−β−1
[

exp
{
−w1m2

2
z−α

}
− exp

{
−w2m2

2
z−α

}]
dm

= β2−β/2−1z−αβ/2
∫ v2

v1

v−β/2−1 {exp(−vw1)− exp(−vw2)}dv. (3.55)

Setting w1 = 0, w2 = 1 in (3.55) gives

Pr{Z > z, v1 <Vz < v2} ∼ β2β/2−1z−αβ/2
∫ v2

v1

v−β/2−1(1− e−v)dv. (3.56)

Setting v1 = 0, v2 = ∞ gives (3.47). Dividing (3.56) by (3.47) gives the asymptotic
conditional distribution of Vz given Z > z, which has density (3.48). Taking the limit
as w1→ 1,w2→ 1 in (3.55) so as to obtain a conditional density of V given Z = z,
we get (3.49).

Finally, we must verify statement (iv). Consider a single cycle X1, ...,Xn and let
I j be the indicator function of the event y1 < X−αβ/2

1 zαβ/2 < y2. Then

λ j(v) = E{I j | Vz = v}

∼

{
jzα

(
y2/β

2 − y2/β

1

)
if j ≤M = (2vzα)1/2 ,

0 otherwise.

Thus
m

∑
j=1

λ j(v) ∼ v
(

y2/β

2 − y2/β

1

)
, (3.57)

m

∑
j=1

λ
2
j (v) ∼ O

(
M3z−2α

)
= O

(
z−α/2

)
→ 0. (3.58)

By (3.57), the expected number of points of ηz(v) in (y1,y2) is consistent with (3.50).
By (3.58) and well-known results about convergence to Poisson distributions, the
number of points of ηz(v0 in (y1,y2) is asmptotically Poisson and therefore, in par-
ticular,

Pr{ηz(v) has no points in (y1,y2)} → exp
(
−v
∫ y2

y1

2
β

y2/β−1dy
)

= exp
{
−v
(

y2/β

2 − y2/β

1

)}
.
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This property is easily extended from a single interval (y1,y2) to a union of dispoint
intervals.

Thus suffices, by [130] or results quoted in the Appendix of [140], for ηz(v) to
converge to a Poisson process, as required.

3.7 Computational Methods for the Extremal Index in Markov Chains and
Extensions

So far, our discussion of Markov chains has been concerned with fairly abstract prop-
erties, inllustrated by a few artificial examples. In this section, we describe some
techniques that have been used for markov chains and extensions (k’th-order or
higher-dimensional Markov chains) where some direct but non-trivial calculations
are possible.

3.7.1 Markov chains derived from bivariate extreme value distributions

A Markov chain is specified by the conditional probabilities Pr{Xn+1 ≤ y | Xn = x}
for any pair (x,y) in the state space. If the Markov chain is stationary and the marginal
distribution of Xn is known, this is equivalent to specifying the joint distributions of
(Xn,Xn+1). To develop an extreme value theory for such cases, a natural class of
models for the joint distribution are the bivariate extreme value distributions. These
will be developed in more detail in Chapter ??, but we will state here the specific
results that are needed. The results of htis section follow Smith [222].

As a specific example, consider the class of models

Pr{Xn ≤ x,Xn+1 ≤ y} = exp
{
−
(
e−rx + e−ry)1/r

}
(3.59)

for 1≤ r < ∞.
The marginal distributions of this model are Pr{Xn ≤ x} = exp(−e−x), the stan-

dard Gumbel distribution from Chapter 1, but any Markov chain with GEV marginals
can be transformed to this through a one-dmensional transformation of each variable.
Therefore, there is no loss of generality in assuming Gumbal marginals. As for the
joint distribution in (3.59), this is an example of the logistic family of bivariate ex-
treme value distributions, which is one of a wide class of bivariate extreme value
distributions that will be developed in more detail in Chapter 4. As will be seen,
the calculations given here for the specific model (3.59) in fact apply to a very wide
class of models derived from bivariate extreme value distributions. As for the specific
model (3.59), it is readily checked that the case r = 1 corresponds to independence
of Xn and Xn+1, while the limit r→ ∞ is the limit where Xn = Xn+1 with probability
1 (but in that case, all the sample maxima are exactly equal to X1, so we omit this
trivial case from consideration).

From (3.59), it is possible to derive

Pr{Xn+1 ≤ x+ z | Xn = x} = exp
[
−e−x

{
1− (1+ e−rz)1/r

}]
(1+ e−rz)1/r−1

→ (1+ e−rz)1/r−1 as x→ ∞. (3.60)
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The interpretation of (3.60) is that the jumps of the process, given a starting value
Xn = x, are almost independent of x as x→∞. In other words, asymptotically at high
levels, the process behaves like a random walk.

The density of the jumps in this random walk can be derived from (3.60), and for
r > 1 is given by

h(z) = (r−1)e−rz(1+ e−rz)1/r−2, −∞ < z < ∞, (3.61)

a distribution which can be shown to have negative mean.
In fact, there is a general result based on Resnick [189], Proposition 5.15, that if

(Xn,Xn+1) follow a bivariate extreme value distribution with standard Gumbel mar-
gins, then

1−Pr{Xn ≤ u+ x1, Xn+1 ≤ u+ x2}
1−Pr{Xn ≤ u, Xn+1 ≤ u}

converges to a limit as u→ ∞. From this, it can be shown that for any δ > 0 and
z ∈ R, the limit

lim
u→∞

Pr{Xn+1 > u+ z | u−δ < X1 < u+δ}

exists, though it may be 0 for all z (this corresponds to independence, which is of
course an important special case). The results of [222] essentially hold if there is a
density equivalent of this result: if q(x,y) denotes the transition density of the Markov
chain (the density of Xn+1, evaluated at y, given Xn = x), then we assume that the
limiting density

h(z) = lim
u→∞

q(u,u+ z) (3.62)

exists for z ∈ R.
In fact [222] assumed something a bit more general than (3.62), the existence of

a c.d.f. H(z) on−∞≤ z < ∞ whose derivative h(z) is given by (3.62) on−∞ < z < ∞.
The point of this is to admit the possibility that the jump distribution has mass at−∞

— in particular, in the independent case, all the mass is at −∞.
Next, we consider the definition of the extremal index in this case. The definition

is based on (3.9), but in an older form first proposed by [167]. In place of (3.9), we
define θ by

θ = lim
p→∞

lim
u→∞

Pr{Xi ≤ u, 2≤ i≤ p | X1 > u} . (3.63)

It can be shown that the definitions (3.9) and (3.63) are equivalent if

lim
p→∞

lim
n→∞

pn

∑
k=p

Pr{Xk > un | X1 > un} = 0, (3.64)

and henceforth we assume (3.64).



84 DEPENDENT SEQUENCES

From this point, [222] argued as follows. Define a function

φ(p,x,u) = Pr
{

X2 < u, . . . ,Xp−1 < u,Xp > u | X1 = u− x
}

=
∫

∞

0
. . .
∫

∞

0

∫ 0

−∞

q(u− x,u− x2) . . .q(u− xp−1,u− xp)dxp . . .dx2

→
∫

∞

0
. . .
∫

∞

0

∫ 0

−∞

h(x− x2) . . .h(xp− xp−1)dxp . . .dx2

= φ(p,x) say,

where the convergence assumes that it is valid to take limits under the integral sign.
However, equation (3.64) implies

1−θ = lim
p→∞

lim
u→∞

p

∑
j=2

∫ 0

−∞

φ( j,x,u)
f (u− x)
1−F(u)

dx

where f is the standard Gumbel density and we can easily calculate f (u−x)
1−F(u) → ex as

u→∞. If we can again justify the interchange of limits and integration, we then have

1−θ = lim
p→∞

p

∑
j=2

∫ 0

−∞

φ( j,x)exdx. (3.65)

[222] shows that these limiting operations are valid under two conditions, in addition
to (3.62 and (3.64):
(i) there exists u∗ such that, for all M, q(u,u+ y) is uniformly bounded over u ≥

u∗, y≥−M,
(ii) limM→∞ limu→∞ supx≤u−M Pr{X2 > u | X1 = x}= 0.

Although the above argument shows theoretically how the etxremal index may be
calculated, it is not the most convenient practical solution. [222] defined a sequence
of functions Qp(x), p≥ 1,x ∈ R by Q1 ≡ 1 and

Qp(x) =
∫

∞

0
Qp−1(y)H(x−dy) (3.66)

writing the integral in Stieltjes form to allow for the possibility H(−∞) > 0. As
p→ ∞, Qp→ Q where Q satisfies the Wiener-Hopf equation

Q(x) =
∫

∞

0
Q(y)H(x−dy) (3.67)

subject to the normalizing condition limx→∞ Q(x) = 1. The extremal intex is then
given by

θ =
∫ 0

−∞

exQ(x)dx. (3.68)

[222] essentially evaluated θ by iterating (3.66) to convergence, and then evaluating
(3.68), using numerical integration on up to 214 sampling points.
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Hooghiemstra and Meester [115] presented an alternative method based on
Grübel’s [90] algorithm for solving the Wiener-Hopf equation arising from a G/G/1
queue. Their algorithm is undoubtedly the most efficient solution to this problem, but
the method does not appear to extend to more complicated models such as those in
Section 3.7.2.

Numerical example.

Suppose Z0 has an exponential distribution with mean 1 and Z1−Z0,Z2−Z1, . . .
are IID with density h given by (3.61). We approximate the extremal index by
Pr{Z1 < 0, . . . ,Zp < 0} for some large p. In practice, we have found that p sometimes
needs to be as large as 250 (larger as r grows) to ensure an accurate approximation.
The following R program evaluates this quantity by simulation:
z=-log(runif(nsim))-log(runif(nsim)^(r/(1-r))-1)/r

z=cbind(z,z-log(runif(nsim)^(r/(1-r))-1)/r)

for(j in 3:p)(z=cbind(z,z[,j-1]-log(runif(nsim)^(r/(1-r))-1)/r))

th=mean(apply(z, 1, max, na.rm=TRUE)<0)

print(c(th,sqrt((th*(1-th))/nsim)))

The user must simply the values of r, p and the number of simulations nsim. The
last line gives the estimated value of θ and its simulation-based standard error. Some
sample results are in Table 3.1.

r 2 3 4 5
θ 0.3285 0.1581 0.0924 0.0604

Table 3.1 Extremal index for the Markov chain defined by the logistic dependence model.

In the case r = 5, [222] claimed the value θ = 0.0616 but [115] stated θ = 0.0604.
The present calculations (based on approximatley 6 million simulations) agreed with
those of [115].

Addendum: An amusing counterexample.

The following example (due to an anonymous referee to [222]) shows that tech-
nical conditions like (i) and (ii), while troublesome to check, cannot be ignored. Con-
sider a sequence {Zn} of independent Bernoulli r.v.s where Pr{Zn = 0} = Pr{Zn =
1} = 1

2 . Let X1 be standard Gumbel; for n ≥ 1, if Zn = 1 then Xn+1 = −Xn, if
Zn = 0 then Xn+1 is again distributed as standard Gumbel independently of all
prior variables. For any given value of Xn, there is probability 1

4 that Xn+2 = Xn;
it follows immediately from O’Brien’s definition that the extremal index is 3

4 . But
limu→∞ Pr{Xn+1 > u+ z | Xn = u}= 0 for any z ∈ R, so an attempt to apply the ran-
dom walk argument would yield an extremal index of 0.

3.7.2 Extension to k’th-order Markov chains

A k’th-order Markov chain is an extension of the concept of a Markov chain in which
the conditional distribution of an observation, given the past, is dependent only on
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the most recent k values of the process. The case k = 1 corresponds to the standard
definition of a Markov chain. This assumption may be written as

Pr
{

Xn+1 ≤ x | Xn− j, j ≥ 0
}

= Pr
{

Xn+1 ≤ x | Xn− j, j = 0, . . . ,k−1
}

(3.69)

defined on a state space Xn ∈S (which, for the cases considered here, is usually R).
An equivalent definition is that the process Yn =

(
Xn−k+1 Xn−k+2 . . . Xn

)
is a Markov chain on the state space S k. Thus, there is a direct connection between
k’th-order Markov chains and Markov chains in a higher-dimensional space.

Extensions of the theory in [222] were presented by various authors. We highlight
here the contributions of Perfekt [172, 173] and Yun [258].

The key idea behind [222] is that, for a Markov chain with Gumbel marginal
distributions and pairwise distributions defined by a two-dimensional extreme value
distribution, the distribution of successive values of Xn+1−Xn, given a starting value
at some high level u, is asymptotically independent of u as u→∞. If, instead, the pro-
cess is kth-order Markov, we might expect the same to be true of the k-dimensional
differences Xn+1−Xn,Xn+2−Xn+1, . . . , ,Xn+k −Xn+k−1. This is indeed the correct
intuition but the paper [258] made other extensions as well, including allowing the
limiting marginal distributions to be of Generalized Extreme Value form with ξ not
necessarily equal to 0, and also assuming the (k+1)-dimensional joint distributions
are in the domain of attraction of a multivariate extreme value distribution (MEVD),
rather than assuming they are of exactly MGEV form. It should be noted that similar
generalizations had earlier been made in [172, 173].

[258] assumed that the process is stationary with marginal distributions, say
F1(x) = Pr{Xn ≤ x}, satisfying

lim
u↑ωF1

1−F1(u+g(u)x)
1−F1(u)

= (1+ξ x)−1/ξ whenever 1+ξ x > 0 (3.70)

where g(u) satisfies the same regularity conditions as in classical one-dimensional
extreme value theory; in particular, g(u)> 0. The corresponding pth-order property,
based on results in [149], is

lim
u↑ωF1

1−Fp(u+g(u)x)
1−F1(u)

= − logGp(x) whenever 1+ξ x > 0 (3.71)

where Gp is a p-dimensional MEVD. Here, (3.71) is assumed for p = 1, . . . ,k+1. In
addition, we assume that there are corresponding results for densities in the form of

lim
u↑ωF1

g(u) f1(u+g(u)x1)

1−F1(u)
= (1+ξ x1)

−1/ξ−1 whenever 1+ξ x > 0, (3.72)

` j(x j+1;x j) = lim
u↑ωF1

g(u) f j+1(u+g(u)x j+1 | u+g(u)x j) exists whenever 1+ξ x > 0,

(3.73)

where, in (3.73), f j(· | ·) denotes the conditional density of any value of the process
given the j previous values.
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Based on these results, [258] established:

Lemma. If fk+1 is continuous, then for each j = 1, . . . ,k, (1+ξ x j+1)` j(x j+1;x j)
must be a function of

∇x j+1 =

(
1
ξ

(
1+ξ x2

1+ξ x1

)
, . . . ,

1
ξ

(
1+ξ x j+1

1+ξ x j

))
. (3.74)

Note that, in the case ξ = 0, (3.74) is a function of x2− x1, . . . ,x j+1− x j, thus estab-
lishing a direct connection to the results of [222] in this case.

Based on (3.74), [258] defined a function h j(y j;y1, . . . ,y j−1) on R j by the prop-
erty

h j

(
1
ξ

log
(

1+ξ x j+1

1+ξ x j

)
;∇x j

)
= (1+ξ x j+1)` j(x j+1;x j) where 1+ξ x j+1 > 0.

Yun also defined the corresponding cumulative distribution function by

H j(y;y1, . . . ,y j−1) = 1−
∫

∞

y
h j(t;y1, . . . ,y j−1)dt, y ∈ {−∞}∪R.

In effect, H1, . . . ,Hk are the conditional distribution functions of an embedded
(k− 1)th-order Markov chain which directly generalizes the random walk of [222].
The notation, including the case y = −∞, is intended to accommodate the case that
was earlier seen in [222], that the process may jump to −∞ which then becomes an
absorbing state of the embedded Markov chain.

We generate a sequence Y1 ∼ H1(·); Yj | (Y1, . . . ,Yj−1) ∼ H j(·;Y1, . . . ,Yj−1) for
j = 2, . . . ,k, Yj | (Yj−k+1, . . . ,Yj−1)∼ Hk(·;Yj−k+1, . . . ,Yj−1) for j > k, where at any
stage, if Yj =−∞ then all subsequent Yj′ , j′ > j are −∞ as well. Finally, define

Zn = Y1 + . . .+Yn, n = 1,2, . . . (3.75)

At this point, the argument splits into two cases. The simpler case is that of “no
infinite jumps”, i.e. H j(−∞;x j−1) = 0 for every j = 1, . . . ,k and x j−1. As in the case
of a simple Markov chain, if (3.64) holds than we can define the extremal index by
(3.63). Assuming conditions (3.70–3.73), (3.64) and the no infinite jumps condition,
Lemma 2.2 of [258] shows that the extremal index is given by

θ = lim
p→∞

Pr
{

Z1 ≤−T, . . . ,Zp ≤−T
}

(3.76)

where T is an exponential random variable of mean 1, independent of {Zn, n≥ 1}.
The more complex case is where jumps to −∞ are allowed. In that case, Yun

makes additional assumptions:

Assumption B. Suppose there exists u∗ < ωF1 such that the class{
g(u) f1(u+g(u)x1)

1−F(u)
: u∗ ≤ u < ωF1

}
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of functions of x1 is locally uniformly integrable over (xΩξ
,x∗

Ωξ
), and that, for each

j = 1, . . . ,k and for every fixed x j with 1+ξ x j > 0, there exists a u∗j(x j)< ωF1 such
that the class{

g(u) f j+1(u+g(u)x j+1 | u+g(u)x j) : u j∗(x j)≤ u < ωF1

}
of functions of x j+1 is locally uniformly integrable over (xΩξ

,x∗
Ωξ

). Here, xΩξ
and

x∗
Ωξ

are the endpoints of the distribution Ωξ (x) = exp{−(1+ξ x)−1/ξ}.
Yun remarks that (3.72), (3.73) and Assumption B hold automatically when Fk+1

is exactly a MEVD.
With all these preliminaries, Yun’s main theorem (his Theorem 3.1) is as follows:

Theorem. Let {Xn, n ≥ 1} be a kth-order stationary Markov chain, and let Fk+1
be the d.f. of (X1, . . . ,Xk+1) having continuous p.d.f. fk+1 such that Fk+1 is in the
domain of attraction of an MEVD Gk+1 with auxiliary function g from (3.71), where
Gk+1 has equal univariate margins Ωξ for some ξ ∈ R. Suppose (3.72), (3.73) and
Assumption B hold and that

lim
M→∞

limsup
u↑ωF1

sup
[

Pr{Xk+1 > u | Xk = xk} : min
1≤i≤k

xi ≤ u−g(u)(1−M−ξ )/ξ

]
= 0.

(3.77)

Let {un(τ), τ > 0} satisfy n{1− F1(un(τ))} → τ . Assume that D(un(τ)) holds
for each τ > 0 and that, for some τ0 > 0, (3.64) holds with un = un(τ0) and
pn = o(n), nαn,`n = o(pn), `n = o(pn)) where the function αn,` is as in (3.5). Then,
{Xn} has extremal index θ given by

θ = log(Gk(0)/Gk+1(0))−Pr

{
max
1≤i≤k

Zi ≤−T, ∑
i≥k+1

Zi >−T

}
(3.78)

where {Zn, n ≥ 1} is the kth-order Markov chain defined by (3.75) and T is an
exponentially distributed random variable with mean 1 which is independent of {Zn}.

However, Yun also showed that if the condition (3.77) is strengthened to

lim
M→∞

limsup
u↑ωF1

sup
[

Pr
{

X j+1 > u | X j = x j
}

: min
1≤i≤k

xi ≤ u−g(u)(1−M−ξ )/ξ

]
= 0

(3.79)

for each j = 2, . . . ,k, then the earlier formula (3.76) is also valid in this case. It is
unclear, to this writer, exactly what feature of the problem makes (3.79) harder to
prove than (3.77).

Examples

(k+1)-dimensional logistic model. Our first example is the direct generalization
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of (3.59) to the kth-order case. The corresponding joint distribution for k+1 variables
is

Pr{X1 ≤ x1, . . . ,Xk+1 ≤ xk+1} = exp

−
(

k+1

∑
i=1

e−rxi

)1/r
 (3.80)

for 1≤ r < ∞, and this is a known example of a multivariate extreme value distribu-
tion, see e.g. [233]. In this case, [258] showed that the transition probabilities for the
embedded chain are given by

H j(y j;y j−1) =

[
1+

exp(−ry j)

1+∑
j−1
s=1 exp{r(ys + . . .+ y j−1)}

](1/r)− j

, y j ∈ R j, 1≤ j ≤ k.

(3.81)

This is a case where the limiting process (3.75) does not have jumps to−∞, therefore
the formula (3.76) is valid. Yun [258] gave an explicit simulation algorithm for θ

which we present as the following R code:
z=matrix(nrow=nsim,ncol=p)

u=runif(nsim)

z[,1]=-log(u^(r/(1-r))-1)/r

if(k>1){

for(j in 2:k){

u=runif(nsim)

z[,j]=-(log(u^(r/(1-r*j))-1)+log(1+as.matrix(exp(-r*z[,1:(j-1)]))%*%rep(1,j-1)))/r

}}

for(j in (k+1):p){

u=runif(nsim)

z[,j]=-(log(u^(r/(1-r*k))-1)+log(as.matrix(exp(-r*z[,(j-k):(j-1)]))%*%rep(1,k)))/r

}

T=-log(runif(nsim))

theta=mean(apply(z, 1, max, na.rm=TRUE)+T<0)

Once again, the user is responsible for supplying the values of k, r, p and the
number of simulations nsim.

As an example, this code was used to compute Table 3.2. The numbers differ
slightly from those in Table 1 of [258].

Mixture model.

This example, also taken from [258], illustrates a case where there are jumps to
−∞ and the more complicated formula (3.78) is apparently needed.

The model is

Fk+1(xk+1) = exp

−α

{
k+1

∑
s=1

(1+ξ xs)
−r/ξ

}1/r

− (1−α)
k+1

∑
s=1

(1+ξ xs)
−1/ξ

 , 1+ξ x > 0,

(3.82)
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k
1/r 1 2 3 4 5 10
0.1 0.017 0.007 0.005 0.004 0.003 0.002
0.2 0.06 0.024 0.015 0.011 0.01 0.006
0.3 0.13 0.057 0.036 0.027 0.022 0.015
0.4 0.22 0.108 0.071 0.054 0.045 0.031
0.5 0.329 0.184 0.128 0.1 0.084 0.06
0.6 0.45 0.285 0.213 0.174 0.151 0.111
0.7 0.581 0.415 0.333 0.284 0.254 0.199
0.8 0.719 0.577 0.497 0.447 0.414 0.347
0.9 0.86 0.771 0.716 0.679 0.652 0.594

Table 3.2 Extremal index in the higher-order logistic model.

where 0 < α < 1, r > 1 and ξ ∈ R. In this case, H1(y1) = 1 − α + α{1 +
exp(−ry1)}1/r−1, y ≥ −∞, and (3.81) holds for all j > 1. In this case, the extremal
index is given by (3.78); writing θ = limp→∞ θp, [258] gives the specific formula

θp = α{(k+1)1/r− k1/r}+1−α−Pr
{

max
1≤i≤k

Zi ≤−T, max
k+1≤i≤p

Zi >−T
}

(3.83)

where T is an independent unit exponential random variable as before.
The following R code is based on the algorithm presented in [258]. As before,

the user is left to supply the values of k, p,r,α (alf) and nsim. Note that the cases
k = 1, k > 1 are treated differently.
z=matrix(nrow=nsim,ncol=p)

u=runif(nsim);z[,1]=-log(u^(r/(1-r))-1)/r

if(k>1){

for(j in 2:k){u=runif(nsim)

z[,j]=-(log(u^(r/(1-r*j))-1)+log(1+as.matrix(exp(-r*z[,1:(j-1)]))%*%rep(1,j-1)))/r}

for(j in (k+1):p){u=runif(nsim)

z[,j]=-(log(u^(r/(1-r*k))-1)+log(as.matrix(exp(-r*z[,(j-k):(j-1)]))%*%rep(1,k)))/r}

# additional randomization: with probability 1-alpha, entire row of z is -inf

u=runif(nsim);z[u>alf,]=-10e10}

if(k==1){

u=runif(nsim);z[,1]=-log(u^(1/(1-r))-1)/r

u=runif(nsim);z[u>alf,1]=-10e10

for(j in 2:p){u=runif(nsim)

z[,j]=z[,j-1]-log(u^(1/(1-r))-1)/r

u=runif(nsim);z[u>alf,j]=-10e10}

}

T=-log(runif(nsim));if(k==1)u1=z[,1]+T<0

if(k>1)u1=apply(z[,1:k], 1, max, na.rm=TRUE)+T<0

u2=apply(z[,(k+1):p], 1, max, na.rm=TRUE)+T>0

thetap=alf*((k+1)^(1/r)-k^(1/r))+1-alf-mean(u1&u2)
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Figure 3.1 Extremal index for the kth-order mixture model with α = 1/r. Top to bottom:
k = 1,2,3,4,5,10. Adapted from [258].

For the case α = 1/r and taking p= 100, Figure 3.1 shows the simulated extremal
index. This was calculated to mimic Figure 2 of [258]; the two figures indeed look
very similar.

As far as this writer can tell, formula (3.76) leads to the same numerical results
as (3.83), except when k = 1.

Conclusions

Sections 3.7.1 and 3.7.2 are intended to illustrate two non-trivial classes of mod-
els for which the extremal index may be calculated exactly (to the extent that any
simulation result may be considered exact in practice). These models are potentially
rich enough to be considered viable dependence models for real time series, such
as daily measurements of temperature or air pollution. As a result, they provide a
realistic basis for computing extreme value distributions in such datasets.

3.8 Models for Financial Time Series

The autoregressive conditional heterscedastic (ARCH) model was introduced by En-
gle [66] and extended to the generalized autoregressive conditional heterscedastic
(GARCH) model by Bollerslev [20]. They are among the most widely used models
for econometric time series such as stock prices and currency exchange rates, allow-
ing for wide fluctations in the variability of log-returns (volatility) while also being
faithful to short-term properties of financial time series such as the no-arbitrage con-
dition (that essentially says that there cannot be a combination of trades that would
guarantee financal gain). If the price of a commodity on day t is written Pt , then
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the log return (which we shall also just call the return) is Xt = log Pt
Pt−1

. ARCH and
GARCH models start with a relationship of the form

Xt = σtZt (3.84)

where σt is a stochastic process (the volatility) and Zt are typically modeled as inde-
pendent random variables with a distribution symmetric around 0 and E{Z2

t }= 1 —
very often, Zt is assumed to be a standard normal distribution, Zt ∼N [0,1].

One specific and very widely studied example is the GARCH(1,1) model which,
following the notation of Mikosch and Stărică [156], is defined by

σ
2
t = α0 +β1σ

2
t−1 +α1X2

t−1 = α0 +σ
2
t−1(β1 +α1Z2

t−1) (3.85)

with α0, α1, β1 all ≥ 0. In many cases, it is found empirically that α1 +β1 ≈ 1.
The special case β1 = 0 leads to the model

X2
t = α0Z2

t +α1Z2
t X2

t−1 (3.86)

which was the original ARCH model of [66], generally regarded as less realistic for
financial time series but nevertheless a key model for the development of the theory.

also see [136]
Citations:
[132, 243, 86] for background; [101, 172] for applications to extreme value

theory. Random difference equations arise in econometric models (e.g. ARCH,
GARCH) so this theory is relevant to understanding the behavior of financial time
series.

3.9 Statistical Aspects

The discussion in this chapter raises natural questions about how one would esti-
mate the extremal index in practice. Broadly, there are two approaches: parametric
and nonparametric. Parametric methods would take a specific model for dependence,
such as the models of Sections 3.7.1 or 3.7.2, fit it to data, and then use the theoret-
ical formulas (via simulation) to estimate θ . Nonparametric methods are based on
identifying clusters of high-level exceedances; the reciprocal of the mean cluster size
is then taken as the estimator of θ .

3.9.1 Parametric methods

Principal reference: [226, 145]

3.9.2 Nonparametric methods

Focus, particularly, on the methods of [229, 74, 194, 72]

3.10 The Multivariate Extremal Index

[159, 160, 230, 263, 150, 193]



Chapter 4

Multivariate Extremes

4.1 Introduction to Multivariate Extreme Value Theory

The first attempts to extend extreme value theory to two-dimensional cases were
due to Geffroy [82], Tiago de Oliveira [237] and Sibuya [212]. The first practical
examples were in papers by Gumbel [92, 93], Gumbel and Goldstein [94], Gumbel
and Mustafi [95]. Characterizations in p > 2 dimensions were first given by Pickands
[176, 175], de Haan and Resnick [100] and Deheuvels [53].

A key difference from the one-dimensional case is the absence of any finite-
parameter family to represent dependence. Therefore, statistical methods have taken
on two forms: (a) parametric methods based on parametric subfamilies of bivariate
or multivariate extreme value distributions, (b) nonparametric methods.

However, another distinction that makes multivariate extreme value theory much
more complicated than the univariate case is that there essentially three distinct the-
ories of multivariate extremes. The early theories were all concerned with what we
now call the asymptotically dependent case of multivariate extremes, i.e. distributions
where the dependence between components persists even at very high thresholds. A
second theory, introduced by Ledford and Tawn [141, 144] is for asymptotically inde-
pendent families, i.e. distributions that tend to independence at very high thresholds
but for which the dependence at moderate thresholds is high enough to account for
in the statistical models adopted. A third theory, introduced by Heffernan and Tawn
[111], is the conditional approach, where at least one component is extreme but the
others may not be. Recently, new models have been introduced that combine these
different approaches. However, for at least the first part of this chapter, we introduced
the classical theory, now known as the asymptotically dependent case.

Suppose we have independent, identically distributed (IID) vectors Yi =(
Yi1 . . . Yip

)
for i = 1,2, . . . Let Mn j = max

(
Y1 j, . . . ,Yn j

)
for 1≤ j≤ p, and de-

fine the vector of sample maxima, Mn =
(

Mn1 . . . Mnp
)
. The classical theory

looks for normalizing constants an =
(

an1 . . . anp
)
, bn =

(
bn1 . . . bnp

)
and a nondegenerate p-dimensional limiting distribution function G such that

Mn−bn

an

d→ G

93
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in the sense that

lim
n→∞

Pr
{

Mn j−bn j

an j
≤ x j, j = 1, . . . , p

}
= G(x1, . . . ,xp) for all

(
x1 . . . xp

)
∈ Rp.

(4.1)

Here, bn j ∈ R and an j > 0 for each n and j. The resulting G is called a multivariate
extreme value distribution.

One comment we can make at once: if (4.1) holds, then each of the marginals of
G is GEV. That’s because if we just isolate the jth component, for some j between
1 and p, we again have that Pr

{
(Mn j−bn j)/an j ≤ x j

}
converges to a nondegenerate

limit, which must therefore be GEV. But if we know the marginal distributions, a
famous result known as Sklar’s theorem [213] states that we can reduce the problem
to that of finding a copula,

G(x1, . . . ,xp) = DG(G1(x1), . . . ,Gp(xp)) (4.2)

where G1, . . . ,Gp are the marginal distributions of G. This is equivalent to using the
probability integral transformation to transform each of the marginal distributions to
uniform on [0,1], then DG is the joint CDF of the resulting distribution.

In terms of copulas, a necessary and sufficient condition for G to be a multivariate
extreme value distribution is

DG(u1, . . . ,up) = Dk
G(u

1/k
1 , . . . ,u1/k

p ) (4.3)

for any integer k ≥ 1. (4.3) is equivalent to:

Gk(x) = G(Akx+Bk) (4.4)

for any x ∈ Rp, where Ak is a vector of positive constants, Bk is a vector of real
constants, and all operation are interpreted pointwise.

Therefore, a large part of the literature on multivariate extreme value distributions
has been concerned with finding joint distribution functions, or equivalently copulas,
that satisfy (4.3) or (4.4).

4.2 The Pickands Representation

One of the first representations of multivariate extreme value distributions was due
to Pickands [176]. As originally presented by Pickands, it was stated as a condition
for a p-dimensional distribution with unit exponential margins (Pr{X j > x} = e−x

for x ≥ 0, j = 1, . . . , p) to be the survivor function of a multivarate extreme value
distribution for minima, and since this is an interesting case in its own right, we
follow that usage here.

One point to make right away is that if Pr{X j > x} = e−x, then Prn{X j > x} =
e−nx = Pr{X j > nx}, so the unit exponential distribution is min-stable with bn =
0, an = 1/n.
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Figure 4.1 Illustration of the non-negativity condition.

With this preliminary, we seek a p-dimensional survivor function

S(x1, . . . ,xp) = Pr
{

X1 > x1, . . . ,Xp > xp
}

such that

(i)

S(0, . . . ,0,x,0, . . . ,0) = e−x for all j (4.5)

(in other words, the vector x=
(

x1 . . . xp
)

contains x in the jth position with
all other entries 0),

(ii)

Sa(x1, . . . ,xp) = S(ax1, . . . ,axp) (4.6)

(log S is homogeneous of order 1),
(iii) Non-negativity condition: S is a valid survivor function in the sense of giving non-

negative mass to any non-empty subset of Rp
+. For example, in two dimensions

this would require that for any rectangle [x1,x2]× [y1,y2] with x1 < x2, y1 < y2,
S(x1,y1)−S(x2,y1)−S(x1,y2)+S(x2,y2)> 0. See Figure 4.1.

To get some idea how this might work, let’s try an example. Consider the model

X j = min
i=1,...,q

Zi

ci j
, j = 1, . . . , p (4.7)
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where Z1, . . . ,Zq are independent identically distributed (IID) exponential random
variables with mean 1 (Pr(Zi > z) = e−z for 0 ≤ z < ∞) and {ci j, i = 1, . . . ,q j =
1, . . . , p} are constants satisfying

0≤ ci j ≤ 1 and ∑
i

ci j = 1 for all j. (4.8)

We calculate:

Pr
{

X j > x j for all j
}

= Pr
{

Zi

ci j
> x j for all i, j

}
= Pr

{
Zi > max

j
ci jx j for all i

}
= exp

(
−

q

∑
i=1

max
1≤ j≤p

ci jx j

)
. (4.9)

From (4.9), we immediately deduce that

Prn{X1 > x1, . . . ,Xp > xp
}

= Pr
{

X1 > nx1, . . . ,Xp > nxp
}

for any x1, . . . ,x j ∈ (0,∞), which proves that the joint distribution is min-stable with
normalizing constants an j = 1/n, bn j = 0.

We write (4.9) in the form

S(x1, . . . ,xp) = exp
{
−
∫

Sp

max
j
(w jx j)dH(w)

}
(4.10)

where Sp is the p-dimensional simplex

Sp =

{
w =

(
w1 . . . wp

)
: w j ≥ 0,

p

∑
j=1

w j = 1

}
,

and H is a (discrete) non-negative measure on Sp.
To see that (4.9) can be rewritten in the form (4.10), let H be the measure on Sp

that puts mass ∑ j ci j on each point 1
∑ j ci j

(
ci1 . . . cip

)
, i = 1, . . . ,q. Then

∫
Sp

max
j
(w jx j)dH(w) = ∑

i

(
∑

j
ci j

)
·max

j

(
ci jx j

∑ j ci j

)
= ∑

i
max

j
ci jx j.

We also have, for each j = 1, . . . , p,

∫
Sp

w jdH(w) = ∑
i

(
∑

j
ci j

)
·

ci j

∑ j ci j
= ∑

i
ci j = 1,
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which establishes the desired equivalence.
Pickands’ Theorem states, in effect, that any min-stable distribution satisfying

the earlier conditions (i), (ii) and (iii) satisfied (4.10) for some non-negative measure
H with ∫

Sp

w jH(dw) = 1, j = 1, . . . , p. (4.11)

This is the Pickands Representation, first presented by Pickands in an unpublished
paper from 1976.

De Haan and Resnick [100] gave a mathematically equivalent representation us-
ing different notation and methods. Yet another version of the result was due to De-
heuvels [53].

Another way of representing (4.10) is through the formula

S(x1, . . . ,xp) = exp

{
∑

j
x jA
(

x1

∑ j x j
, . . . ,

xp

∑ j x j

)}
(4.12)

where A is a function on Sp called the dependence function.
In the special case p = 2, this may be rewritten in the form

S(x,y) = exp
{
−(x+ y)A

(
y

x+ y

)}
(4.13)

where

A(w) =
∫ 1

0
max{u(1−w),(1−u)w}dH(u)

where H is non-decreasing on [0,1] satisfying
∫ 1

0 udH(u) =
∫ 1

0 (1−u)dH(u) = 1.
In the case that H is differentiable, say dH(u) = h(u)du, we can give an alterna-

tive statement of the relation between the functions A and h. Noting that u = w is the
crossover point when u(1−w) = w(1−u), we rewrite the last equation as

A(w) = w
∫ w

0
(1−u)h(u)du+(1−w)

∫ 1

w
uh(u)du

Hence

A′(w) =
∫ w

0
(1−u)h(u)du+w(1−w)h(w)−

∫ 1

w
uh(u)du− (1−w)wh(w)

=
∫ w

0
(1−u)h(u)du−

∫ 1

w
uh(u)du,

A′′(w) = (1−w)h(w)+wh(w) = h(w). (4.14)

In general, A(w) may be any convex function defined on 0≤ w≤ 1 lying within the
triangle bounded by the points (0,1), (1,1), (0.5,0.5). See Figure 4.2 for an explicit
example and illustration of the general concept.
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w

A(w)

(0,1) (1,1)

(0,0) (1,0)

(0.5,0.5)

Figure 4.2 A possible function A(w), shown by the thick black line. This particular function is
the asymmetric logistic function with parameters θ = 1, φ = 0.5, r = 2.

4.3 Nonparametric Estimation of Bivariate and Multivariate Extreme Value
Distributions

The previous section has shown that we can characterize multivariate extreme value
distributions in terms of the spectral measure H or, equivalently, the Pickands depen-
dence function A. Although these quantities are defined for any dimension p, they
take a particularly simple form when p = 2, so we concentrate on that case, at least
for our early discussion.

Unlike the one-dimensional case, there is no single finite-parameter family that
covers all the multivariate or even bivariate extreme value distributions. The literature
has therefore split into two approaches: either choose a paramateric subfamily and
estimates its parameters, either by maximum likelihood or some other method —
the issues surrounding maximum likelihood will be discussed in Section 4.4. Or we
could do it nonparametrically, which is what we describe here.

Very often, a good approach is to use a nonparameteric method to determine the
general shape of the dependence function, and then to select a parametric model for
more detailed inference. The ideas in this section could be viewed as a way to tackle
the first half of that program.

The first general-purpose nonparametric procedure was due to Pickands [175].
Although the idea of the method works for any dimension p, it is much simpler to
explain in the bivariate case p = 2 so, initially, we restrict to that case.

Our starting point is the formula (4.13). Consider the random variable
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min
( X

1−w ,
Y
w

)
for some fixed w ∈ (0,1). Then

Pr
{

min
(

X
1−w

,
Y
w

)
> z
}

= Pr{X > z(1−w),Y > zw}

= exp{−zA(w)} .

In other words, min
( X

1−w ,
Y
w

)
has an exponential distribution with mean 1/A(w), for

any fixed w.
Now suppose we have a sample, (Xi,Yi), i = 1, . . . ,n. This discussion suggests

the estimator

An(w) = n

{
n

∑
i=1

min
(

Xi

1−w
,
Yi

w

)}−1

. (4.15)

Then 1/An(w) is an unbiased estimator of 1/A(w), and by the standard strong law of
large numbers (SLLN) we will have 1/An(w)

a.s.→ 1/A(w) and hence also An(w)
a.s.→

A(w). However, An(w) is neither convex nor differentiable as a function of w.
Pickands’ solution of this problem was to replace An(w) by its greatest convex

minorant (gcm). We note that for each i, min
(

Xi
1−w ,

Yi
w

)
has discontinuous derivative

at the “crossover point” w = Yi
Xi+Yi

. Pickands recommended evaluating An(w) at each
crossover point, and then connecting by a straight line each of the points in the lower
convex hull of that set. Figure 4.3 illustrates the idea.

One point we should note about Figure 4.3. The raw data (Xi,Yi), i = 1, . . . ,n.
simulated from a bivariate exponential distribution, need not have sample means 1,
even though the populations means are 1. However, if the population means of X
and Y were treated as unknown, a very natural approach would be to estimate the
population means by the sample means X̄n and Ȳn. In that case, it would be natural
to replace Xi and Yi by Xi/X̄n and Yi/Ȳn respectively. This doesn’t affect any of the
asymptotic results (we obviously have X̄n

a.s.→ 1 and Ȳn
a.s.→ 1 as n→∞) but it does affect

the practical properties of the estimator for small n — for example, this is necessary
to guarantee that An(0) = An(1) = 1. This is what we have done in Figure 4.3, and
would recommend for any practical application of the procedure.

The resulting procedure (without normalizing by X̄ and Ȳ ) is written Ãn(w) by
Pickands. Pickands’ main result was the almost sure consistency in this case:

Pr

{
lim
n→∞

∑
0≤w≤1

∣∣Ãn(w)−A(w)
∣∣→ 0

}
= 1. (4.16)

The result (4.16) essentially guarantees that Ãn will have good properties in large
samples, though it does not say anything about the rate of convergence.

Pickands also discussed the extension to multivariate (p > 2) cases, remarking
that this was “straightforward” though not providing much detail. Essentially, the
idea is that the estimator (4.15) can be written down for the multivariate case, for
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Figure 4.3 Illustration of Pickands’ estimator on a simulated dataset.

example in the form

An(w) = n

{
n

∑
i=1

min
(

Xi1

w1
, . . . ,

Xip

w1

)}−1

where w =
(

w1 . . . wp
)

is a member of Sp with each w j ≥ 0 and ∑ j w j = 1,
and

(
Xi1 . . . Xip

)
for i = 1, . . . ,n is a sample of independent vectors from a

p-dimensional multivariate extreme value distribution satisfying (4.12). In that case,
An(w) is a consistent estimator of A(w) for each w, but as in the two-dimensional
case, does not have any convexity and differentability properties. Pickands recom-
mended, in effect, evaluating An(w) at each p-dimensional crossover point, and
defining Ãn(w) to be the greatest convex minorant of that. In the three-dimensional
case this amounts to a union of supporting hyperplanes.

Deheuvels [52] further developed the mathematical properties of Pickands’ esti-
mator in the two-dimensional case. As described by Deheuvels, these are “an applica-
tion of general results on sums of random variables taking values in a Banach space”.
Specifically, he calculated the covariance of 1/An(w) and 1/An(v) for w,v ∈ (0,1),
and showed that the resulting process

√
n{1/An(w)−1/A(w)} converges in C(0,1)

to a limiting Gaussian process with the same covariance function. Here, C(0,1) is the
space of continuous functions on (0,1), and convergence refers to weak convergence
in the sup-norm topology (if f and g are two continuous functions on (0,1), then
|| f − g|| = ∑0≤u≤1 | f (u)− g(u)|). The reason for expressing the result in terms of
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1/An(w) rather than An(w) directly is presumably to simplify the mathematical form
of the result, though equivalent results presumably hold for the convergence of An(w)
to A(w) in C(0,1). This sort of result is important for understanding the properties
of estimators or other statistics that depend on the entire function An(w) rather than
just a single value or finite set of values of w. Deheuvels also proved almost sure
convergence results of iterated logarithm form, and proposed an alternative method
of normalizing when X̄ and Ȳ are not equal to 1.

Smith [218] and Yuen [257] presented alternative estimators based on Pickands’
results but designed to handle the convexity question in a different way. Both methods
are summarized more succinctly in [227]. Recalling (4.14), the idea is to numerically
differentiate An(w) to obtain a direct estimate of the density h(w) for any fixed w ∈
(0,1); by taking the parameter λ (defined below) sufficiently large, we can ensure
that hn(w;λ )> 0 and thus the convexity of our estimated of A(w).

[218] started again from the estimator An(w) in (4.15) and then defined

hn(w;λ ) =
An(w+λ )+An(w−λ )−2An(w)

λ 2 (4.17)

defined on λ < w < 1−λ ; a slight modification (which does not affect the asymp-
totic results) is needed when w < λ or w > 1−λ . In effect, formula (4.17) is a crude
but direct estimator of the second derivative of A. By direct manipulation, [217] de-
veloped the asymptotic results

Bias of hn(w)∼
λ 2h′′(w)

12
, Variance of hn(w)∼

C(w)
nλ

,

where

C(w) =
12A2(w)+12(1−2w)A(w)A′(w)−12w(1−w)A′(w)2 +4w(1−w)A(w)A′′(w)

3w2(1−w)2

for w ∈ (0,1) and assuming all the needed derivatives exist.
If we treat λ as a variable parameter (to be chosen by the user) then the struc-

ture of these results is that the mean squared error (squared bias plus variance) of
hn(w;λ ) is asymptotically of the form Bλ 4 + D

nλ
for constants B and D. This is min-

imized by setting λ =
( D

4Bn

)1/5 and leads to an asymptotic mean squared error of
5B1/5D4/5(4n)−4/5; note, in particular, the fact that λ = O(n−1/5) for an asymptotic
mean squared error of O(n−4/5). In practice, we cannot just plug in these formulas
because the constants B and D depend on derivatives of the unknown A(w) func-
tion in a rather complicated way, but they give theoretical results for the structure
of the optimal solution. These issues are familiar from the theory of kernel density
estimation where λ is called the bandwidth and similar questions of optimal choice
of bandwidth have long been known. The papers [218, 227] did not address the is-
sues of practical implementation but with modern computational facilities it would
be feasible to use cross-validation or some closely related technique.

Yuen [257, 227] made an extension even more closely related to kernel density
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estimation by defining

An1(w;λ ) =
1
λ

∫ 1

0
An(u)K

(
w−u

λ

)
du (4.18)

where we choose λ large enough to make (4.18) a convex function and K is a fixed
kernel function; this can be any function K(x)> 0 for all x∈R with

∫
∞

−∞
K(x)dx = 1;

for instance, the standard normal density could be a suitable K though in practice,
density estimation experts often prefer the Epanechnikov kernel K(x) = 3

4 (1− x2)
for |x|< 1 and 0 for |x|> 1; this has certain optimality properties.

With those definitions, Yuen showed that

Bias of hn(w)∼
λ 2h′′(w)

2

∫
∞

−∞

x2K(x)dx, Variance of hn(w)∼
3C(w)
2nλ

∫
∞

−∞

K2(x)dx.

The mean squared error again has the structure Bλ 4 + D
nλ

so the same asymptotic re-
sults apply as for the estimator of [218]; in fact it appears that the optimal asymptotic
mean squared errors for the two estimators are very similar

A different nonparametric approach to the problem of bivariate extreme copula
estimation was taken in Capéraà, Fougères and Genest [24]. Since their focus was on
the copula, they assumed the marginal distributions to be uniform on [0,1], so they
wrote the sample values as (Ui,Vi), though this would be equivalent to our previous
model if we wrote Xi = − logUi, Yi = − logVi. In other respects, the model is the
same as in the earlier papers [175, 227]: they assume the pairs (Ui,Vi), i = 1, . . . ,n
are independent identically distributed random vectors in R2 with joint distribution
defined by the Pickands dependence function. In their notation, they defined the
crossover points as Zi =

logUi
log(UiVi)

and the order statistics Z(1), . . . ,Z(n) and then

Qi =

{
n

∏
i=1

Z(k)

1−Z(k)

}1/n

, i = 1, . . . ,n,

An(t) =


(1− t)Q1−p(t)

n , 0≤ t ≤ Z(1),

t i/n(1− t)1−i/nQ1−p(t)
n Q−1

i , Z(i) ≤ t ≤ Z(i+1), i = 1, . . . ,n−1,

tQ−p(t)
n , Z(n) ≤ t ≤ 1.

Here, p(t) is described as a weight function (fixed by the user), that they character-
ized as an arbitrary bounded function on [0,1] with p(0) = 1− p(1) = 1. They stated
a formula for the weight function that minimizes the variance of the estimator, but
the formula is complicated and depends on functions that are themselves unknown.
Instead, they recommended p(t) = 1−t as a simple practical choice, which they used
for their simulation results.

The main result stated by [24] is the following:

Proposition. Suppose p is a bounded function on [0,1]. The estimator An(t), 0≤
t ≤ 1 is an asymptotically unbiased estimator of A(t) which is uniformly strongly
consistent.
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The authors ran simulations to compare their estimator with the nonparamet-
ric estimators of Pickands [175] and Deheuvels [52], and also maximum likelihood
estimators using three of the models analyzed by Tawn [232]. They stated that (un-
specified) numerical problems prevented a direct comparison with the kernel method
of [227]. In comparisons, they claimed that their method performed better than ei-
ther Pickands’ or Deheuvels’ nonparametric estimators; their method performed less
well than maximum likelihood when the assumed model was correct, as expected,
but very often better than maximum likelihood when the assumed model was incor-
rect, which is not necessarily as expected since there are many instances in the theory
of statistics when a maximum likelihood estimator continues to perform well when
the model is slightly misspecified. Based on these results, they concluded that their
nonparametric estimator could be used as a preliminary estimator to help select a
parametric model. This conclusion should be compared with the similar conclusions
reached in [227], which were based on a real-data analysis of sea level heights in
eastern England rather than simulations.

Another nonparametric estimator that satisfies the required constraints on A(w)
was given by Tiago de Oliveira [239].

4.4 Parametric Estimation of Bivariate and Multivariate Extreme Value
Distributions

The alternative approach (to the nonparametric estimators described in the previous
section) is to find families of bivariate distributions that satisfy the Pickands condi-
tions and then proceed to some parametric method of estimation, such as maximum
likelihood, to estimate the parameters. However, early literature on this topic did not
favor maximum likelihood, in part because of computational issues in the days be-
fore the use of computers in statistics became commonplace, but also because of
some non-regularity issues in the estimation, specifically, that the Fisher information
may not exist for certain values of the parameters. These issues were largely resolved
by Tawn [232, 233]. In this section, we first give a partial list of parametric models
that have been adopted, and then describe Tawn’s results on maximum likelihood
estimation. A review of older methods was given by Tiago de Oliveira [238]).

We focus on differentiable models, i.e. models for which a joint density exists,
since if this condition is not satisfied, estimation by maximum likelihood makes no
sense. This rules out, for example, the Marshall-Olkin distribution [148],

S(x,y) = exp{−λ1x−λ2y+λ12 max(x,y)} , x > 0, y > 0, λ1 > 0, λ2 > 0, λ12 > 0,

(often called the “shock model” of reliability theory, since it corresponds to a shock
that destroys both components simultaneously, i.e. X = Y with positive probability).
However, such a model is not generally realistic for applications in areas such as
environment and economics.

Some of the common differentiable models for bivariate extremes are:

(a) Mixed Model [95]: A(w) = θw2−θw+1. This satisfies the desired conditions if



104 MULTIVARIATE EXTREMES

0≤ θ ≤ 1, and leads to the joint survivor function (with exponential marginals)

S(x,y) = exp
(
−x− y+

θxy
x+ y

)
, x > 0, y > 0.

(b) Logistic Model [92, 95]: A(w) = {(1−w)r +wr}1/r, which is convex provided
r ≥ 1. The joint survivor function is

S(x,y) = exp
{
−(xr + yr)1/r

}
, x > 0, y > 0.

Note that r = 1 corresponds to X and Y independent (A(w) ≡ 1) while the limit
r→ ∞ is the “complete dependence” case when X = Y with probability 1, which
also corresponds to the lower boundary of the triangle in Figure 4.2.

(c) Asymmetric Mixed Model. This is one of the models introduced for the first time
by Tawn [232]. The dependence function is A(w) = φw3 + θw2 − (θ + φ)w+
1, θ ≥ 0, θ +φ ≤ 1, θ +2φ ≤ 1, θ +3φ ≥ 0.

(d) Asymmetric Logistic Model. Also introduced by Tawn [232]. A(w) =
{θ r(1−w)r +φ rwr}1/r +(θ −φ)w+1−θ where 0≤ θ ≤ 1, 0≤ φ ≤ 1, r ≥ 1.

(e) Inverted Logistic Model (Joe [127]). A(w)= 1−{φ1w−τ +φ2(1−w)−τ}−1/τ
, 0≤

φ1 ≤ 1, 0≤ φ2 ≤ 1,τ ≥ 0. (Check convexity.)
(f) Hüsler-Reiss Model ([123]). A(w)= (1−w)Φ

( a
2 +

1
a log 1−w

w

)
+wΦ

( a
2 +

1
a log w

1−w

)
where 0≤ a≤∞ and Φ(·) is the standard normal CDF. This was derived as a lim-
iting distribution for bivariate normal extremes as the correlation coefficient tends
to 1. The limits a→ 0 and a→ ∞ correspond respectively to the completely de-
pendent and independent cases.

(g) Bilogistic Model ([128]). A(w) =
∫ 1

0 max{(1 − α)(1 − w)u−α ,(1 − β )w(1 −
u)−β du} for α,β ∈ [0,1]. This was introduced as another asymmetric form of the
logistic model that is possibly a little more intuitive than (d) — when α = β , the
model reduces to (b). The integral is in practice evaluated with a straightforward
linear interpolation.

We also list some of the simpler multivariate models for general p≥ 2. For more
general results, see Joe [127, 129]. In these cases, w =

(
w1 . . . wp

)
is a general

element of the simplex Sp.

(h) Multivariate Logistic Model, due to Gumbel ([93]), A(w) =
(

∑
p
j=1 wr

j

)1/r
, r≥ 1.

This was the original and, for many years, the only widely recognized model for
p-dimensional extreme values with p > 2, but its complete symmetry in the p
variables is, for most practical purposes, a significant disadvantage, since it is
unrealistic for most practical applications.
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(i) McFadden’s Discrete Choice Models ([153]),

A(w) =
M

∑
m=1

am

(
∑

i∈Cm

wrm
i

)1/rm

, (4.19)

A(w) =
M

∑
m=1

am

 ∑
q∈Dm

(
∑

i∈Cq

wtq
i

)rm/tq


1/rm

, (4.20)

where in both cases ∪mCm = {1, . . . , p} , rm ≥ 1, am ≥ 0 and for (4.19)), tq ≥ rm
for q ∈ Dm and Dm is an arbitrary subset of {1, . . . , p}.

(j) Tawn’s Extensions of McFadden’s Models ([233]). Motivated by McFadden’s
models and by an argument that combines a rainfall-storms interpretation of ex-
treme events with multivariate survival models derived from stable laws [117, 42],
Tawn proposed two more general models, the first

A(w) = ∑
C∈S

{
∑
i∈C

(θi,Cwi)
rC

}1/rC

, (4.21)

a model with 2p−1(p+ 2)− (2p+ 1) parameters, where each C is a non-empty
subset of {1, . . . , p}, S is the class of all non-empty subsets of {1, . . . , p}, rC ≥ 1,
0≤ θi,C ≤ 1 and ∑C∈{1,...,p}∑i∈C θi,C = 1, and the second

A(w) = ∑
C∈S

 ∑
D∈C∗

 ∑
i∈C\D

(φi,D,Cwi)
rC +

(
∑
i∈D

(φi,D,Cwi)
rCrD,C

)1/rD,C

1/rC

(4.22)

where each C ∈ S, C∗ is the class of nonempty subsets of C, rC ≥ 1, rD,C ≥ 1 and

φi,D,C = τD,C/

{
∑C∈S(i)

(
∑D∈C∗ τ

rC
D,C

)1/rC
}

where τD,C ≥ 0 and S(i) is the subclass

of S which contains all nonempty subsets that include i. In particular, McFadden’s
model (4.19) is a special case of (4.21), and (4.20) is a special case of (4.22).

(k) Tilted Dirichlet family. This model is quite differently motivated, first proposed
by Coles and Tawn [31]. The Dirichlet family whose density is given by

h∗(w) =
Γ(∑ j α j)

∏
p
j=1 Γ(α j)

·
p

∏
j=1

w
α j−1
j , (4.23)

with α1 > 0, . . . ,αp > 0, is possibly the best known of all probability distributions
over a simplex; however, as it stands it is not a candidate to be the generating
model of a MEVD because the quantity

m j =
∫

Sp

u jh∗(w)dw =
α j

∑k αk
6= 1,
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violating a required moment condition for a MEVD. Instead, Coles and Tawn
proposed

h(w) =
p

∏
j=1

{
α j

Γ(α j)

}
·

Γ(∑ j α j +1)
(∑ j α jw j)p+1 ·

p

∏
j=1

(
α jw j

∑k αkwk

)α j−1

. (4.24)

They showed that h(w) is indeed a probability density function over Sp and that∫
Sp

w jh(w)dw = 1 and hence, writing h(w)dw instead of dH(w) in (4.10), the
resulting S(x1, . . . ,xp) is indeed the survivor function of a min-stable distribution
with unit exponential marginals.

4.4.1 Asymptotic results for maximum likelihood estimation and testing

The development of asymptotic results for these models was a major theme of the
two papers of Tawn [232, 233]. For properties of maximum likelihood in general,
we refer back to Chapter 1. In particular, maximum likelihood estimation is consid-
ered “regular” if the traditional asymptotic properties — consistency, asymptotic ef-
ficiency and asymptotic normality — are satisfied, and these conditions are typically
satisfied if the Fisher information matrix is finite. [Note from the author: somewhere
in this book there needs to be a self-contained introduction to maximum likelihood
where the traditional regularity conditions are written out in detail. Possibly use the
book by van der Vaart [242] as a source reference for this. I haven’t yet written such
a section, but it belongs in Chapter 1, not here.]

For bivariate and multivariate extreme value distributions, a very typical behav-
ior is the following: in the interior of the parameter space, the Fisher information
is satisfied and all the usual results for maximum likelihood estimation hold good.
However, on the boundary, the Fisher information is very often infinite and some
specialized results are needed. Defining these results was the main contribution of
Tawn [232, 233].

As an example, consider the joint probability distribution function for the logistic
dependence model with unit exponential marginal distributions,

G(x,y;r) = 1− exp
{
−(xr + yr)1/r

}
, x > 0, y > 0, r ≥ 1. (4.25)

The boundary point r = 1 corresponds to independence, so it is important to know
how to test the null hypothesis H0 : r = 1 against the alternative H1 : r > 1, or to
know how the maximum likelihood estimator behaves when the true value of r is 1.

The joint density is given by

g(x,y;r) =
∂ 2G
∂x∂y

= (xy)r−1(xr + yr)−2+1/r
{
(xr + yr)1/r + r−1

}
exp
{
−(xr + yr)1/r

}
.

Suppose we have observations (xi,yi), i = 1, . . . ,n. We define the log likelihood and
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the score statistic,

`n(r) =
n

∑
i=1

logg(xi,yi;r),

Un(r) =
d`n

dr
(r).

For the case r = 1, we have Un(1) = ∑
n
i=1 u(xi,yi) where

u(x,y) = log(xy)+(x+ y−2) log(x+ y)− x logx− y logy+(x+ y)−1.

Substituting x = X , y = Y where X and Y are independent exponential random vari-
ables with unit mean, we find that

E{u(X ,Y )}= 0 but Var{u(X ,Y )}= ∞.

For r > 1, the variance of Un(r) is finite and we can apply maximum likelihood
estimation in the usual way, but the case r = 1 requires special treatment.

In this case, results from stable law theory (e.g [70]) show that the limiting distri-
bution of Un(1) is still asymptotially normal but with a non-standard normalization,
specifically √

2
n logn

Un(1)
d→ N [0,1]. (4.26)

The result (4.26) can be used as a test statistic for the null hypothesis of independence
against the alternative of a logistic dependence model with r > 1.

Tawn also considered the behavior of the maximum likelihood estimator itself.
Suppose r̄n denotes the MLE of r based on n observations, i.e. the value of r that
maximizes `n(r) in r≥ 1. The notation is intended to distinguish from the case where
the marginal parameters are unknown, considered later, where we write r̂n. There is
a non-trivial probability that this maximum is attained at r = 1 and in that case we
write r̄n = 1. Tawn showed that√

n logn
2

(r̄n−1) d→ S where

Pr{S≤ s} =

{
0 if s < 0,
Φ(s) if s≥ 0,

(4.27)

where Φ(·) is the standard normal CDF. In words, the limiting random variable S is
0 with probability 1

2 (corresponding to the case r̄n = 1), but otherwise has a standard
normal distribution on the positive half-line.

For the mixed model, Tawn showed that very similar results hold in the limiting
case θ = 0 that corresponds to independence. The asymmmetric mixed model and
the asymmmetric logistc model are more complicated because of the multiple param-
eters, and full asymptotic results have never been obtained for these models, but it
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is anticipated that they have similar behavior, with nonstandard asymptotic results at
the boundary. From a modern perspective, a simulation or bootstrap-based procedure
could be recommended as a practical way to perform estimation and testing in these
models.

Tawn also considered the model in which the marginal parameters are unknown
— as would typically be the case in practice, where we have to fit some model to
both marginal distributions (for example, the generalized extreme value distribution)
and then transform both marginal distributions to unit exponential distribution prior
to assuming (4.25) or the equivalent for one of the other bivariate extreme models.
Tawn’s results in this case were influenced by earlier results [217] that showed that
in certain nonregular cases — where one set of parameters has regular behavior with
the usual asymptotic results, while another parameter has nonregular behavior — the
regular and nonregular parameters often have independent limiting behavior. Tawn
showed that a similar result holds for certain bivariate extreme models, as follows.

The model in this case is that there is a finite-dimensional set of marginal param-
eters, written φφφ =

(
φ1 . . . φq

)
, as well as a scalar dependence parameter θ (in

the logistic model, we write θ in place of r). We also assume there is a critical value
θ0 where the estimation for θ becomes nonregular.

We assume that in the case where θ is known, the MLE for φφφ exists, which
we write as φ̄φφ n to indicate the dependence on sample size n. (If we needed also
to distinguish the individual components of φφφ , we would write φ̄n, j, for example, to
indicate the jth component of φ̄φφ n, but that will not be needed for the discussion here.)
We assume that standard asymptotic results apply to φ̄φφ n,

√
n
(
φ̄φφ n−φφφ

) d→ Nq[0,M−1]

where M is the Fisher information matrix for φφφ , assumed to be strictly positive defi-
nite.

For the case θ is unknown, we assume the existence of a joint MLE (θ̂n, φ̂φφ n),
using different notation to indicate that this is now the joint MLE where both θ

and φφφ are unknown. As was the case previously for θ̄n, we assume θ̂n = θ0 if the
maximum is attained on the boundary. There are now two cases:

(i) If θ > θ0, the problem is regular, and we use the standard ((q+ 1)-dimensional)
Fisher information matrix to deduce the joint asymptotic distribution of (θ̂n, φ̂φφ n).
In general it will not be the case that θ̂n and φ̂φφ n are asymptotically independent.

(ii) If θ = θ0 (e.g. the independent case θ = 0 for the mixed model, or r = 1 for the
logistic model) then there is an asymptotic result of the form(√

cn logn(θ̂n−θ0),
√

n(φ̂φφ n−φφφ)
)

d→ (S,Z1, . . . ,Zq), (4.28)

where c > 0, S has the same half-normal distribution as in (4.27), Z =(
Z1 . . . Zq

)
is Nq[0,M−1], and S and Z are independent.
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Tawn also showed the following interesting side results:

(
θ̄n−θ0

){
−∂ 2`n(θ̄n,φφφ 0)

∂θ 2

}1/2
d→ S,

(
θ̂n−θ0

){
−∂ 2`n(θ̂n, φ̂φφ n)

∂θ 2

}1/2
d→ S,

where φφφ 0 denotes the true value of φφφ , `n(θ ,φφφ) now denotes the joint likelihood of θ

and φφφ , and S is again the half-normal random variable in (4.27). The implication is
that we still get the correct asymptotic normal distribution for either θ̄n or θ̂n if we
normalize by the observed information of θ , which is what the terms − ∂ 2`n(θ̄n,φφφ0)

∂θ 2

and− ∂ 2`n(θ̂n,φ̂φφn)

∂θ 2 represent, even though the Fisher information does not exist for this
parameter. In regular estimation problems, a famous paper of Efron and Hinkley [65]
argued that it is better to normalize using the observed information rather than the
Fisher information, but the proof relied on complicated arguments involving ancillary
statistics and conditional inference. In this case, using Fisher information is not an
option but observed information still gives the right answers.

Further results on nonregular estimation in cases where p > 2 were stated in
[233]. For example, for testing r = 1 in the multivariate logistic dependence model
(h), or in one special case of the model (4.22), the asymptotic distribution of the
score statistic can be shown to be of stable law (non-normal) form, but a complete
enumeration of all the nonregular estimation results for these models has not been
attempted.

A further comment on the joint estimation of θ and φφφ is that, while the asymp-
totic results are the same whether the parameters are estimated together (θ̂n, φ̂φφ n) or
separately (θ̄n, φ̄φφ n), in practice, there may be considerable advantages to the joint
estimation approach; see in particular Shi [210] and an earlier preprint on the same
theme [211].

4.5 Threshold Methods for Multivariate Extremes

All the analyses so far have assumed a block maximum approach, in other words,
for p-dimensional we divide the data into blocks and compute the maximum or min-
imum of each of the p components in each year. The limiting distribution, as the
block length n tends to infinity, is then the p-dimensional multivariate extreme value
distribution defined by (4.1) or, in its equivalent form of a min-stable distribution
with unit exponential marginal distributions, by (4.10) or (4.12). In environmental
applications, the block length is usually fixed at one year and the analysis then pro-
ceeds on the assumption that n is large enough for the limiting distributions to be
valid, though as in the univariate case, there is a legitimate question whether this is
adequate or whether it would be better to choose a larger block size (e.g. two-year or
five-year maxima; occasionally but more rarely, analysts use block lengths that are
shorter than one year).

The alternative approach, well studied already in the case of univariate extremes,
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is a threshold approach in which the analysis is essentially confined to exceedances
over a high threshold. This naturally brings us into considerations of multivariate
regular variation, of which the books by Resnick [189, 191] are the most compre-
hensive reference. In this section we do not attempt a full presentation of this theory,
but we summarize the main results that are relevant for a threshold approach. The
earliest attempt to do this was by Coles and Tawn [31], and for our initial discussion,
we summarize their approach.

As noted in (4.2), there is no loss of generality in transforming the marginal dis-
tributions to uniform on [0,1] and focusing attention on the copula which defines the
joint distributions in this case. In practice, we can equally well transform to some
other marginal distribution, for example, if U is uniform on [0,1], then − logU has a
unit exponential distribution or −1/ logU has a unit Fréchet distribution with distri-
bution function e−1/x for 0 < x < ∞. In the previous sections we found it convenient
to use unit exponential margins and the Pickands representation; for the present anal-
ysis, it is more convenient to assume unit Fréchet margins and a slightly different
formulation of multivariate extreme value distributions due to de Haan and Resnick
[100].

With these preliminaries, Coles and Tawn assumed a sequence Xi =(
Xi1 . . . Xip

)
, i = 1,2, . . . of IID random vectors in Rp

+ with unit Fréchet mar-
gins: Pr

{
Xi j ≤ x

}
= e−1/x on 0 < x < ∞ for j = 1, . . . , p, i = 1,2, . . . They then

defined a point process

Pn =
{

n−1Xi : i = 1, . . . ,n
}
. (4.29)

Then, by results in [100, 189], Pn converges in distribution to a limiting point process
P on R+\{0}. For a more detailed description of modes of convergence in point
processes, we refer to [191].

To define the nonhomogeneous intensity measure of P, we first define new coor-
dinates:

ri =
1
n

p

∑
j=1

Xi j, wi j =
Xi j

nri
, wi =

(
wi1 . . . wip

)
∈Sp. (4.30)

With this transformation, the intensity measure of P on Rp\0 is

µ(dr×dw) =
dr
r
·dH(w) (4.31)

where H is a measure on Sp satisfying∫
Sp

w jdH(w) = 1 for all j = 1, . . . , p. (4.32)

The corresponding limit distribution for block maxima is as follows. If Mn j =
max{X1 j, . . . ,Xn j} for each j = 1, . . . , p, then

Pr
{

1
n

Mn j ≤ x j, j = 1, . . . , p
}
→ G(x) = e−V (x)
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where

V (x) =
∫

Sp

max
j=1,...,p

(
w j

x j

)
dH(w) (4.33)

where V (x) is called the exponent measure. This is clearly related to Pickands’ de-
pendence measure (compare (4.10) and (4.12) with (4.33)) but they are not the same
thing, and for present purposes, modeling in terms of the exponent measure is more
convenient for the proposed approach. However, one comment we could make is that
each of the models in Section 4.4 can be rewritten in terms of the exponent measure
rather than Pickands’ dependence function, and the paper [31] gives a number of
examples of that.

One complication about this theory in the case p > 2 is that even when the ex-
ponent measure V is differentiable (which we assume), it is possible that some of
the measure H is concentrated on lower-dimensional boundaries of the simplex Sp.
To make this precise, Coles and Tawn defined subsets c of the form {i1, . . . , i j}
where 1 ≤ j ≤ p and each of i1, . . . , i j is one of 1, . . . , p. They defined a subset
S j,c = {w∈Sp : wk = 0 for each k /∈ c}. The measure H is assumed to have density
h j,c on S j,c. As described by Coles and Tawn, “the density h j,c describes the depen-
dence structure for events which are extreme only in the components c= {i1, . . . , i j}”.
They then stated the main theorem linking V to these densities on sub-simplexes of
Sp:

Theorem. For each c{i1, . . . , im},

∂ mV
∂xi1 . . .∂xim

= −

(
m

∑
j=1

xi j

)−(m+1)

hm,c

(
xi1

∑xi j

, . . . ,
xim

∑xi j

)
(4.34)

defined on any x ∈ Rp
+ for which xr = 0 for all r /∈ c. Note that when translated back

to Pickands’ dependence measure, this formula is the extension of (4.14) to the fully
multivariate case.

The second characterization result given by Coles and Tawn is effectively the
transformation result linking (4.23) and (4.24). They show that if h∗ is any positive
function on Sp with m j =

∫
Sp

u jdh∗(u)< ∞, then the measure H with density

h(w) =
(
∑mkwk

)−(p+1)
p

∏
j=1

m jh∗
(

m1w1

∑mkwk
, . . . ,

mpwp

∑mkwk

)
(4.35)

is a valid intensity measure on Sp satisfying
∫
Sp

w jdh(w)= 1, as in (4.33). The tilted
Dirichlet model (4.24) is an obvious special case of this, in fact, the only special case
that immediately comes to mind (though Coles and Tawn do remark that a general-
ization of this result may be used to generate models with mass on the boundaries of
Sp as well as the interior).

4.5.1 Estimation in the Coles-Tawn model

The models and methods used by Coles and Tawn were essentially parametric: since
any of the previous parametric models for multivariate extremes may be reparame-
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terized in the form of the exponent measure V and hence the measure H, we may
reduce them to parametric estimators based on the limiting point process. There are
two cases:

(i) Marginal distributions known. In this case there is no loss of generality in as-
suming the marginal transformations are unit Fréchet (after a transformation, if
needed). Assume the process is observed in an open set A ∈ Rp

+\{0}. Also as-
sume the exponent measure V (hence the measure H, and hence further the mea-
sure µ of (4.31)) are functions of a parameter vector θθθ . In that case, and us-
ing the limiting Poisson process as if it were the true model for the observations
{n−1Xi, i = 1, . . . ,n}, the likelihood function for θθθ is of the form

LA(θθθ ;{n−1Xi, i = 1, . . . ,n}) = exp{−µ(A)} ·
nA

∏
i=1

µ (dri×dwi) . (4.36)

Here, nA denotes the number of observations in A and (possibly after reordering)
ri and wi denote the radial and angular components of the ith observation in A.
In practice, Coles and Tawn suggested taking A=Rp

+\
{
(0,v1)× . . .× (0,vp)

}
—

in other words, a threshold v j for the jth component of X where the set A consists
of all observations Xi any one of whose coordinates is over the threshold for that
coordinate.

(ii) Marginal distributions unknown. Suppose the original observations are denoted
Yi rather than Xi, but after estimating the marginal distributions, each Yi is trans-
formed to Xi with unit Fréchet marginal distibutions. For the jth coordinate, we
even write X j = X j(Yj) to make explicit that each X j is determined by the cor-
responding Yj. Since it is common to model high-level threshold exceedances of
a univariate process using the generalized Pareto distribution (GPD) [50], they
assumed

Pr
{

Yj > y
}

= p j

(
1+ξ j

y−u j

σ j

)−1/ξ j

for y ≥ u j, where u j is a threshold for the jth coordinate, p j = Pr{Yj > u j}, and
σ j and ξ j are the scale and shape parameters for the GPD (in keeping with the
notation that was widely used at the time, they used k j in place of our −ξ j). This
immediately defines the probability integral transformation from Yj to X j when
Yj > u j, but since the joint likelihood requires that only one of the p coordinates
be above its corresponding threshold, we also need to define X j(Yj) when Yj ≤ u j.
For this, Coles and Tawn used an empirical (rank-based) estimate of the marginal
distribution. Hence, they defined

X j(Yj) =


[
− log

{
1− p j

(
1+ξ j

Y j−u j
σ j

)−1/ξ j
}]−1

, Yj > u j,{
− log R(Y j)

n+1

}−1
, Yj ≤ u j,

(4.37)

where R(Yj) denotes the rank of Yj among the sample Yi j, i = 1, . . . ,n. They then
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defined v j = n−1X j(u j) and adapted the earlier formula (4.36) to define an ex-
panded likelihood function,

LA(θθθ ,σ1, . . . ,σp,ξ1, . . . ,ξp;{Yi, i = 1, . . . ,n}) = exp{−V (v)} ·
nA

∏
i=1

[
h(wi)(nri)

−(p+1) · ∏
j=1,...,p:Xi j>nv j

{
σ
−1
j p

−ξ j
j X2

i je
1/Xi j

(
1− e−1/Xi j

)1+ξ j
}]
(4.38)

where Xi = (Xi1, . . . ,Xip) are defined by the transformations (4.37).

As in the earlier papers of Tawn, Coles and Tawn advocated maximum likelihood
as the preferred method of estimation, though they noted that in certain cases (such
as r = 1 in the logistic dependence model) the problem may become nonregular;
although they did not describe a procedure to deal with this kind of difficulty, the
presumed advice is to be cautious using this likelihood when one or more of the
parameters appears to lie along a boundary of the parameter space.

As an application, Coles and Tawn analyzed a dataset of hourly sea surge levels at
three sites on the east cost of England. They considered six dependence models and
used the maximized log likelihood to decide which model fit best. They also argued
that the real-data and simulation results point towards the superiority of estimating
the marginal and dependence parameters simultaneously rather than separating the
two estimation procedures.

4.5.2 Alternative censored data approach

An alternative approach was introduced in a series of papers [223, 142, 226] that
aimed to construct a likelihood based directly on limiting approximations to the joint
distribution function of high-level exceedances. This approach does not seem to have
a widely recognized name but we call it here the censored data approach since it
borrows idea familiar from the treatment of censored data in survival analysis.

The starting point is an alternative formula for the limiting joint distribution for
multivariate extremes. We start with a characterization of the domain of attraction
of a multivariate extreme value distribution given in Proposition 5.15 of Resnick
[189]. Suppose we have a p-dimensional random variable Y =

(
Y1 . . . Yp

)
with distribution function F(y1, . . . ,yp) and let Fj denote the marginal distribu-
tion function of Yj. Define Z j = −1/ logFj(Yj) for each j and let F∗(z1, . . . ,zp) =

F(F←1 (e−1/z1), . . . ,F←p (e−1/zp)) where F←j is the inverse function of Fj. This corre-
sponds to each of the marginal distributions of F being transformed to unit Fréchet
form, i.e. Pr{Z j ≤ z}= e−1/z. The condition for F∗ to be in the domain of attraction
of a multivariate distribution function G∗ with unit Fréchet marginal distributions is
then given as

lim
t→∞

logF∗(tz1, . . . , tzp)

logF∗(t, . . . , t)
= lim

t→∞

1−F∗(tz1, . . . , tzp)

1−F∗(t, . . . , t)
=

logG∗(z1, . . . ,zp)

logG∗(1, . . . ,1)
.

(4.39)
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(The second equality in (4.39) comes from Resnick; the first follows from the famil-
iar result that − logF

1−F → 1 as F → 1.) However, we have already seen in (4.33) that
G∗(z1, . . . ,zp) = exp{−V (z1, . . . ,zp)}. This suggests an approach, directly generaliz-
ing the use of the generalized Pareto distribution (GPD) in univariate extreme value
analysis [50], that treats either of the limiting relations in (4.39) as an identity for
sufficiently large t.

Specifically, we assume that either 1 − Fj(x) or − logFj(x) is of the form

λ j{1+ ξ j(x− u j)/σ j}
−1/ξ j
+ for x ≥ u j, where u j is the arbitrarily chosen threshold

for variable j. When combined with (4.39), this leads to one of the approximations

F(x1, . . . ,xp) = 1−V

{
λ
−1
1

(
1+ξ1

x1−u1

σ1

)1/ξ1

+

, . . . ,λ−1
p

(
1+ξp

xp−up

σp

)1/ξp

+

}
,

(4.40)

or

F(x1, . . . ,xp) = exp

[
−V

{(
− log

(
1−λ1

(
1+ξ1

x1−u1

σ1

)−1/ξ1

+

))−1

, . . . ,

(
− log

(
1−λp

(
1+ξp

xp−up

σp

)−1/ξp

+

))−1}]
, (4.41)

where in either case the formula is assumed valid whenever x j ≥ u j for j = 1, . . . , p.
Both formulas (4.40) and (4.41) were initially stated in [223] but the motivation
behind (4.41), as an alternative to (4.40), was due to Ledford and Tawn and further
developed in [142]; in particular, they argued that (4.41) works better than (4.40) in
cases where the variables are nearly independent.

The reason for calling this a “censored data” approach is that the likelihood based
on either (4.40) or (4.41) has to take into account the fact that we are assuming no
model for the data when x j < u j; thus, we have to treat any component below the
threshold as effectively censored at the threshold. Thus, following [142], the likeli-
hood contribution due to a typical observation

(
y1 . . . yp

)
in which the compo-

nents j1, . . . , jm exceed their respective thresholds is given by

∂ mF(x1, . . . ,xp)

∂x j1 . . .∂x jm

∣∣∣∣∣
x j=max(u j ,y j), j=1,...,p

. (4.42)

As an example of how this works out in practice, and to make clear the connection
with censored data, consider what happens when p = 2 and we have n independent
pairs of observations {(yi1,yi2), i= 1, . . . ,n}. The contribution to the likelihood from
(yi1,yi2) is

Li =


F(u1,u2) if yi1 ≤ u1,yi2 ≤ u2,
∂F
∂x2

(u1,yi2) if yi1 ≤ u1,yi2 > u2,
∂F
∂x1

(yi1,u2) if yi1 > u1,yi2 ≤ u2,
∂ 2F

∂x1∂x2
(yi1,yi2) if yi1 > u1,yi2 > u2.

(4.43)
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The full likelihood L is then ∏
n
i=1 Li. The first three terms in (4.43) are in effect

censored data terms because we don’t make any assumption for the distribution of
(yi1,yi2) below the threshold: in effect, we treat the observations as censored. This
avoids one slightly awkward feature of the Coles-Tawn method, the need to introduce
an empirical distribution function in (4.37).

On the face of it, this approach gives a clear-cut method of threshold-based sta-
tistical inference in multivariate extreme value distributions. First, we adopt a para-
metric model for V (z1, . . . ,zp), of which we saw numerous examples in Section 4.4.
Second, we assume either of the representations (4.40) or (4.41) which incorporate
the marginal distributions as represented by the GPD parameters λ j,σ j,ξ j. Then,
the individual likelihood terms are defined by (4.42), which reduced to (4.43) in the
bivariate case p = 2.

However, it turns out that there are a number of issues with this approach. One
of them is a technical issue that we have discussed previously, the nonregularity of
the MLE at the boundary points of the model, such as θ = 0 in the mixed model
or r = 1 in the logistic model (examples (a) and (b) of our catalog of models in
Section 4.4). Imitating earlier arguments from [232, 233], Ledford and Tawn [142]
showed that for these two models, the asymptotic distribution of the score statistic is
normal but with a nonstandard normalization, and they imply that simliar but more
complicated results must hold for other models such as the asymmmetric moxed or
logistic models.

There are also issues with the combinatorial explosion of the number of terms
in the likelihood function as p grows. Equation (4.43) splits the likelihood into 4
possible terms depending on which components are above or below the threshold.
Evidently, the corresponding split for a p-dimensional multivariate extreme value
distribution will contain 2p terms, which grows rapidly as p grows.

However, the computational issue does not end there. Consider the formula
F∗(z1, . . . ,zp) = exp{−V (z1, . . . ,zp)}. Recall that all of our parametric formulas for
multivariate extreme value models have relied on the specification of V rather than
directly F∗. Therefore, the derivatives of F∗ (and hence F itself) must be expressed in
terms of V . We may calculate

∂F∗
∂ zi

= −e−V ∂V
∂ zi

,

∂ 2F∗
∂ zi∂ z j

= e−V
(

∂V
∂ zi

∂V
∂ z j
− ∂ 2V

∂ zi∂ z j

)
,

∂ 3F∗
∂ zi∂ z j∂ zk

= e−V
(
−∂V

∂ zi

∂V
∂ z j

∂V
∂ zk

+
∂ 2V
∂ ziz j

∂V
∂ zk

+
∂ 2V
∂ zizk

∂V
∂ z j

+
∂ 2V
∂ z jzk

∂V
∂ zi
− ∂ 3V

∂ zi∂ z j∂ zk

)
and so on. The number of terms in this expansion is the pth Bell number, of which the
next few (for p = 4, . . . ,8) are 15, 52, 203, 877 and 4140. Clearly, this also quickly
gets out of control. The combinatorial problem may be simplified by using computer
algebra, but this would not reduce the complexity of computing an exact likelihood
for large p.

However, Ledford and Tawn were also the first authors to draw attention to a
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more fundamental issue with all the models for multivariate extremes considered so
far, that they only deal with cases of asymptotic dependence and neglect the equally
important case of asymptotic independence. We turn to this question now.

4.6 Asymptotic Dependence and Asymptotic Independence

4.6.1 Introduction: The coefficient of tail dependence

Let us go back to (4.13), which we rewrite for present purposes (with unit Fréchet
margins) in the form

Pr{X ≤ x,Y ≤ y} = exp
{
−
(
x−1 + y−1)A

(
x

x+ y

)}
. (4.44)

In particular, if we set x = y, we get

Pr{X ≤ x,Y ≤ x} = exp
{
−2A(1/2)

x

}
.

Combining this with the unit Fréchet marginal distribution for both X and Y , as x→∞

we get

Pr{X ≤ x or Y ≤ x} = Pr{X ≤ x}+Pr{Y ≤ x}−Pr{X ≤ x,Y ≤ x}

= 1− 1
x
+1− 1

x
−1+

2A(1/2
x

+O
(

1
x2

)
= 1− 2(1−A(1/2))

x
+O

(
1
x2

)
.

Hence

Pr{X > x,Y > x} ∼

{ 2(1−A(1/2))
x if A(1/2)< 1,

O
(

1
x2

)
if A(1/2) = 1.

(4.45)

One immediate consequence of (4.45) is the formula

χ = lim
x→∞

Pr{Y > x | X > x} = 2
{

1−A
(

1
2

)}
(4.46)

which is > 0 if A(1/2)< 1 but χ = 0 if A(1/2) = 1.
If χ = 0 then we say X and Y are asymptotically independent; otherwise, they are

asymptotically dependent. For the case where X and Y have a bivariate extreme value
distribution, (4.46) shows that they are asymptotically dependent except for the case
A(1/2) = 1, but in that case, the convexity of A, combined with A(0) = A(1) = 1,
implies that A(w) = 1 for every w ∈ [0,1] and X and Y are exactly independent.

The difficulty with this concept is that there are many important, relevant ex-
amples of bivariate distributions that are asymptotically independent without being
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exactly independent, including the best known of all bivariate distributions, the bi-
variate normal distribution. Ledford and Tawn cited the result that when X and Y are
bivariate normal with means 0, variances 1 and correlation coefficient ρ < 1,

Pr{X > x,Y > x} = (1+ρ)3/2(1−ρ)−1/2(4π)−ρ/(1+ρ)x−2/(1+ρ)(logx)−ρ/(1+ρ).

(4.47)

Thus χ = 0 in this case, but the asymptotic result (4.47) shows that there is a non-
trivial tail dependence between X and Y in practice. To emphasize the point, they
proved that if (Xi,Yi), i = 1, . . . ,n were independent bivariate normal vectors with
ρ < 1, the score statistic test discussed in Section 4.5.2 would reject independence
with probability 1 as n→ ∞, even though X and Y are asymptotically independent
according to (4.47) and it has long been known that the joint distribution of the ex-
tremes of a bivariate normal distribution, suitably normalized, converge to a pair of
independent Gumbel distributions [212]. Ledford and Tawn gave several other ex-
amples of bivariate families where similar behavior occurs.

Clearly, some new concept is needed, and returning to the case of unit Fréchet
marginal distribution, Ledford and Tawn proposed the model

Pr{X > x,Y > x} ∼ L (x)x−1/η (4.48)

where L is a slowly varying function and η is a new parameter satisfying 0 < η ≤ 1
which they called the coefficient of tail dependence. Recall that a function is slowly
varying if L (tx)/L (t)→ 1 as t→∞ for all x> 0. Thus the definition (4.48) includes
cases where L (x) tends to a constant as well as examples (including the bivariate
normal) where it is proportional to a power of log x or some similar slowly varying
behavior. Indeed, in the case that X and Y are derived through marginal transforma-
tion of a joint bivariate normal distribution with correlation coefficient ρ ∈ (−1,1),
we have η = 1+ρ

2 , by (4.47). In their original paper, Ledford and Tawn [142] re-
stricted η to the range [ 1

2 ,1], but this is unnecessary since [143] and all subsequent
papers assumed η ∈ (0,1] as given here.

Ledford and Tawn defined a number of special cases of (4.48). The case where
η = 1 and L (u) 9 0 corresponds to the traditional definition of bivariate extreme
value distributions that we have been using up to this point. The case 1

2 < η < 1 is
called positive association which applies, in particular, for a bivariate normal dis-
tribution with 0 < ρ < 1. The third case of interest is the near independence case
when η = 1

2 and L (x)≥ 1. The fourth case when 0 < η < 1
2 corresponds to negative

association between X and Y .
To estimate η , Ledford and Tawn defined a random variable T = min(X ,Y ) and

noted that (4.48) immediately implies Pr{T > x} ∼L (x)x−1/η . Based on that, they
showed that

Pr{T > u+ t | T > u} ∼
(

1+
t
u

)−1/η

which corresponds to a GPD pver threshold u where ξ =η . Therefore, they proposed
fitting a GPD or, equivalently, adopting the point process approach of [220], and
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estimating η by ξ̂ , the MLE of ξ in the GPD or point process approach. This leaves
open the question of how to choose the threshold but this is similar to any problem
that involves exceedances over a threshold.

The definition of χ in (4.46) was introduced by Coles, Heffernan and Tawn [34]
but does not have a fixed name. Serinaldi [209] defined the same concept with the
notation λU which he called the upper tail dependence coefficient, but consistent with
the theory that was started by Ledford and Tawn and developed by numerous subse-
quent authors, we reserve the term coefficient of tail dependence for the parameter η

in (4.48.

4.6.2 Extension to the full joint tail

The follow-up paper by Ledford and Tawn [143] considered the extension of the
preceding approach to the full joint tail where we want to estimate Pr{X > x,Y > y}
for all large values of x and y (i.e. not restricting x = y). The model (4.48) does not
lead immediately to a specific form of joint tail but Ledford and Tawn proposed

Pr{X > x,Y > y} = L (x,y)x−c1y−c2 (4.49)

where c1 + c2 = 1/η and L is a bivariate slowly varying function satisfying the
property that

g(x,y) = lim
t→∞

{
L (tx, ty)
L (t, t)

}
exists for all x,y> 0. Here g(cx,cy)= g(x,y) for all c> 0 which implies that g(x,y)=

g∗
(

x
x+y

)
for some function g∗. In fact, they proposed replacing L (x,y) in (4.49) by

Kg∗(w) where K > 0 is a constant and w = x
x+y .

The difficulty with this approach is the absence of a well-defined procedure for
defining the function g∗. In principle, a nonparametric technique might be preferred,
but Ledford and Tawn noted the difficulty in defining such an estimator and proposed
instead the model L (x,y) = L∗(x/(x+ y)) where

L∗(w) = a0 +a1{w(1−w)}−1/2[1−V{(1−w)−1w−1}] (4.50)

where V defined by (4.33) could be any of the parametric models in Section 4.4. As
a specific example, they took

V (x,y) = (x−1/α + y−1/α)α (4.51)

with α ∈ (0,1], equivalent to the logistic dependence model of Section 4.4 with r =
1/α .

If we assume that equations (4.49)–(4.51) hold exactly for x and y sufficiently
large, combined with the transformation of the marginal distributions to unit Fréchet,
this defines a model for high-threshold exceedances of a bivariate pair which may be
estimated by the technique of Section 4.5.2.
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In the latter parts of their paper, Ledford and Tawn discussed a number of di-
agnostic procedures, including the choice of thresholds, a nonparametric diagnostic
for estimating c1− c2 (since c1 + c2 = 1/η and we already have an estimator of η ,
this would allow us to estimate both c1 and c2 without relying on a specific model
for g∗) and the possibility of higher-order expansions to refine the fit of the model.
They also consider a number of possible submodels (for example, forcing a0 = 1 or
constraining η to be either 1

2 or 1) noting, as expected from previous results, that
test statistics for choosing among these models generally have non-standard asymp-
totic properties. In they end, they conclude that “η largely governs the extrapolation
properties of the joint tail and is therefore the parameter of greatest importance for
statistical applications.”

4.6.3 New models based on hidden regular variation

The problem up to this point is that while (4.49) defines a general class of models for
the joint tail consistent with (4.48), there is no clear-cut procedure for defining the
function L (x,y), and the specification (4.50) seems arbitrary. Ramos and Ledford
[183] proposed a new approach to this by building on the theory of hidden regular
variation, developed by Resnick [190] and extended by Maulik and Resnick [152].

The starting point for the Ramos-Ledford theory is the equation

F̄XY (x,y) = Pr{X > x,Y > y} =
L (x,y)
(xy)1/(2η)

(4.52)

where η ∈ (0,1] and L is bivariate slowly varying in the sense that there is a limit
function g such that

g(x,y) = lim
u→∞

{
L (ux,uy)
L (u,u)

}
. (4.53)

If (4.53) holds then we must have g(cx,cy) = g(x,y) for any c> 0 and hence g(x,y) =
g∗(x/(x+ y)) for some g∗. So far, the formulation is the same as (4.49) except that
the authors assume without comment that c1 = c2 = 1/(2η).

Ramos and Ledford defined random variables (S,T ) ∈ [1,∞)2 to be the weak
limits of (X/u,Y/u) given X > u,Y > u. Thus

F̄ST (s, t) = Pr{S > s,T > t} = lim
u→∞

{
Pr(X > us,Y > ut)
Pr(X > u,Y > u)

}
=

g∗(s/(s+ t))
(st)1/(2η)

.

(4.54)

Define the change of variables R = S+T,W = S/R. Then, following [190, 152], the
joint distribution of (R,W ) factorizes as µRW (dr,dw) = r−(1+1/η)dHη(w) where Hη

is some non-negative measure on [0,1]. For given w define r∗ = max(s/w, t/(1−w)),
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then

g∗(s/(s+ t))
(st)1/(2η)

= F̄(s, t) =
∫ 1

0

∫
∞

r∗
r−(1+1/η)drdHη(w)

= η

∫ 1

0
min

(
w
s
,

1−w
t

)1/η

dHη(w)

= η

∫ s/(s+t)

0

(w
s

)1/η

dHη(w)+η

∫ 1

s/(s+t)

(
1−w

t

)1/η

dHη(w).

(4.55)

Equation (4.55) is reminiscent of similar formulas for classical bivariate extreme
value distributions (the p = 2 case of (4.33)) but is clearly a different formula with
different consequences. Just as (4.33) was subject to the constraint (4.32), so there is
a constraint (similarly motivated, but quite different in form) associated with (4.55).
Specifically, (4.53) implies that g(1,1) = g∗(1/2) = 1 so, substituting s = t in (4.55),
we find that

η
−1 =

∫ 1/2

0
w1/η dHη(w)+

∫ 1

1/2
(1−w)1/η dHη(w). (4.56)

Setting s = rw, t = r(1−w) (where r is arbitrary) in (4.55) leads to the formula

g∗(w) = η

(
1−w

w

)1/(2η) ∫ w

0
z1/η dHη(z)+η

(
w

1−w

)1/(2η) ∫ 1

w
(1− z)1/η dHη(z)

(4.57)

where Hη is a non-negative measure on [0,1], arbitrary except for the constraint
(4.56).

As an example, Ramos and Ledford considered the model

hη(w) =
dHη(w)

dw
=

η−α

αη2Nρ

{
(ρw)−1/α +

(
1−w

ρ

)−1/α
}α/η−2

{w(1−w)}−(1+1/α)

(4.58)

where Nρ = ρ−1/η +ρ1/η − (ρ−1/α +ρ1/α)α/η with η ∈ (0,1], 0 < α ≤ 1, ρ > 0.
They described this model as a modified version of Tawn’s [232] asymmetric logistic
model. Based on (4.58), they defined the joint survivor model for (X ,Y ) as

F̄XY (x,y) =
λu1/η

Nρ

(ρx)−1/η +

(
y
ρ

)−1/η

−

{
(ρx)−1/α +

(
y
ρ

)−1/α
}α/η


(4.59)

valid in x≥ u, y≥ u, where u is some chosen high threshold and λ = Pr{X > u,Y >
u}.
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The model (4.59) represents an interesting extension to the classical bivariate ex-
treme models that include both asymptotically dependent and asymptotically inde-
pendent cases. If we substitute y = x we see immediately that F̄XY (x,x) = O

(
x−1/η

)
.

However, the marginal distribution of either X or Y depends on the relative sizes of
α and η : if η ≥ α then Pr{X > x} = O

(
x−1/η

)
but if η < α then Pr{X > x} =

O
(
x−1/α

)
.

Thus if we define χ = limx→∞ Pr{Y > x|X > x} as in (4.46) and define asymptotic
dependence as χ > 0, we find that the model (4.59) is asymptotically dependent if
η ≥α but asymptotically independent if η <α (in particular, asymptotic dependence
does not apply only to the case η = 1).

4.6.4 Extensions to the case p > 2

References: [182, 184]

4.6.5 An application: Dependence among extreme weather events

The analysis in this section is based on a contribution to a National Research Council
report [39].

Many studies in recent years have documented the increased frequency and sever-
ity of extreme weather events, which is commonly believed to be a direct conse-
quence of human-induced climate change. However, less attention has been given to
the possibility of seemingly unrelated extreme weather events possibly having a sim-
ilar climate cause. This could be of particular concern if extreme events in different
parts of the world occur in rapid succession, because of the limited human and finan-
cial resources available to recover from such events. Bivariate extreme value theory
provides a possible tool for analyzing the dependence of extreme weather events.

Example 1. Herweijer and Seager [112] argued that the persistence of drought
patterns in various parts of the world may be explained in terms of sea surface tem-
perature patterns. One of their examples (Figure 3 of their paper) demonstrated that
precipitation patterns in the south-west United States are highly correlated with those
of a region of South America including parts of Uruguay and Argentina. As an il-
lustration of this, we have computed annual precipitation means corresponding to
the same regions that they defined, and we show a scatterplot of the data in the
left-hand panel of Figure 4.4. The two variables are clearly correlated (r = 0.38;
p < 0.0001). The correlation coefficient is lower than that found by Herweijer and
Seager (r = 0.57), but this is explained by their use of a six-year moving average
filter, which naturally increases the correlation. However, the feature of interest to us
here is not the correlation in the middle of the distribution, but instead the depen-
dence that exists in the lower tail (lower tail rather than upper tail, because our focus
is drought). Therefore, the variables are transformed empirically to the unit Fréchet
distribution (small values of precipitation corresponding to large values on Fréchet
scale), with the results shown in the right-hand panel of Figure 4.4.

The effect of the Fréchet transformation is to highlight the most extreme obser-
vations in each variable. However, the most interesting observations are those that
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Figure 4.4 Left: Plot of U.S. annual precipitation means over latitudes 25–35oN, longitudes
95–120oW, against Argentina annual precipitation means over latitudes 30–40oS, longitudes
50–65oW, 1901–2002. Right: Same data with empirical transformation to unit Fréchet distri-
bution. Observations near the letter A in the left-hand plot and marked by A in the right-hand
plot refer to simultaneous occurrences of extremely low precipitation in both locations. Data
from gridded monthly precipitation means archived by the Climate Research Unit of the Uni-
versity of East Anglia (http://www.cru.uea.ac.uk/cru/data/hrg/timm/grid/CRU TS 2 1.html,
accessed November 15, 2012).

are not close to either of the axes, because these correspond to observations that are
extreme in both variables. In particular, the triangle of observations near the letter
A in the left-hand plot are transformed into the observations marked A in the right-
hand plot, which are all far from either axis. This is empirical evidence that there is
indeed dependence between the most extreme values in this example. To go further,
we have fitted one of the standard extremal dependence models—the logistic model,
for which a detailed methodology based on events exceeding a threshold was devel-
oped by Coles and Tawn [31]. We have used rather a low threshold (2.5 on the unit
Fréchet scale) in order to illustrate the applicability of the method; ideally, we would
like to use a longer series and a higher threshold. An intuitive way to understand the
effect of this model is to show how the probability of a jointly extreme event in both
variables is inflated compared with what it would be if the variables were indepen-
dent. For example, if we consider the 10-year return level (the value of each variable
that would be exceeded with a probability of 0.1 in a single year), if the variables
were independent, the probability that both 10-year return values would be exceeded
is 0.01. Under the logistic model fitted to this dataset, the joint probability is 0.027
— an increase of 2.7 over the independent case. For more extreme events, the relative
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Figure 4.5 Left: Plot of June, July, and August (JJA) Russian temperature means against Pak-
istan JJA precipitation means, 1901–2002. Right: Same data with empirical transformation
to unit Fréchet distribution. Data from Climatic Research Unit, as in Figure 4.4. The Rus-
sian data were averaged over 45–65oN, 30–60oE, while the Pakistan data were averaged over
32–35oN, 70–73oE, same as in Lau and Kim [135].

increase in joint probability compared with the independent case is larger — 4.7 for
the 20-year return level, and 10.8 for the 50-year return level. However, confidence
intervals for these relative increases in joint probability are quite wide. For example,
for the 50-year return level, a 90% confidence interval is (2.1, 18.8), obtained by
bootstrapping.

The logistic model, although very widely used in bivariate extreme value model-
ing, has a couple of well-documented disadvantages: It assumes symmetry between
the two variables, and it has also a property known as asymptotic dependence, which
might not be satisfied in practice. Recent work by Ramos and Ledford [183, 184] has
suggested an alternative, more complicated, model that does not make those assump-
tions. They called this model the η-asymmetric logistic model, but for the present
discussion we shall call it the Ramos–Ledford model. The estimation procedure used
here follows Section 4.1 of [183]. Under this model, the estimated probability ratios
are very similar to those of the logistic model, although the confidence intervals are
somewhat wider. A summary of all the estimates and confidence intervals is in Table
4.1.

Example 2. Lau and Kim [135] have provided evidence that the 2010 Russian
heat wave and the 2010 Pakistan floods were derived from a common set of meteoro-
logical conditions, implying a physical dependence between these two very extreme
events. Using the same data source as for Example 1, we have constructed summer
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Logistic Model Ramos-Ledford Model
Period Estimate 90% CI Estimate 90% CI
10-year 2.7 (1.2, 4.2) 2.9 (1.2, 5.0)
20-year 4.7 (1.4, 7.8) 4.9 (1.2, 9.6)
50-year 10.8 (2.1, 18.8) 9.9 (1.4, 23.4)

Table 4.1 Estimates of the Increase in Probability of a Joint Extreme Event in Both Variables,
Relative to the Probability Under Independence, for the United States/Uruguay–Argentina
Precipitation Data

temperature means over Russia and precipitation means over Pakistan corresponding
to the spatial areas used by Lau and Kim. Figure 4.5 shows a scatterplot; the left-hand
plot is of the raw data, and the right-hand plot is of the data after transformation to
the unit Fréchet distribution (with the largest values on the original plot correspond-
ing to the largest value on Fréchet scale, because the right-hand tail is of interest
here). Because the data source goes up only to 2002, we have approximated the 2010
values using a different data source (the National Centers for Environmental Predic-
tion); this data point is shown in the left-hand panel of Figure 4.5 but is not included
in the subsequent analysis. The 2010 value is clearly an outlier for temperature but
not for precipitation. It should be noted that, while the 2010 Pakistan flooding was
severe, the overall rainfall over northern Pakistan was not unprecedented. This is be-
cause the heavy rain was concentrated in a very small area over the upper Indus river
basin, over a few days (Dr. W.K. Lau, Chief of Atmospheres, National Aeronautics
and Space Administration, 2012, personal communication).

In contrast with Figure 4.4, the right hand plot of Figure 4.5 shows virtually no
data point away from the axes, indicating that there is no evidence of dependence in
the upper tail of the distribution. This is confirmed by repeating the same analyses
as for Example 1, with results shown in Table 4.2. For the logistic model, which is
constrained to positive dependence between the two variables, the point estimates
and confidence intervals (for the ratio of joint probability to the independent case)
are all very close to 1. Under the Ramos-Ledford model, which does not have that
constraint, the estimated probability ratios are < 1 (indicating negative dependence),
but the confidence intervals include 1. With either set of results, the net conclusion
is that there is no evidence against the hypothesis of independence in the right hand
tail of the distribution.

Logistic Model Ramos-Ledford Model
Period Estimate 90% CI Estimate 90% CI
10-year 1.01 (1.00, 1.01) 0.33 (0.04, 1.4)
20-year 1.02 (1.00, 1.03) 0.21 (0.008, 1.8)
50-year 1.05 (1.01, 1.07) 0.17 (0.001, 2.9)

Table 4.2 Similar to Table 4.1, but for the Russia-Pakistan Dataset

Conclusions. Example 1 confirms and extends the results of Herweijer and Sea-



OTHER APPROACHES TO MULTIVARIATE EXTREMES 125

ger [112] by showing that the interdependence of drought conditions in the two given
regions of the United States and South America extends to the tail of the distribution,
although the confidence intervals for the probability ratios are still fairly wide as a
result of the relatively small number of data points (102). However, Example 2 shows
no evidence at all that there is any tendency for extreme high temperatures in Russia
to be associated with extreme high precipitation in Pakistan; in other words, the 2010
event may have been truly an outlier without precedent in history. This should how-
ever be qualified by noting that the dataset used, consisting of monthly averages over
half-degree grid cells, cannot be expected to reproduce extreme precipitation events
over very short time and spatial scales, and it remains possible that an alternative data
source, using finer-scale data, would produce a different conclusion.

4.7 Other Approaches to Multivariate Extremes

4.7.1 The conditional approach of Heffernan and Tawn

The asymptotically dependent models of classical multivariate extreme value the-
ory and the asymptotically dependent approach started by Ledford and Tawn have
dominated most of the recent literature on multivariate extremes, but there is also
a third approach, introduced by Heffernan and Tawn [111]. This is the conditional
approach to multivariate extreme value theory. The idea can be summarized as fol-
lows: suppose Y is a p-dimensional random vector but only one component Yi (where
1 ≤ i ≤ p) is extreme. What is the conditional distribution of Y(i) — the vector Y
omitting the ith component — given that Yi exceeds some high threshold? They
show that under suitable conditions, one can normalize the components of Y(i) to
get a non-degenrate limiting distribution as Yi approaches its upper endpoint. As an
example, the authors consider the distribution of a suite if air pollutants given that
one of them becomes extreme. This is relevant to air pollution regulation questions
since regulations are often focused on a single pollutant (e.g. particulate matter or
ozone) but regulators are concerned that other pollutants may take very high values
at the same time. Heffernan and Tawn provided some general theory on this approach
and proposed some possible parametric models to take account of it.

The approach has found subseqent appications including applications to spatial
extremes (references to be added).

4.7.2 Combining AD and AI models: The approach of Wadsworth et al.

References: [245, 246]
From the abstract of [246]:
Different dependence scenarios can arise in multivariate extremes, entailing care-

ful selection of an appropriate class of models. In bivariate extremes, the variables
are either asymptotically dependent or are asymptotically independent. Most avail-
able statistical models suit one or other of these cases, but not both, resulting in a
stage in the inference that is unaccounted for, but can substantially impact subse-
quent extrapolation. Existing modelling solutions to this problem are either applica-
ble only on sub-domains, or appeal to multiple limit theories. We introduce a unifed
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representation for bivariate extremes that encompasses a wide variety of dependence
scenarios, and applies when at least one variable is large. Our representation moti-
vates a parametric model that encompasses both dependence classes. We implement
a simple version of this model, and show that it performs well in a range of settings.

One concern that these authors express about the Ramos-Ledford approach [183]
is that it is only applicable in the case where both variables are above a high threshold.
In many cases, we are interested in data where only one component is extreme, which
is reflective of the conditional approach of Heffernan and Tawn [111]. This paper
proposes an alternative family of normalizations that encompasses both approaches.

4.7.3 De Haan and de Ronde

This was an applied paper [102] summarizing the result of a multi-year project to as-
sess flooding risk on the Dutch coast. The authors collected 13 years of data measur-
ing the joint distribution of sea level (SWL) and wave height (HmO) during storms
along the North Sea coast. If the combination of SWL and HmO crosses a certain
line, flooding occurs. The Dutch government has set a target that such events should
be “10,000-year events”, i.e. a 0.0001 failure probability in a given year. None of
the events in the 13-year dataset comes anywhere close to this boundary, but there
is obvious concern with simply extrapolating standard distributions to the boundary
point. In proposing a solution to this problem, de Haan and de Ronde go through
the theory of bivariate extreme value distributions, focusing on the classical formula-
tion of bivariate exteme value theory but also acknowledging the (at the time, recent)
theories of asymptotic independence.

One aspect of this problem is the following: suppose we have bivariate random
variables (X ,Y ) but failure is define by some univariate function sch as h(X ,Y ) > t
where h is a scalar and t is a failure threshold. Do we apply bivariate extreme value
theory to the {(Xi,Yi), i = 1, . . . ,n} pairs and then apply the resulting distributions to
estimate the probability Pr{h(X ,Y )> t}, or do we simply calculate Hi =H(Xi,Yi) for
each pair of observations and then apply the standard univariate techniques, such as
fitting the generalized Pareto distributions to the exceedances of a high threshold, to
the scalar observations {Hi}? The latter are sometimes called “structure variables”. A
very similar problem was discussed in an earlier paper by Coles and Tawn [32], who
gave general arguments why one might in practice prefer the bivariate distribution
approach over the structure variable approach/

4.7.4 General max-stable approach

Segers [208] wrote an elegant review of the classical “max-stable” approach to multi-
variate extremes, focusing on the role of copulas and max-stable models for copulas.
The main contribution of the paper was an approach to generating families of multi-
variate extreme models for which there are still only a limited class of widely used
models.
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4.7.5 Multivariate generalized Pareto distributions

Rootzén and Tajvidi [197] proposed a way of defining “multivariate generalized
Pareto distributions” that fulfil the twin properties that they arise as limits of ex-
ceedances over thresholds and that their form is preserved under change of the
threshold level. They acknowledged the connection with earlier approaches such as
[31, 128] but their paper was the first to propose a specific family of models with
these properties.

4.7.6 High-dimensional multivariate extremes

From a letter I wrote in support of Dan Cooley’s nomination as a Fellow of the
American Statistical Association:

One of his more distinctive contributions is an entirely new method for high-
dimensional multivariate extremes. Multivariate extreme value theory is concerned
with joint distributions for the extremes of two or more variables; it originated in the
1950s with studies of the bivariate case, and was extended to arbitrary dimensions
in the 1970s, but the statistical theory was always a challenge in high dimensions
because of the curse of dimensionality issues that always arise in such problems.
Dan and his collaborators have resolved that issue by proposing a version of princi-
pal components analysis (PCA) for high-dimensional extremes. Conventional PCA
is based on either the covariance or the correlation matrix and pays no particular at-
tention to extremes. The new method first defines a pairwise dependence measure
based on exceedances over high thresholds, and then uses an ingenious transforma-
tion to define a tail pairwise dependence matrix (TPDM) with properties similar to
a covariance matrix. In particular, in this transformed space it is possible to per-
form an eigenvector decomposition and select large-eigenvalue components similar
to a conventional PCA. The mathematical theory of this approach was worked out
by Cooley and Thibaud [37] and a striking application to US precipitation data was
given by Jiang, Cooley and Wehner [126]. In that paper, the resulting components
show strong spatial patterns in the data and also allow the authors to identify which
of the components are correlated with the El Niño (ENSO) signal, which is an im-
portant technique for distinguishing short-term fluctuations in meteorological data
from long-term trends due to climate change. Thus, the method has shown practical
applications as well as theoretical innovation.

The TPDM idea has been used in other papers as well, for example Fix, Cooley
and Thibaud (2020) where it was applied to a spatial process using an analog of the
simultaneous autoregressive (SAR) construction that is familiar in spatial statistics.
This leads to a spatial model indexed by a single parameter ρ that can be estimated
quickly from a large number of spatial locations. They show, for example, that this
method leads to quick estimates of spatial extremes that perform well in comparisons
with the Brown-Resnick process, a well-established method that is computationally
intensive.

Another innovative paper was Cooley, Thibaud, Castillo and Wehner (2019). This
is more limited in that is only concerns bivariate data, but it is a nonparametric ap-
proach that gets away from the idea that “extreme events” occur only when both
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the considered variables are extreme. For example, in considering the joint effects
of temperature and humidity on human health, it is rarely the case that temperature
and humidity are both extreme on the same day. However, it is still true that a com-
bination of high temperature and high humidity are the most significant events for
adverse health outcomes. Michael Wehner is a well-known climate scientist who has
been active on both IPCC (international) and US climate assessments; he has sev-
eral times remarked to me how important he considers Dan’s work for assessing the
impacts of extreme climate events. Another contribution of a more technical nature
in this paper is its dual treatment of the “asymptotically dependent” and “asymptoti-
cally independent” cases of bivariate extremes; this is another area to which Dan has
contributed extensively.



Chapter 5

Spatial Extremes

Many modern data sources are spatial in nature. This is especially true in environ-
mental fields such as climate and air pollution. As an example the Global Historical
Climatological Network1 includes daily data on numerous climate variables mea-
sured at weather stations across the world. In the United States, the Environmental
Protection Agency’s Air Quality System2 provides data on the major components of
air pollution. New sources of data are available from satellite observations such as
the Orbiting Carbon Observatory-2 (OCO-2) of the National Aeronautics and Space
Administration3. In addition, climate data from computer models, both historical and
future projections, are available though the sequence of experiments of the Coupled
Model Intercomparison Project [235, 67]. Similar sources exists for hydrological,
oceanographic and a whole host of other data types. Much of modern environmen-
tal statistics is concerned with new statistical methods for analyzing these vast data
sources, and extreme value theory is no exception.

Broadly speaking, problems of spatial extremes are of two types. One the one
hand are the same problems that arise in univariate extreme value theory, such as
estimating probabilities of high-level exceedances, or long-period return values, but
at many sites simultaneously rather than just one site at a time. In this context, ideas
of “borrowing strength” and exploiting spatial smoothness (in other words, extreme
value parameters at neighboring sites may be expected to be similar) are critical to-
wards making the most computationally and statistically efficient use of data, but they
don’t directly address issues of spatial dependence, e.g. whether a particularly severe
rainstorm leads to extreme precipitation at several sites simultaneously (or how large
an area is affected). Problems of that nature require attention to the extreme depen-
dence properties of observations at multiple sites, which we have already discussed
extensively in Chapter 4 on multivariate extremes. From that point of view, spatial ex-
treme value theory is the extension of multivariate extreme value theory to infinitely
many components, but where the spatial structure of the system suggests specific
classes of statistical models. In this context, the family of max-stable processes is of
particular importance.

1https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-
historical-climatology-network-ghcn

2https://www.epa.gov/aqs
3https://oco.jpl.nasa.gov/
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Davison et al. [48] distinguished three types of spatial extreme value analysis,
based on latent variable models, copula models and max-stable models. Broadly
speaking, latent variable models are used in answering the first of the questions just
described, where we are trying to describe univeriate extremal properties simultane-
ously at multiple sites, while copula and max-stable models are trying to deal directly
with spatial dependence. Here, we focus primarily on the latent variable and max-
stable approaches, introduced in Sections 5.1 and 5.2 respectively, while copulas and
some more recent approaches are covered in 5.5.

There have already been a number of review papers on spatial extremes — apart
from [48], there was also a review by Cooley and co-authors [38], and we shall also
quote extensively from a more recent review by Davison and co-authors [47].

5.1 The Latent Process Approach

To introduce this topic, we discuss in detail the model from a recent paper by Russell
and co-authors [199]. After that, we shall show something of the history of these
approaches, which have used both Bayesian and non-Bayesian methods, though in
some respects the non-Bayesian approaches have shown more flexibility in handling
the random noise component of the model.

In the block maxima approach to extremes, the distribution of a block maximum
at a particular site is modeled through the Generalized Extreme Value (GEV) distri-
bution,

Pr{Z ≤ z} = exp

{
−
(

1+ξ
z−µ

ψ

)−1/ξ

+

}
, (5.1)

where µ, ψ and ξ are the usual GEV location, shape and scale parameters. We will
often write this in the form Z ∼ GEV(µ,ψ,ξ ).

This leads to the following formula for the p-quantile of the distribution:

Zp(µ,ψ,ξ ) =

{
µ− ψ

ξ
{1− (− log p)−ξ} if ξ 6= 0,

µ−ψ log(− log p) if ξ = 0.
(5.2)

When blocks correspond to years (this is the most common assumption, though it
is also possible to compare blocks of different lengths to improve the bias-variance
tradeoff), we often identify the 1−1/r quantile with the r-year return level, thus

RLr = Z1−1/r(µ,ψ,ξ ). (5.3)

For the rest of this section, we shall indeed assume blocks correspond to years.
However, the parameters µ, ψ and ξ may be dependent on both space and time, and
this in essence is at the core of our proposed modeling procedure.

Suppose Yt(s) is the annual maximum in year t and location s, then consider a
model of the form

Yt(s) ∼ GEV(µt(s),ψt(s),ξt(s)) (5.4)
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where µt(s),ψt(s),ξt(s) are the location, scale and shape parameters at location (s)
in year t.

The paper [199] was especially concerned with the relationship between
hurricane-season annual maximum precipitation and spring-season mean sea surface
temperatures in the Gulf of Mexico, denoted SSTt , so they considered a model of the
form

µt(s) = θ1(s)+SSTtθ2(s),
logψt(s) = θ3(s)+SSTtθ4(s), (5.5)

ξt(s) = θ5(s)

Here, the model for ψt(s) was expressed on a logarithmic scale which is more natural
given that ψt(s)≥ 0, while in common with many other studies, they treated the shape
parameter ξt(s) as constant in time (but not space).

Define also

θθθ(s) =

 θ1(s)
...

θ5(s)

 . (5.6)

The objective is to come up with a spatial model for the five-dimensional spatial
process θθθ(s) as a function of s in some domain D , typically represented as a subset
of R2.

In general, of course, time-dependent covariates should be chosen to be relevant
to the specific application of interest; the model (5.5) is intended to be representative
of a general class of models for which the GEV parameters are expressed as functions
of known covariates and a vector spatial process θθθ(s), s ∈D , and the objective is to
come up with a suitable model for the process θθθ .

5.1.1 Background on Spatial Statistics

At this point, it is useful to give a little background on models that are used for
spatial processes, with specific reference to Gaussian spatial processes, which will
be our main emphasis for the following development. Some standard references for
this material include books by Cressie [40] and by Schabenberger and Gotway [205].

A standard model for a univariate spatial process is a Gaussian process model of
the form

Z ∼ Nn (Xβ ,V ) , (5.7)

where Z =

 Z(s1)
...

Z(sn)

 is a vector of observations at n spatial locations s1, ...,sn

in a domain D ⊂ Rk of dimension k ≥ 1, Nn denotes the n-dimensional normal
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distribution, X is an n× p matrix of known covariates, β is a p-dimensional vector of
regression parameters, and V is a n×n covariance matrix with entries {vi j} where

vi j = Cov{Z(si),Z(s j)}

is the covariance between two observations measured at sites si and s j.
In general, V can be arbitrary subject to the constraint that it is a non-negative

definite matrix. In practice, it is usual to impose further assumptions on V :
(a) If vi j depends on the sites si, s j only through the vector difference si− s j, the

process is said to be stationary;
(b) If vi j in invariant under rotations, so that vi j = Cov{Z(Qsi),Z(Qs j)} for any rota-

tion matrix Q, the process is said to be isotropic;
(c) The most common assumption is that the process is both stationary and isotropic,

in which case we may write

vi j = σ
2C(di j), di j = ||si− s j||, (5.8)

where σ2 is the (assumed constant) variance of the process and C(d) is the corre-
lation between two sites separated by a scalar distiance d; in this case, the process
is called homogeneous.

There are a number of standard parametric models for homogeneous spatial pro-
cesses, for example:

C(d) = exp(−d/d0), (Exponential correlation) (5.9)
C(d) = exp{−(d/d0)

2}, (Gaussian correlation) (5.10)
C(d) = exp{−(d/d0)

p}, 0 < p≤ 2, (Exponential-power correlation) (5.11)

C(d) =

1− 3
2

d
d0
+ 1

2

(
d
d0

)3
, d ≤ d0,

0, d ≥ d0,
(Spherical correlation) (5.12)

C(d) =
1

2φ2−1Γ(φ2)
·
(

2
√

φ2d
φ1

)φ2

·Kφ2

(
2
√

φ2d
φ1

)
. (Matérn correlation)

(5.13)

All of these are valid in any dimension k except for the spherical model (5.12), which
is valid only for k = 1,2,3. In each of (5.9)–(5.12), the parameter d0 is called the
range and loosely represents the range of distances for which the spatial correla-
tion is effective, though only for the spherical model (5.12) is it exactly true that
C(d) = 0 when d ≥ d0. In (5.13), Γ(·) represents the standard gamma function and
Kφ2(·) is a modified Bessel function of the third kind of order φ2. The parameters are
φ1 > 0, φ2 > 0 where φ1 plays essentially the same role as d0 in (5.9)–(5.12) and φ2
represents a shape parameter; the case φ2 =

1
2 is equivalent to exponential (5.9) and

the limit φ2 → ∞ is equivalent to Gaussian (5.10). The process is generally named
after Matérn [151] though it had earlier been derived by Whittle [256].

The spherical model often appeals to beginners because of its simple algebraic
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structure and the fact that C(d) = 0 when d ≥ d0; however, the lack of smoothness
near d = 0 and d = d0 makes it less appealing as a statistical model. Wendland [255]
sought to remedy this by proposing a general scheme to construct covariance func-
tions, expressible through simple polynomials with finite range, that are non-negative
definite in any dimension and have additional smoothness properties. An example is
the Wendland 2.2 model

C(d) =


(

1− d
d0

)6
{

35
3

(
d
d0

)2
+6
(

d
d0

)
+1
}
, d ≤ d0,

0, d ≥ d0,
(5.14)

valid in dimension k = 2 or 3. These functions have been implemented in the R
functions Wendland or Wendland2.2 in the package fields [164].

5.1.1.1 Intrinsic Stationarity and the Semivariogram

An alternative (and, in fact, slightly more general) way of characterizing stationary
spatial processes is through the semivariogram rather than the spatial variance or
correlation function.

In general, a semivariogram is a function of a pair of spatial coordinate vectors,

γ(s1,s2) =
1
2

E{(Z(s1)−Z(s2))
2}. (5.15)

Without the multiplier 1
2 , this would be called the variogram rather than semivari-

ogram. In practice, the most common examples assume constant mean, stationary
and isotropy, in which case the semivariogram reduces to a function of scalar dis-
tance,

γ(s1,s2) = γ0(||s1− s2||). (5.16)

Such a process is called intrinsically stationary to distinguish it from (5.8); there are
processes which are intrinsically stationary without being stationary; an example is
(5.17) below.

If Z(s), s ∈D is a homogeneous process with variance σ2 and correlation func-
tion C(·) defined by (5.8), then it is readily varified that

γ0(d) = σ
2(1−C(d))

and hence, any of (5.9)–(5.14) may be expressed in terms of its semivariogram.
However, there are also semivariograms that do not correspond to homogenous

covariance functions, of which one of the best known is

γ0(d) = φ1 +φ2dλ (5.17)

where 0≤ λ < 2; this will be particularly useful in Section 5.2.
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5.1.1.2 Lattice Models

The spatial models developed up to this point rely heavily on the geographic coordi-
nates of the locations s1, ...,sn of the n data points. An alternative approach, originally
introduced by Besag [18], is often considered more appropriate when the observa-
tions are arranged on na regular lattice. The simplest form of such model is the con-
ditional autoregressive process, usually written CAR. The simplest form of such a
model assumes conditional distributions

Zi | Z j, j 6= i ∼ N

(
∑ j wi, j

wi+
,

λ

wi+

)
(5.18)

where Zi is the observation at the ith lattice point, λ > 0 is a fixed conditional variance
parameter and {wi, j} are weights: the most common specification sets wi, j = 1 if the
lattice points i and j are neighbors, 0 otherwise. Although the basic model (5.18) is
very simple, it is often used as one component of a Bayesian hierarchical model for
spatial data; an example will be seen in Section 5.1.4.

5.1.1.3 Estimation of Gaussian Spatial Processes

We return to the model (5.7), where we assume Z is n×1, X is n× p, β is p×1 and
the n×n matrix V is of the form σ2C(φφφ) where σ2 is an assumed constant variance
and C(φφφ) a spatial correlation function depending on some finite-dimensional param-
eter vector φφφ ; any of the models (5.9)–(5.14) would be suitable candidates for this.
In this section, we assume finite-dimensional φφφ because that facilitates estimation
by the method of maximum likelihood or its close relative, the restricted maximum
likelihood (REML) method. Another reason for restricting to parametrically speci-
fied correlation functions is that each of the functions (5.9)–(5.14) has been proved
to be positive definite, so in this way we avoid the potential awkwardness of a spatial
correlation estimate that does not satisfy that constraint.

To compute the maximum likelihood estimator (MLE), the parameters (β ,σ2,φφφ)
are chosen to maximize the likelihood function

f (Z | β ,σ2,φφφ) = (2πσ
2)−n/2|C(φφφ)|−1/2 exp

{
− 1

2σ2 (Z−Xβ )TC(φφφ)−1(Z−Xβ )

}
.

(5.19)

Alternatively, the restricted maximum likelihood (REML) estimator replaces the
right side of (5.19) by

(2πσ
2)−(n−p)/2|C(φφφ)|−1/2|XTC(φφφ)−1X |−1/2 exp

{
− 1

2σ2 (Z−Xβ )TC(φφφ)−1(Z−Xβ )

}
.

(5.20)

A third alternative is Bayesian estimation: define a prior density π(β ,σ2,φφφ) and
integrate the prior × likelihood function π(β ,σ2,φφφ) f (Z | β ,σ2,φφφ). This is usually
achieved by some version of a Markov chain Monte Carlo (MCMC) procedure.
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5.1.1.4 Spatial Models with Measurement Error

An important subclass of spatial models arises when each spatial observation is mea-
sured with some quantifiable measurement error. Sometimes the “observation” is
itself a parameter estimate from some regression model or generalized linear model
(GLM), such as a secondary analysis at each spatial location resulting in a parame-
ter estimate and standard error, which is then combined across multiple locations to
produce a regional or national estimate for the parameter of interest. Models of this
structure have been extensively studied in epidemiology [59, 14, 58, 231] and also in
the present context of extreme value estimation (references to follow), but here we
follow a paper by Holland et al. [114], which laid out many of the issues that arise
in this kind of analysis. (The notation of [114] has been changed to make it more
consistent with what we are using for the precipitation extremes analysis.)

The objective of the paper [114] was to study time trends in sulfur dioxide (SO2)
across a network of rural monitoring sites in the eastern U.S. At each site, a gen-
eralized additive model (GAM) was fitted to estimate the linear trend in SO2 as a
function of weather and a number of other covariates. We omit the details of this part
of the analysis as they are not relevant for the following discussion. The outcome of
this initial GAM analysis was an estimate of the trend at each location, together with
its estimated standard error (SE). The objective of the spatial part of the analysis was
to combine these estimates across sites, possibly including additional covariates (e.g.
latitude and longitude), to calculate regional estimates for different regions defined
within the overall study area.

In this formulation, we may assume an unobserved “true trend” process θ(s)
measured at each of a number of sites s = s1, ...,sn. Represented in vector notation as

θθθ =

 θ(s1)
...

θ(sn)

, we assume the model

θθθ ∼ Nn(Xβ ,σ2C(φφφ)), (5.21)

similar to (5.7), with some correlation matrix C depending on parameters φφφ .
However, in addition to (5.21), we assume an “estimated trend” of the form

θ̂θθ = θθθ + e, e =

 e1
...

en

 , (5.22)

in other words, the estimated trend θ̂(si) at site si (1 ≤ i ≤ n) consists of the unob-
served true trend θ(si) plus a measurement error ei.

To complete the model, we assume

e ∼ Nn(0,W ) (5.23)

with some covariance matrix W which, for the moment, we assume known. We also
assume the measurement error e is independent of the true process θθθ .
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Combining (5.21), (5.22), (5.23), we have

θ̂θθ ∼ Nn(Xβ ,σ2C(φφφ)+W ) (5.24)

from which we can estimate the parameters β , σ2, φφφ by maximum likelihood or
REML. It is also possible to calculate the conditional distribution of θθθ given θ̂θθ in the
form

Nn
[
Xβ +V (V +W )−1(θ̂ −Xβ ),V (V +W )−1W

]
(5.25)

where V = σ2C(φφφ). (5.25) is, in effect, a kriging formula that may be derived by
first writing down the joint distribution of θθθ and θ̂θθ and then inverting. Estimates
and standard deviations of integrated quantities, such as regional averages, may be
computed from (5.25).

We still have to discuss how the error covariance matrix W is estimated in prac-
tice. Given that we have an estimated standard error of each θ̂(si) from the initial
regression analysis, the simplest estimator of W is a diagonal matrix where the di-
agonal entries are the squares of the standard errors. This in effect assumes that the
errors ei are independent at each site, an assumption that may not be correct.

As an alternative to the independence assumption, [114] used a bootstrap method
to estimate, not only the variances of θ̂(si) at each site si, but also the covariances
across sites; these bootstrap estimate were used to estimated the full covariance ma-
trix W . Comparisons showed that the full covariance matrix improved on the diago-
nal approximation as assessed by the maximized likelihood of the model (5.24), and
that estimates and standard errors of the desired regional averages were meaningfully
different when computed with diagonal or non-diagonal W (Table 1 and Figure 8 of
[114].

Summary:

(a) The model defined by (5.21)–(5.23) is a viable approach for taking account of
measurement error in the estimates θ̂(si);

(b) The spatial model parameters β , σ2, φφφ may be estimated by using maximum
likelihood, REML or Bayesian estimation in the combined model (5.24), and pre-
dictions obtained using (5.25) (although we have not attempted to write downt he
formula here, this is easily extended to obtain predictions and prediction variances
of θ(s) at unmeasured sites as well);

(c) Although the simplest version of the model assumes diagonal W , it may also be
beneficial to consider non-diagonal W .

5.1.2 Application to Precipitation Extremes Example

As recalled from (5.4)–(5.6), the model we are considering allows for a five-
dimensional vector of extreme value parameters, θθθ(s), for each site s at which we
have measurements. At each weather station si, i = 1, ...,n, we can compute esti-
mates θ̂θθ(si) by maximum likelihood, including the estimated covariance matrix of
the estimates at each site. As in Section 5.1.1.4, we can represent this as the sum of
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some smooth latent process θθθ(s), s∈D , and a random error process. However, there
is an additional twist, that this is now a 5-variate spatial process, whereas the model
described in Section 5.1.1.4 was univariate.

Following [199], the model for θθθ does not involve any spatial covariates and may
be written

θθθ(s) = β +η(s) (5.26)

where β ∈ R5 and η is a 5-dimensional spatial process with mean 0. The model
(5.26) is more complicated than those of Section 5.1.1 because the process η is
multivariate; however, a common way to deal with that is to use co-regionalization
[244, 75, 11]. We write

η(s) = Aδ (s) (5.27)

where δ (s) =

 δ1(s)
...

δ5(s)

 with δ1, . . . ,δ5 independent univariate zero-mean spatial

processes and A is a 5×5 lower triangular matrix.
For the individual δ` processes, ` = 1, . . . ,5, [199] assumed exponential covari-

ances,

E(δ`(si)δ`(s j) = exp
(
−
||si− s j||

ρ`

)
(5.28)

with range parameters ρ1, . . . ,ρ5.
To develop a two-stage inference in this model, we first assume estimates

θ̂θθ(s) =

 θ̂1(s)
...

θ̂5(s)


by maximum likelihood at each observed site s.

Next, we assume

θ̂θθ(s) = θθθ(s)+ e(s)
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where e(s) =
(

e1(s) . . . e5(s)
)T and we assume

e1(s1)
...

e1(sn)
e2(s1)

...
e2(sn)

...
e5(s1)

...
e5(sn)



∼ N5n[0,W ]

with W some 5n×5n matrix that we still have to define.
If we define vectors Θ =

(
θ1(s1) . . . θ1(sn) . . . θ5(s1) . . . θ5(sn)

)T

and Θ̂ similarly, the model becomes

Θ ∼ N5n
[
β ⊗1n,ΣA,ρ +W

]
where⊗ denotes Kronecker product, 1n is an n-dimensional vector of ones, and ΣA,ρ
is the assumed covariance matrix of Θ, which depends on matrix A and exponential
range parameters ρ =

(
ρ1 . . . ρ5

)
through (5.27) and (5.28).

The model will therefore be fully defined as soon as we specify W , and there are
three possibilities for that:

(a) The simplest model is to assume independence of the GEV estimation errors be-
tween sites. This does not lead to a diagonal matrix W , because the 5×5 covari-
ance matrix at each site will be derived from the observed information matrix at
each site, which is not diagonal, but this is the multidimensional equivalent of
assuming diagonal W in Section 5.1.1.4.

(b) A second possibility is to estimate W through a block bootstrap approach, ap-
plied simultaneously across all sites, which will allow estimation of covariances
between sites as well as within sites. This would be the direct generalization of
the method proposed in Section 5.1.1.4, but the disadvantage of this approach is
that the dimension of the covariance matrix is much larger, and it is by now well
known that the standard sample covariance matrix does not perform well in high
dimensions, some form of regularization being needed [44, 19].

(c) The proposed form of regularization is covariance tapering [79]. Exploiting the
fact that the term-by-term product of two positive definite covariance matrices
is also positive definite, the proposed estimator takes the sample covariance ma-
trix from the block bootstrap and multiplies it term-by-term by a tapering matrix,
which in this example is taken to be the Wendland 2.2 covariance function (5.14),
with range d0 replaced by a user-defined maximum radius λ . This produces a
covariance matrix that is sparse in the sense that any sites more than a distance
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λ apart have covariance zero, but it is also faithful to the sample covariances at
small distances. The authors [199] took λ = 75 km. based on the intuition that
this is about the maximum possible radius of a single rainstorm, though they also
performed sensitivity analyses to show that the resulting estimates are not highly
dependent on the choice of λ .

With W specified in this way, the remaining parameters β , A, ρ were estimated
by the method of maximum likelihood applied to Θ̂, and kriging was used to con-
struct estimates θ̃θθ(s) and their mean squared prediction errors (MSPEs) at all sites
s ∈D (not restricted to sampling sites).

5.1.3 Results

In this section, we briefly summarize how the results of this analysis when they were
applied tpo the Gulf of Mexico data. For further information, the reader is referred to
the original paper [199].

The source of precipitation data was the Global Historical Climatological Net-
work (GHCN) mentioned at the start of this chapter. From the stations in this net-
work, 326 weather stations with nearly complete records were identified from six
U.S. states bordering the Gulf of Mexico (Florida, Georgia, Alabama, Mississippi,
Louisiana and the eastern half of Texas). The authors somewhat arbitrarily chose
1949 as the start year of the analysis, and 2016 as the finish year (i.e. the year before
Hurricane Harvey, so as not to be biased by including data from Harvey itself). For
each station and each year, the highest 7-day total precipitation from June to Novem-
ber was calculated; this portion of the year is generally defined to be the Atlantic hur-
ricane season. Sea surface temperature (SST) data were taken from the “HadISST”4

dataset and used to calculate March–June average SST over an area roughly corre-
sponding to the Gulf of Mexico (21o–29o N, 83o–97o W). The March-June period
was chosen because it corresponds to the Spring period when high SSTs are consid-
ered to be driving the strength of the following hurricane season. After rescaling to a
mean of 0 and a standard deviation of 1, the authors defined rescaled SST equal to –1
to be a “low SST” season rescaled SST equal to +1 to be a “high SST” season; on this
scale, the 2017 SST corresponded to a rescaled value of about 1.7. They then used
the method previously described to estimate, on a pixel by pixel basis, the probability
of observing, in a single season, a seven-day precipitation in excess of 70 cm., which
was the value actually observed in Houston during 2017. The results are plotted in
Figure 5.1.

The results show, first, that it is indeed the eastern Texas region (including Hous-
ton itself) where the probability of such high precipitation is greatest, but that the
probability itself varies substantially with SST, about 0.002 (i.e. a one-in-500-year
event) at low SST, rising to about 0.004 at high SST and about 0.007 (about a one-in-
140-year event) at 2017 SST. These estimated return probabilities are substantially
higher than those found by other researchers, with the exception of [192] who used
very similar methods but without the spatial component of this analysis. For the fu-

4https://www.metoffice.gov.uk/hadobs/hadisst/
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Figure 5.1 Estimated probability that the annual maximum seven-day rainfall event exceeds
70 cm. under three scenarios: low SST (top); high SST (middle); 2017 SST (bottom). From
[199].
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ture, if current trends continue, SSTs in the Gulf of Mexico in a few decades will
reach levels well about the 2017 value, so it is to be antipicated that the probability
of such extreme events in the future will substantially rise.

5.1.4 Literature Review

There are many precedents to the ideas outlined in this section; previous references
include [26, 224, 259, 68, 35, 80, 202, 203, 36, 207, 240, 110, 62, 241, 200].

To the best of our knowledge, the earliest published model of this form was
the paper by Casson and Coles [26]. These authors developed a model for extreme
windspeeds as a function of location s in a space S , where for each location,
the model was of point process form (Chapter 1), with extreme value parameters
µ(s), ψ(s), ξ (s). For the parameters µ(s), s ∈S , they assumed a model equation
of the form

hµ(µ(s)) = fµ(s;β µ)+Zµ)s;αµ),

with models of similar structure for the other extreme value parameters
ψ(s), ξ (s), s ∈S . In this equation, hµ is a known link function (usually assumed
either the identity or a log link function), fµ(s;β µ) is a regression model depending
on finite-dimensional parameters β µ , and Zµ)s;αµ) is a continuous-parameter spa-
tial process (e.g. a Gaussian process with one of the covariance functions discussed
in Section 5.1.1 depending on a finite-dimensional parameter αµ . At the j’th site s j,
the observed data E j are assumed to consist of a set of high-threshold exceedances
whose distribution are defined by a point process extreme value model with param-
eters µ(s j,ψ(s j,ξ (s j. [26] assumed the three spatial processes Zµ ,Zψ , Zξ were
independent though they remarked that this assumption is easily generalized (al-
though they did not state an explicit alternative model, the formula (5.27) adopted
in this chapter would be one example of how to do that). To complete the specifi-
cation of the model, it is necessary to define prior distributions for the parameters
αµ ,β µ ,αψ ,β ψ ,αξ ,β ξ ; they assumed uniform priors, though again, they noted that
more general prior distributions could have been assumed with no change in the basic
methodology.

In the rest of their paper, they described a detailed Metropolis-Hastings algorithm
for constructing posterior distributions in this model, demonstrated its efficiency on
simulated data, and then discussed a real-world example based on hurricane data at
55 locations on the U.S. east coast. They noted, in particular, that this approach may
be used to calculate predictive distributions for extreme winds at locations both on
and off the measurement grid, which is something that cannot be done with more
conventional method.

At the end of their paper, they noted,
“The biggest limitation of our model is the assumption of conditional indepen-

dence of data given the latent extreme value parameters. Most real-life examples
would require a more detailed consideration of spatial dependence, and the develop-
ment of a spatial regression model which can handle data that are spatially dependent
after allowance for parameter variation remains an important research objective.”
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The assumption they are referring to is equivalent to the assumption that the
covariance matrix W in (5.23) is diagonal, and as we have noted, this assumption
would indeed be restrictive. This point remains a limitation of Bayesian methods for
this kind of problem, though as we shall see in the remainder of this chapter, by now
a number of alternative models are available for spatial extremes, and these could be
used to extend the Casson-Coles model.

We shall not attempt a complete review of all the other methods using latent
processes, but summarize a few of them here:

(a) Cooley et al. [35] constructed a variant of the Casson-Coles model based on the
generalized Pareto distributon (GPD) rather than the point process representation
used by Casson and Coles. In this formulation, σ(s) and ξ (s) represent the scale
and shape parameters of the GPD at location s, and there is also a third process,
that they wrote ζ (s), corresponding to the marginal probability of exceeding the
threshold at site s. Here, the threshold itself was treated as fixed (same at every
site), after considering several alternative values. An alternative approach might
be to define the threshold at each site as a fixed percentile (e.g. 95th or 99th) of the
observations at each site, but that would create complications when it came to in-
terpolating the data between stations. They assumed that log σ(s), ξ (s) and logit
ζ (s) are independent Gaussian processes, and since the assumptions of the model
imply that process of threshold exceedances is conditionally independent of the
process of exceedance times, they essentially reduced the Hastings-Metropolis
sampler to two separate simulations, one to estimate σ(s) and ξ (s) based on the
exceedances, the other to estimate ζ (s) based on the exceedance times. For the
means and covariance functions of the three spatial processes they considered lin-
ear regression functions and exponential covariance functions, similar to Casson-
Coles, though the priors for the spatial parameters were taken uniform over finite
intervals following the warning of [15] (see also [11]) against using improper pri-
ors for these models. Like Casson-Coles, they noted that the model was implictly
assuming the exceedances at different space-time locations were indepndent given
the latent processes; in this case, they argued that the temporal and spatial sepa-
ration between observations was sufficient to make that a reasonable assumption.
For the specific application considered in [35], the model for ξ (s) was reduced to
two values (one for mountains, the other for plains) after noting that a fully spatial
ξ (s) did not improve on this.
The application discussed in [35] was to extreme precipitations in the Front Range
region of Colorado. This refers to the foothills of the Rocky Mountains, where
both elevation and weather conditions change very rapidly over short distances.
They argued that a traditional stationary spatial statistics model based on latitude
and longitude may not adequately reflect the topograpy of the region, and there-
fore defined the spatial model instead in terms of climate coordinates. Specifically,
spatial locations were defined by their elevation and their mean summer precipi-
tation (MSP), defined by averaging over the months April through October. When
the resulting spatial fields are translated back into latitude-longitude coordinates
for mapping purposes, they produce very sharply defined images on which the
influence of the mountains is clearly seen.
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(b) The first paper by Sang and Gelfand [202] presented itself as a spatio-temporal
extension of the model of [35]. The paper was motivated by the study of precip-
itation extremes in the Cape Floristic Region of South Africa (CFR). The region
was divided into grid cells of size 10 km.2 and annual maxima of daily precip-
itation calculated for each of the 50 years 1950–1999. Specifically, Yi,t denotes
the annual maximum for year t at the ith location. It is assumed that the distribu-
tion of Yi,t is of GEV form (5.1) with parameters µi,t ,ψi,t ,ξi,t ; however, noting the
difficulties in estimating ξ that had been mentioned by earlier authors including
[35], they treated ξi,t as constant (not varying witih i or t). Exploratory analysis
suggested that both µi,t and ψi,t were highly correlated in space, and in addition,
that µi,t showed a linear time trend, so they sought a statistical model that would
encompass those features.
The authors therefore sought a hierarchical model for the parameters µi,t ,ψi,t ,ξi,t
where they initially set ψi,t = ψi and ξi,t = ξ . For µi,t , they wrote

µi,t | β ,Wi,t ,τ
2 ∼ N (XT

i β +Wi,t ,τ
2),

where Xi is a set of fixed spatial covariates, β and τ2 are respectively a vector of
spatial regression parameters and a nugget variance, and for Wi,t , they proposed
four models:

Model A : Wi,t = ψi +δt , δt = φδt−1 +wt , wt ∼N (0,W 2
0 ), (IID)

Model B : Wi,t = ψi +ρ(t− t0),

Model C : Wi,t = ψi +(ρ +ρi)(t− t0),

Model D : Wi,t = ψiδt , δt = φδt−1 +wt , wt ∼N (0,W 2
0 ) (IID).

In Model A or D, {δt} is a time series of AR(1) structure, independent of all the
spatial processes. To complete the specification of the model, it is necessary to
specify joint distributions of the processes ψi, logψi and, in the case of Model
C, ρi. These are all continuous random variables with range (−∞,∞), so a joint
Gaussian process is appropriate. Sang and Gelfand used the same concept of co-
regionalization as was used in Section 5.1.2 (recall (5.27)) to reduce the model
to two or three independent Gaussian processes, and for those, noting the lattice
structure of the data, they assumed independent CAR models of the same stucture
as (5.18).
The analysis of this model consists of sequentially updating all the unknown pa-
rameters by a Markov chain Monte Carlo (MCMC) procedure; the full algorithm
is described in detail in an appendix to the paper [202]. In the paper, they fitted
the model to the data from 1950-1998, holding out the last year of data for vali-
dation purposes. They fitted all of models A–D, noting that Model A fitted best
when assessed by DIC (a common model selection criterion for Bayesian hierar-
chical models), but Model C performed better on the validation exercise and was
preferred overall. They then computed the return values over the region for any
year t using the formula (5.2), and noted how these had changed over time. In
particular, they noted that extreme rainfalls had become more frequent in some
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parts of the region but less frequent in others. An advantage of the fully Bayesian
formulation of the problem is that since the MCMC procedure leads to full pos-
terior distributions for all the unknown, it is possible to place uncertainty bounds
on each of the estimates of return values and their trends.

(c) The second paper by Sang and Gelfand [203] was the first example using the la-
tent process approach that did not assume that the extreme values at each site were
conditionally independent given the latent process. In the introduction to their pa-
per they noted that the hierarchical model of [202] (and, by extension, all earlier
examples of the latent process approach) would produce discontinous predicted
surfaces for the main variables of interest, i.e. the annual maxima at each location.
That would not necessarily be of concern if the main focus was on return values
rather than prediction itself, but we have also noted the broader issue that estima-
tion of the spatial dependence model may be biased if the conditional covariance
matrix (W in (5.23) is misspecified, so from that point of view as well, it is desir-
able to have a model than incorporates such dependence. Similarly to [202], they
assume Y (s) is the annual maximum at site s, and that its conditional distribu-
tion given spatial processes µ(s),ψ(s),ξ (s) is of GEV structure (5.1), but unlike
[202], they do not assume that these distributions are conditional independent for
each s. Instead, they define

Z(s) =

(
1+ξ (s)

Y (s)−µ(s)
ψ(s)

)1/ξ (s)

which has unit Fréchet conditional margins, i.e. G(z)=Pr{Z(s)≤ z | µ(s),ψ(s),ξ (s)}=
e−1/z, z ≥ 0. In addition to defining the processes µ(s),ψ(s),ξ (s), the specifica-
tion of the model needs to consider the joint distributions of Z(s), as s ranges over
the domain S .
To define such a process, they follow the copula approach, which means that the
process Z(s) is defined through marginal transformations of some random process
with prescribed marginal distributions, which these authors took to be standard
normal. Specifically, they defined

Z(s) = G−1
Φ(Z∗(s))

where G−1 is the inverse of the Fréchet distribution function G, Φ is the standard
normal distribution function, and Z∗(s), s ∈ S is some random process on S
with standard normal marginal distributions. It is not actually necessary, for such a
representation to be valid, that the joint distributions of Z∗ be multivariate normal,
but of course that is the most natural assumption to adopt, and followed by [203].
From the point of view of multivariate extreme value theory, with its extensive
considerations of distributions that are either asymptotically dependent or asymp-
totically independent, this assumption falls in the asymptotically independent
class; in particular, the process is not max-stable, a point of view that will be
fully developed in Section 5.2. The authors [203] noted this distinction but com-
mented that it was beyond the scope of the current work to develop this point
further; indeed, noting subsequent developments that will be further explored in
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Sections 5.2 and 5.4, a max-stable model is plausibly a viable alternative to the
Sang–Gelfand model. For the present discussion, we continue to follow the paper
[203].
Continuing this line of thinking, Sang and Gelfand assumed the process Z(s), s ∈
S to be a Gaussian process with standard normal margins and a correlation func-
tion of the form ρ(s,s′;θθθ) depending on unknown parameters θθθ . Although any
non-negative definite correlation function ρ could be assumed, they advocated
using a stationary Matérn process as defined by (5.13).
The rest of the model specification requires again specifying a joint spatial distri-
bution for the process µ(s),ψ(s),ξ (s). Although they noted and briefly discussed
that a fully spatio-temporal representation is possible, they also noted that esti-
mating such a model through a standard MCMC approach would be highly com-
putationally intensive. Instead, they discussed fitting the model to one year’s data
at a time, for example through the representation

Y (s) = X(s)T
β +W (s)+

ψ

ξ

(
Z(s)ξ −1

)
where X(s) is a vector of spatial covariates at s, β are fixed regression coeffi-
cients, ψ and ξ are treated as constants (independent of s), and W (s) is a second
(independent of Z∗) Gaussian spatial process with Matérn or some other standard
spatial covariance function. Once again, the proposed method of estimation uses
an MCMC algorithm.

(d) Another development about the same time was [83] that built on the work of [122].
Again motivated by the problem of rainfall extremes, Ghosh and Mallick [83]
considered a model of the form

Yi,t ∼ GEV(XT
i β t ,ψ,ξ )

where Yi,t is the annual maximum in year t and location i, Xi is a vector of spatial
covariates for location i, and β t ,ψ,ξ are parameters. In this case, spatial depen-
dence is induced, not through a spatial process for the GEV parameters, but di-
rectly in the conditional distributions: specifically, it is assumed that the joint den-
sity of {Yi,t , i = 1, ...,n} given β ,ψ,ξ , for n locations in year t, is of “t-copula”
form:

tΣ,k
(
T−1

k (FGEV(Y1,t ;XT
1 β t ,ψ,ξ )), . . . ,T−1

k (FGEV(Yn,t ;XT
n β t ,ψ,ξ ))

)
·

n

∏
i=1

f GEV(Yi,t ;XT
i β t ,ψ,ξ )

tk
(
T−1

k (FGEV(Yi,t ;XT
i β t ,ψ,ξ ))

) .
Here FGEV and f GEV are respectively the distribution function and density of the
three-parameter GEV distribution; Tk and tk are respectively the distribution func-
tion and density of a univariate t distribution with k degrees of freedom; and tΣ,k
is the density function of a multivariate t distribution with k degrees of freedom
generated by the covariance matrix Σ, which in this case may be the covariance
matrix of an arbitrary spatial process over the n sampling locations. In words, this
is a copula model based on an n-dimensional t distribution rather than multivari-
ate normal; in other respects, it is similar to the model of [203]; it differs from
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[203] by not having an additional spatial process for the dependence of the GEV
parameters; however, their model did allow for the p-dimensional time-dependent
processes β t =

(
β1,t . . .βp,t

)T to be dependent through models of the form

β j,t = α jβ j,t−1 + εt , εt ∼N (0,σ2
j ), j = 1, ..., p

which extends the time-dependent model of [122]. As in the other Bayesian mod-
els reviewed in this section, the model is completed by specifying priors for the
additional unknown parameters, and fitted by MCMC. In addition to an annual
maximum analysis fitted directly by the GEV distribution, they also proposed a
threshold exceedance version where the generalized Pareto distribution (GPD) is
fitted to the exceedances over a threshold at each site; in this case, the conditional
distributions of the annual maxima are estimated by fitting the GPD but the copula
model is applied to the annual maxima.
Comparing the three Bayesian papers of [202, 203, 83], it seems obvious that
different components of these models could be mixed in different ways. For ex-
ample, the multivariate tk copula of [83] could also have been applied to the model
of [203], and in the sense that the limit of tk as k→ ∞ is multivariate normal, is a
strict generalization. Similarly, the main example of [203] used spatial model fit-
ting without a temporal component, but either of the approaches of [202] or [83]
could have been used to add a temporal component, or one could exploit recent de-
velopments in the general theory of spatial or spatio-temporal statistics [41, 131]
to construct still more general spatio-temporal models for the GEV model parame-
ters. The principal limitation of such constructions is computational: the required
MCMC computations to fit a full spatio-temporal model to the latent process,
combined with a copula model for the annual maxima or peaks over a threshold,
are considerable; but it is to be hoped that with more advanced computer hardware
and with new algorithms for Bayesian statistics, such as those exploting Langevin
or Hamiltonian dynamics [84], this will not be viewed as such an obstacle in the
future.

(e) Tye and Cooley (2015) [241] was another paper about the Colorado Front Range,
this one motivated by the 2013 extreme flood in the region around Boulder.
They used data from 71 weather stations in the Front Range, as well as gridded
monthly precipitation values from the Performance Reporting Information Sys-
tem (PRISM). From this dataset, they calculated summer (April–October) mean
rainfalls over a 4 km. grid, which together with elevation, allowed them again
to transform to “climate space”, similar to [35]. In this case, they used annual
maximum daily precipitation at each station and fitted generalized extreme value
(GEV) values µ(si),ψ(si),ξ (si) at each station si, i = 1, ...,n, subsequently fitting
the process Z=

(
µ logψ ξ

)T as a three-dimensional Gaussian process with
dependence structure proposed by [244, 75], the same as in [199]. The fitting pro-
cess in this case was not Bayesian, but essentially a two-stage hierarchical model
as previously described in Section 5.1.1.4. Like the earlier paper by [26] and [35],
they assumed conditional independence among sites given the latent processes,
though they did check this assumption empirically. For the specific question of
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estimating the probability of a 2013-like extreme, they showed substantial dif-
ferences between the spatial approach and the most obvious alternative, which
would be to fit the GEV at each site without any spatial smoothing; such “borrow-
ing strength” of data from one site to another is an important selling point of this
whole approach, especially when trying to model the probability of an extreme
event for which direct data are necessarily limited. They also demonstrated the
difference between model fits when the 2013 data were included or not, though
they argued that the resulting changes in estimating extreme event probabilities
are not particularly large when taking into account the uncertainties of those ex-
treme event probabilities as characterized by their standard errors. This point is
important because it illustrates the robustness of extreme probability estimations
when outlying data are added.

(f) Russell et al. (2016) [200] proposed an extension to the spatial latent process tech-
nique that combined this method with bivariate extreme value theory, based on the
kinds of models introduced in Chapter 4. The bivariate extreme value technique
that they use was developed in an earlier paper by Russell and co-authors [201],
but since its purpose is incidental to the present chapter, we content ourselves with
a brief summary here.
A common formulation of bivariate extreme value theory assumes bivariate ran-
dom vectors Z = (Z1, Z2) ∈ [0,∞)2 which is transformed to R = ||Z||, W =
Z/||Z|| where || · || denotes any standard norm (subsequently taken to be the L1
norm, ||Z||= Z1 +Z2). The distribution is said to be (bivariate) regularly varying
if

nPr
{

R
b(n)

> r, W ∈ B
}

v→ r−α H(B) as n→ ∞,

where α > 0, b(n)> 0, H is a finite measure on the Borel sets of the unit sphere
S = {z : ||z|| = 1} and convergence is vague over the set [0,∞)2 \ {0}. For the
specific models assumed in [200], they assumed the marginal distributions of Z1
and Z2 have been previously transformed to unit Fréchet, so there is no loss of
generality by writing b(n) =, and α = 1.
As is well known, the measure H represents the strength of extremal dependence
between the two components, the extreme cases being complete dependence,
when H is concentrated on

( 1
2 ,

1
2

)
, and independence, when H puts measure 1

2
on each of the extreme points (0,1) and (1,0). [201, 200] reduced that to a metric

γ =
∫
[0,1]
|2w−1|H(dw)

where γ ∈ [0,1], the extreme cases γ = 1 and γ = 0 corresponding to complete
dependence and independence. Given sample values (Zi,1,Zi,2), i = 1, ...,n trans-
formed to Ri = ||Zi||, Wi = Zi,1/||Zi||, they proposed the estimator

γ̂ =
∑

n
i=1 δ (Ri)|2Wi−1|

∑
n
i=1 δ (Ri)

(5.29)
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where δ (R) is some non-decreasing function of R (designed to give greatest
weight to the most extreme values). In particular, a common threshold-based
choice would be δ (r) = 1 if r > r0, 0 otherwise, which would correspond to in-
cluding only those values for which R exceeds the threshold r0. The paper [200]
discusses this choice, but ultimately favors a continuously increasing δ (based on
the standard normal distribution function) to simplify the optimization algorithm
which is described next.
The concept of the paper was to study how different meteorological covariates
affect ground-level ozone. If the meteorological covariates at site si and time t are
written Xit =

(
xit1 . . . xit p

)
and the ozone level at time t is Y, the objective,

as in a standard regression problem, was to find, for each i, linear combinations
∑

p
j=1 xit jβi j that were highly correlated with Yit , t = 1, ...,T . However, the ad-

verse health effects of ozone are largest when the ozone level is high; therefore,
instead of a conventional correlation coefficient, they sought parameter vector
β i =

(
βi1 . . . βip

)
to maximize γ . We omit the full details of their algorithm

but the basic concept was:

(i) Transform the marginal distribution of Yit , t = 1, ...,T to unit Fréchet for each
station si (by fitting a gamma distribution to values below a threshold, GPD
above, and applying a probability integral transformation);

(ii) For any candidate set of regression coefficients β i, transform the distribution
of XT

it β i, t = 1, ...,T to unit Fr’echet;
(iii) Estimate γ̂(β i) by (5.29) applied to the transformed values of XT

it β i and Yit as
t = 1, . . . ,T for each i.

The optimal parameters β i are found for each si, along with a p× p estimated
covariance matrix estimated by a pairwise bootstrap procedure.
Up to this point, this description of the method of [200] has focused on the defini-
tion of the parameters β iβ (si) and their estimation (including a covarance matrix
for the errors) at each site si. The rest of the paper proposed a method for spatial
interpolation similar to the method described earlier in this section. The authors
used six meteorological covariates and therefore needed to define a 6-dimensional
Gaussian process β (s). The structure of the model is similar to that in (5.26) and
(5.27) where they again assumed exponential spatial covariance functions for the
components of the process δ (s). The analysis was also similar to that of Sec-
tion 5.1.2 but with a simpler specification for the error covariance matrix W : in
the analysis of [200], the errors e j(s) are assumed to be independent at different
sites. The analysis was applied to meteorological and ozone data from the United
States Environmental Protection Agence (EPA) covering EPA regions 3 and 4,
which covers a regions of the south-east US stretching roughly from Mississippi
to Pennsylvania.
The outcome of this process was a field of interpolated values for the regression
parameters β (s) that, in turn, allowed for some qualitative statements about which
meteorological variables most influence extreme ozone. For example, the authors
concluded that temperature was more important in the northern part of the region,
while relative humidity and a variable they called turbulent kinetic energy are
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more important in the southern part. These kinds of conclusions are important for
designing an emissions control strategy to minimize the frequency of high-ozone
events.

5.1.5 Summary

The latent process model has been applied in many problems for spatial distribution
of extremes since 1999. It can be fitted using either Bayesian or non-Bayesian (maxi-
mum likelihood or REML) approaches. Compared with the naı̈ve approach of fitting
independent GEV distributions to each site, the model generates smooth surfaces for
the GEV parameters or for quantities derived from them (in particular, return values).
Thus, the model provides interpolated values between the observation sites, and be-
cause of the “borrowing strength” property of hierarchical Bayesian methods, it may
be expected also to lead to improved estimates of the GEV parameters at the obser-
vation sites. The principal limitation of these methods as they have been currently
applied is that, in many cases, they have assumed conditional independence of the
site-specific extremes given the latent processes for the GEV parameters. However,
there are ways around that restriction as has been shown both in Bayesian [203, 83]
and non-Bayesian [199] analyses. It is to be expected that, in future work, the con-
nection with max-stable processes, to which we turn next, will be developed more
strongly; however, as these examples show, the fundamental ideas are not restricted
to any specific class of spatial processes and could in principle be developed for other
classes as well.

5.2 Max-Stable Processes

The discussion of Section 5.1 has shown the potential to contruct very rich hierarchi-
cal models combining spatio-temporal processes for the GEV or GPD model parame-
ters with different approaches for modeling the conditional distributions of extremes
given those model parameters, but there is a limitation: the only approaches up to
this point that have allowed for conditional dependence have used copula models,
either multivariate normal in [203] or multivariate t in [83]; however, we know from
Chapter 4 that much more general models for multivariate extremes are available.
In particular, there is a family of processes known as max-stable processes, directly
generalizing the asymptotically dependent classes of multivariate extreme value dis-
tributions, and these have attracted much attention in recent years. In this section,
we review the basic theory of max-stable processes; more recent developments are
in Section 5.4. Our development follows to some extent a recent review by Davison,
Huser and Thibaud [47] and also draws on earier review papers such as [48, 38].

5.2.1 Background on Poisson processes

The basic theory of max-stable processes relies rather heavily on some basic results
about Poisson processes, so we begin by reviewing those. Although there are many
books covering the basic theory, we shall draw particularly on [191].
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Following the notation and terminology of [191], we consider point processes on
a set E where E is a nice space, which technically means a locally compact topo-
logical space with a countable base; in practice, E is usually Rd or Rd

+ or perhaps
Rd
+ \ {0} when we wish to exclude specifically the point at 0; here d is a finite di-

mension.
Let N be a point process on the space E whose BOrel sets are denoted E . Tech-

nically, N is a mapping from a probability space to Mp(E), the space of Radon point
measures on E. A point measure is a measure N on E that puts all its mass on a
discrete set of points in E; colloquially, for any set A ∈ E , N(A) counts the number
of points in A. Radon means that N(K) < ∞ for any compact set K; in addition, all
the point measures we shall consider will be simple in the sense that they do not have
multiple points; thus N({x}) has to be either 0 or 1 for any subset {x} consisting of
a single point x.

Definition 1. N is a Poisson process with mean measure µ , also known as a
Poisson random measure with mean measure µ (PRM(µ)) if the following properties
hold:

(a) For A ∈ E and any k = 0,1,2, . . .,

Pr{N(A) = k}=

{
e−µ(A)(µ(A))k

k! if µ(A)< ∞,

0 if µ(A) = ∞.

(b) If A1, . . . ,Ak are disjoint subsets of E in E , then N(A1), . . . ,N(Ak) are independent
random variables.

A particularly important class of Poisson processes is the homogeneous Poisson
process with rate 1 on [0,∞): this corresponds to the case where E = [0,∞) and µ

is Lebesgue measure; in particular µ((a,b)) = b− a for any 0 ≤ a ≤ b < ∞. There
is a standard representation of this process in terms of exponential random variables
(Proposition 5.1 of [191]):

Proposition 1. Let {E j, j ≥ 1} be independent random variables with a stan-
dard exponential distribution (Pr{E j ≤ x = 1− e−x for any x ∈ (0,∞)). Let N be the
point process whose nth point is at ∑

n
j=1 E j, n = 1,2, . . . . Then N is a homogeneous

Poisson process with rate 1 on [0,∞),
In the context of max-stable processes, a particularly important role is played by

the process whose points are inverses (reciprocals) of this process, in other words,
the process whose nth largest point is at 1

∑
n
j=1 E j

in the notation of Proposition 1. With

slight abuse of notation, we shall call this the inverse Poisson process:
Definition 2. N is an inverse Poisson process (IPP) on (0,∞) if it is a Poisson

process with measure ν defined by

ν((x,∞)) =
1
x

for any x > 0.

The next topic to discuss is mappings of Poisson processes. Suppose there is a
function T : E→ E′ where E′ is some other nice space. Define the inverse map by
the property

T−1(A′) =
{

e ∈ E : T (e) ∈ A′
}

for any A′ ∈ E′.
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The following result is Proposition 5.2 of [191]:
Proposition 2. Suppose T : E→ E′ is a measurable mapping of E to E′ such that

if K′ is a compact set in E′ then T−1K′ is a compact set in E. If N is a PRM(µ) on
E, N′ = N ◦T−1 is a PRM(µ ′) on E′, where µ ′ = µ ◦T−1.

In words: if each point x in the process N is transformed into a point T (x) in
the process N′, then N′ is also a Poisson process and µ ′(A′) = µ(T−1(A′)) for each
A′ ⊂ E′.

As a concrete example, we prove the following:
Proposition 3. Suppose N is an IPP on (0,∞) with points {Ri, i = 1,2, . . .}. Also

let {Wi, i = 1,2, . . .} be a sequence of IID random variables on (0,∞) with mean 1,
also assumed to be independent of the process {Ri, i = 1,2, . . .}. Then the process

N′ = {RiWi, i = 1,2, . . .}

is also an IPP.
Proof. First expand the definition of N to be a two-dimensional Poisson process

on (0,∞)2 with points {(Ri,Wi)} and with

µ((x,∞)×A) =
F(A)

x

for any measurable set A⊂ (0,∞), where F is the probability measure of the random
variables Wi. Since the map

T ((Ri,Wi)) = RiWi

transforms (0,∞)2 into (0,∞) and is measurable, Proposition 2 applies that for any
z > 0,

µ
′((z,∞) = µ({(x,w) : xw > z})

=
∫
(0,∞)

F(dw) ·
∫
(0,∞)

I
(

x >
z
w

)
ν(dx)

=
∫
(0,∞)

F(dw) · w
z

=
1
z

since
∫
(0,∞) wF(dw) = 1 by the assumption that each Wi has mean 1. Thus, the mea-

sure µ ′ is the same as ν , the measure of an IPP, so N′ is also an IPP.
Our final (elementary) result about IPPs is the following:
Proposition 4. Suppose N is an IPP with points {Ri, i = 1,2, . . .}. Also let M =

max
i=1,2,...

Ri. Then M has a unit Fréchet distribution.

Proof. The statement M < z is equivalent to N((z,∞)) = 0; this has probability
e−µ((z,∞))= e−1/z which is the distribution function of a unit Fréchet random variable.

Although the full point process result is of interest, the most important conclusion
to come out of this is: if {Ri} is an IPP and {Wi} is an independent sequence of IID
random variables with mean 1, then maxi RiWi has a unit Fréchet distribution. Next,
we shall see how this result may be generalized in a stochastic process context.
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5.2.2 Constructing a max-stable process

In this section, we describe an extension to the model of Section 5.2.1 that defines a
stochastic process Z(x), where x ranges over some space X , whose marginal distri-
butions are unit Fréchet, in other words, Pr{Z(x)≤ z}= e−1/z for any z > 0, at each
point x ∈X . It also has the property of being max-stable in a sense we shall make
precise. If X is a finite set with k elements, the result is a k-dimensional multivariate
extreme value distribution in the same sense as in Chapter 4. However the main cases
in which we are interested are for X a subset of Rd for some d ≥ 1, which would
allow for stochastic processes in time or space or both.

For this construction, we assume {Wi(x), x ∈X } to be IID stochastic processes
on the space X , with Wi ≥ 0 for all x, and common mean 1: E{Wi(x)} = 1 for all
x ∈X . Technically, we assume that sample paths Wi(x), x ∈X lie in some “nice
space” E, where E could be, for example, the space of continuous functions over
X . However, specific properties, such as continuity, are not a requirement of the
construction. We may assume the existence of a probability space (E,E ,P), where
E is a space of Borel sets on E and P is a probability measure. In this space, consider
a measure µ on (0,∞]×E with the property that

µ((a,b)×A) =

(
1
a
− 1

b

)
·P(A) (5.30)

whenever 0 < a < b≤ ∞ and A ∈ E . Such a measure is Radon and therefore, by the
definitions of Section 5.2.1, defines a Poisson process over (0,∞]×E. We write the
points of this Poisson process as (Ri,Wi) where Ri ∈ (0,∞), Wi ∈E. Alternatively, we
may write explicitly Wi(x), x∈X to remind ourselves that Wi is a stochastic process
on the space X .

Now define

Z(x) = max
i

RiWi(x), x ∈X .

Proposition 4 guarantees that Z(x) is finite for all x, and indeed, has a unit Fréchet
marginal distribution. One consequence of this is that if Z1(·), . . . ,Zn(·) are IID
copies of the process Z(·), then for any fixed x, 1

n max(Z1(x), . . . ,Zn(x)) has the same
distribution as Z(x). In other words, Z(x) is max-stable for each fixed x ∈X . The
purpose of this section is to show that something much stronger: this property of max-
stability, in a sense that we shall define, holds for the whole process {Z(x), x ∈X }
and not just for a fixed value of x.

Consider the event

{Z(x)≤ z(x) for all x ∈D} , (5.31)

where D ⊂X and z(x), x ∈X is a function from X to (0,∞]. We allow infinite
values for the following reason: if we define z(x) = +∞ on X \D , and replace D
by X in (5.31), the truth or falsity of (5.31) is unchanged. It simplifies the notation
to allow this case and always take D = X in (5.31). The conditions on z(·) are
very mild — essentially, we want to ensure that infx∈X

w(x)
z(x) ∈ E whenever w ∈ E —
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but for most purposes it would suffice simply to require that z(x) be a measurable
function of x ∈X .

With these definitions, the event (5.31) occurs if and only if RiWi(X) ≤
z(x) for all x, and in terms of the point process {Ri,Wi(·)}, that is equivalent to saying
that the set

B =

{
(r,w) : r > inf

x

z(x)
w(x)

}
∈ (0,∞)×E

is empty. That probability is e−µ(B), where µ is the measure defined by (5.30). Noting
that the first component of µ has density 1

r2 on 0 < r ≤ ∞, we calculate

µ(B) =
∫
(0,∞]

dr
r2

∫
E

dP · I
{

r > inf
x

z(x)
w(x)

}
=

∫
E

dP sup
x

w(x)
z(x)

= E
{

sup
x∈X

W (x)
z(x)

}
where W (x) is any of the IID processes {Wi(x)} and the symbol E denotes expecta-
tion.

We therefore derive the formula

Pr{Z(x)≤ z(x) for all x ∈D} = exp{−V (z(x), x ∈X )} (5.32)

where

V (z(x), x ∈X ) = E
{

sup
x∈X

W (x)
z(x)

}
(5.33)

together with the convention, noted previously, that we define z(x) = +∞ when x /∈
D .

Formulas (5.32) and (5.33) define our basic computational formula for max-
stable processes. We note several consequences:

(a) If D is a one-point set, say D = {x}, then

V (z(x), x ∈X ) = E
{

W (x)
z(x)

}
=

1
z(x)

confirming that all the marginal distributions of Z(x) are unit Fréchet.
(b) If a > 0, then

V (az(x), x ∈X ) = E
{

sup
x∈X

W (x)
az(x)

}
=

1
a

V (z(x), x ∈X )

so the function V is homogeneous of order –1. This mimics the corresponding
property of the finite-dimensional V used in Chapter 4.
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(c) Suppose Z1(·), . . . ,Zn(·) are IID copies of the process Z(·). Then

Pr
{

Z j(x)≤ nz(x) for all x ∈D , j = 1, . . . ,n
}

= Prn {Z(x)≤ nz(x) for all x ∈D}
= exp{−nV (nz(x), x ∈X )}
= exp{−V (z(x), x ∈X )} (5.34)

which confirms the fundamental max-stability property, that 1
n max{Z1(x), . . . ,Zn(x)}, x∈

D is identical in distribution as Z(x), x ∈ D (in particular, all finite-dimensional
distributions are the same).

(d) Suppose the function z(x) is a constant z on x ∈D ⊂X . Then

Pr{Z(x)≤ z for all x ∈D} = exp
(
−θD

z

)
(5.35)

where θD = E
{

max
x∈D

W (x)
}

> 0. This is known as the extremal coefficient,

which is analogous to the extremal index in the theory of extremes in stochas-

tic sequences. For a finite set, say |D | = k, we have 1 ≤ θD ≤ k.

[
Proof: If

D = {x1, . . . ,xk}, then E{W (x1)} ≤ E
{

max
1≤ j≤k

W (x j)

}
≤ ∑

k
j=1 EW (x j).

]

5.3 Probability Calculations for Max-Stable Processes

5.3.1 Brown-Resnick Process

This name is given to a process where W (x)= exp{ε(x)−σ2(x)/2}where {ε(x), x∈
X } is a zero-mean Gaussian process with variance function Var{ε(x)} = σ2(x).
The most obvious example is when ε is a stationary isotropic process, for which
σ2(x) is a constant and Cor(ε(x),ε(x′)) = ρ(||x− x′||. However, for a reason to be
explained below, this is very often not a good choice and it is better to make ε an
intrinsically stationary process for which Var{ε(x)−ε(x′)}= γ(||x−x′||) with some
scalar function γ(·) for which γ(t)→ ∞ as t → ∞. A common choice (valid in any
dimension) is γ(t) = c0 + c1tλ where c0 ≥ 0, c1 ≥ 0, 0≤ λ < 2; the special case of
dimension 1 where c0 = 0, λ = 1 is known as Brownian motion (a.k.a. the Wiener
process).

We define a max-stable process Z(x) = maxi≥1 RiWi(x) where {Ri, i ≥ 1} is an
inverse Poisson process and {Wi(·), i ≥ 1} are IID copies of the process W (·); then
at two locations x = x1,x2 and associated random variables W ( j) = W (x j), j = 1,2
we have

Pr{Z(x1)≤ z1,Z(x2)≤ z2} = exp{−V (z1,z2)} (5.36)

for any z1 > 0, z2 > 0, where V (z1,z2) is defined by (5.37) below. In this section, we
establish the explicit formula (5.39).
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Figure 5.2 Left hand plot: superimposed processes RiWi(x), where {Ri} is an IPP and Wi(x) =
exp{εi(x)− 1/2} for independent Gaussian process {ε(x)}. Different indices i are indicated
by different line types. Right hand plot: same, with the pointwise maximum process Z(x) =
maxi RiWi(x) superimposed in red. Adapted from a figure in [47].

Given random variables W ( j) = exp(ε j −σ2
j /2) where the joint distribution of

(ε1,ε2) is bivariate normal with means 0, variances σ2
1 and σ2

2 , and correlation ρ ,
then for any z1 > 0, z2 > 0, we want to calculate

V (z1,z2) = E

{
max

(
W (1)

z1
,
W (2)

z2

)}
. (5.37)

Define a2 = Var(ε1− ε2) = σ2
1 +σ2

2 −2ρσ1σ2, and write

ε1 = bε3 +dε4,

ε2 = −cε3 +dε4,

where b = σ1(σ1−ρσ2)
a , c = σ2(σ2−ρσ1)

a , d =
σ1σ2
√

1−ρ2

a , and ε3, ε4 are independent
N(0,1) variables. Also note that ε1− ε2 = aε3.
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We also note that

W (1)

z1
>

W (2)

z2
⇐⇒ ε3 >

1
a

log
z1

z2
+

σ2
1 −σ2

2
2

.

Therefore,

V (z1,z2) =
1
z1

E
{

exp
(

bε3 +dε4−
σ2

1
2

)
I
(

ε3 >
1
a

log
z1

z2
+

σ2
1 −σ2

2
2a

)}
+

1
z2

E
{

exp
(
−cε3 +dε4−

σ2
2

2

)
I
(

ε3 <
1
a

log
z1

z2
+

σ2
1 −σ2

2
2a

)}
.(5.38)

We also note that if ε ∼ N[0,1], for any real t and c,

E
{

etε I(ε < c)
}

= et2/2
Φ(c− t)

with Φ(·) the cumulative distribution function of N[0,1].
Each of the terms in (5.38) factorizes into separate terms that depend on the

(independent) random variables ε3 and ε4, and we trivially have that

E

{
exp

(
σ

√
1+ρ

2
ε4

)}
= ed2/2.

For the ε3 terms in (5.38), we have

E
{

ebε3 I
(

ε3 >
1
a

log
z1

z2
+

σ2
1 −σ2

2
2a

)}
= eb2/2

Φ

(
−1

a
log

z1

z2
− σ2

1 −σ2
2

2a
+b
)

= eb2/2
Φ

(
−1

a
log

z1

z2
+

a
2

)
,

E
{

e−cε3 I
(

ε3 <
1
a

log
z1

z2
+

σ2
1 −σ2

2
2a

)}
= ec2/2

Φ

(
1
a

log
z1

z2
+

σ2
1 −σ2

2
2a

+ c
)

= ec2/2
Φ

(
1
a

log
z1

z2
+

a
2

)
,

since we can check that b− σ2
1−σ2

2
2a = c+ σ2

1−σ2
2

2a = a
2 . Hence from (5.38),

V (z1,z2) =
1
z1

exp
{
−σ2

1
2

+
d2

2
+

b2

2

}
Φ

(
−1

a
log

z1

z2
+

a
2

)
+

1
z2

exp
{
−σ2

2
2

+
d2

2
+

c2

2

}
Φ

(
1
a

log
z1

z2
+

a
2

)
=

1
z1

Φ

(
1
a

log
z2

z1
+

a
2

)
+

1
z2

Φ

(
1
a

log
z1

z2
+

a
2

)
(5.39)

since b2 +d2 = σ2
1 and c2 +d2 = σ2

2 .
Note that as a→ ∞, V (z1,z2)→ 1

z1
+ 1

z2
, and as a→ 0, V (z1,z2)→ 1

min(z1,z2)
,

corresponding to the cases of independence and perfect dependence (W (1) = W (2)

with probability one) respectively. However, this shows the disadvantage of taking ε

to be a stationary (rather than intrinsically stationary) process: in order for Z(x1) and
Z(x2) to be asymptotically independent as ||x1− x2|| → ∞, we need γ(||x1− x2||)→
∞, and this is not true in the strictly stationary case.

The formula (5.39) was given by [47]. Curiously, exactly the same formula arises
in the so-called Smith process [221], though the method of calculation is completely
different. However, unknown to the author at the time, the formula was in fact dis-
covered in yet another context by Hüsler and Reiss [123].
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5.3.2 Extremal t Process

This is given by [47] but attributed to the papers [162, 169, 236]. It corresponds to
the process W (x) = mα ε(x)α

+ where α > 0 and {ε(x)} is a stationary Gaussian pro-
cess with mean 0, common variance 1 and covariance function Cov{ε(x1),ε(x2)}=
cα(x1,x2). Here mα = π1/221−α/2

Γ((α+1)/2) is the normalizing constant required to make
E{W (x)}= 1. According to [47], the bivariate joint distributions are derived from

V (z1,z2) =
1
z1

Tα+1

(
− c

b
+

1
b

(
z2

z1

)1/α
)
+

1
z2

Tα+1

(
− c

b
+

1
b

(
z1

z2

)1/α
)

(5.40)

where c = cα(x1,x2), b2 = 1−c2

α+1 and Tα+1(·) is the cumulative distribution function
of the tα+1 distribution. Under certain circumstances the limit α → ∞ is the Brown-
Resnick process, so in that sense, the extremal t process is a generalization of the
Brown-Resnick process. For finite α , the Tα+1 expressions in (5.40) are bounded
away from 1, so the independent case V (z1,z2) =

1
z1
+ 1

z2
cannot arise even as ||x1−

x2|| → ∞.

5.3.3 Smith Process

This name has been widely given to a process first explored in an unpublished paper
[221]. It corresponds to W (x) = f (x;Y )

fy(Y )
where Y is a random variable on some space

Y with density fy(·), and f (x;y) is a family of densities with
∫
Y f (x;y)dy = 1 for

each x. When f (x;y) is a multivariate Gaussian density centered at y the bivariate
joint distributions are again of functional form (5.39). Typical sample paths from this
process consist of segments from the family of densities f (x;y) and these are gener-
ally regarded as too smooth to represent real environmental extremes. Nevertheless
the process has some appealing mathematical properties.

5.3.4 Schlather Process

This was the second specific example of a max-stable process to be proposed [206].
As noted by [47], it corresponds to the α = 1 special case of the extremal t process.
It has the disadvantage that the dependence between two spatial locations remains
positive even as distance tends to infinity, and though some modifications of the
process have been propsoed to deal with that, the Brown-Resinick and extremal t
processes are probably better suited to practical applications.

5.3.5 The Reich-Shaby Model

This was proposed by Reich and Shaby [185].
Define X(s) =U(s)θ(s) for all s ∈ S for some spatial region S, where

1. Pr{U(s)≤ u}= exp
(
−u−1/α

)
independently for each s (u ∈ (0,∞), α ∈ (0,1)),
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2. θ(s) =
(
∑` A`w`(s)1/α

)α
where ∑` w`(s) = 1 for all s ∈ S and E

(
e−tA`

)
=

exp(−tα) independently for each `.
Let Θ denote the process defined by all θ(s), s ∈ S. If we are given a finite set of

s ∈ S and values x(s), we calculate

Pr{X(s)≤ x(s) for all s} = E [Pr{U(s)θ(s)≤ x(s) for all s | Θ}]

= E
[
∏

s
exp
{
−x(s)−1/α

θ(s)1/α

}]
= E

[
exp

{
−∑

s
x(s)−1/α

∑
`

A`w`(s)1/α

}]

= E

[
exp

{
−∑

`

A`

(
∑
s

x(s)−1/α w`(s)1/α

)}]

= exp

{
−∑

`

(
∑
s

x(s)−1/α w`(s)1/α

)α
}
. (5.41)

Proof that (5.41) has the correct marginal distributions:

Suppose x(s0) = x ∈ (0,∞) for some s0, x(s) = +∞ for all s 6= s0. Then

Pr{X(s0)≤ x} = Pr{X(s)≤ x(s) for all s}

= exp

{
−∑

`

(
∑
s

x(s)−1/α w`(s)1/α

)α
}

= exp

{
−∑

`

(
x−1/α w`(s0)

1/α

)α

}

= exp

(
−x−1

∑
`

w`(s0)

)
= exp

(
−x−1)

because we fixed ∑` w`(s) = 1 for all s ∈ S.

Proof that (5.41) is max-stable:

The key property is to show that

Pr{X(s)≤ nx(s) for all s}n = Pr{X(s)≤ x(s) for all s} for all n≥ 1.
(5.42)
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According to (5.41),

Pr{X(s)≤ nx(s) for all s}n = exp

{
−n∑

`

(
∑
s
(nx(s))−1/α w`(s)1/α

)α
}

= exp

{
−∑

`

(
∑
s
(x(s))−1/α w`(s)1/α

)α
}

= Pr{X(s)≤ x(s) for all s}

and this establishes (5.42).

5.4 Inference for Max-Stable Processes

We now consider the problem of first defining and then estimating the parameters of
a max-stable process.

A typical scenario is that we observe Yi(s j), the annual maximum of a process
in year i at site s j, where i = 1, . . . ,n and there is a finite set of sampling locations
D = {s1, . . . ,sd}.

As a first step, we assume that the GEV parameters at site s are written
µ(s;φφφ),ψ(s;φφφ),ξ (s;φφφ) where we use φφφ as a generic notation for the full set of pa-
rameters of the GEV distributions. For example, it’s possible that µ,ψ,ξ are evalu-
ated independently at each site, or are common to all sites, or are smooth functions
of site characteristics such as latitude, longitude, elevation, mean surface pressure,
etc. They may also be dependent on time-varying covariates (e.g. in the example of
Section 5.1, the time-varying covariate was sea-surface temperature) and in that case
we may write the GEV parameters for year i as µi(s;φφφ),ψi(s;φφφ),ξi(s;φφφ), but we
won’t consider that explicitly as a separate case.

Anpther feature is that the form of dependence on site characteristics could be
parametric (e.g. linear, quadratic) or nonparameteric (e.g. represented by thin-plate
splines) but we treat those as equivalent here, e.g. spline representations become
parametric models once the number and shape of the spline basis functions and their
centers are specified.

The net result is a transformation

Zi(s j;φφφ) =

{
1+ξi(s j;φφφ)

Yi(s j)−µi(s j;φφφ)

ψi(s j;φφφ)

}1/ξi(si;φφφ)

+

(5.43)

which transforms all the marginal distributions to unit Fréchet (F(z) = e−1/z, z≥ 0).
Then we assume that the joint distributions of {Zi(s;φφφ), s ∈ D} follow some

max-stable process indexed by parameters θθθ (e.g. one possibility is a Brown-
Resnick process generated by the power-law variogram model, in which case θθθ =(

c0 c1 λ
)
).

There are then two strategies:

(i) Estimate φφφ first, in effect assuming independence from site to site, transform each
Yi(s j) to Zi(s j;φφφ), then proceed as if {Zi(s j,φφφ)}were exactly a max-stable process
with unit Fréchet margins;
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(ii) Estimate φφφ and θθθ together.

Theoretical results (e.g. [211, 210]) nearly always show that (ii) is better, but in
practice, researchers often opt for (i) because it is so much easier computationally.
Nevertheless, recent Bayesian approaches [261, 262] have explored the possibilities
of estimating both sets of parameters simultaneously.

For now, we focus on the problem of estimating θθθ , assuming that φφφ is known.
There are various plausible method, but we focus here on the method of compos-
ite likelihood before going on to consider some of the issues associated with a full
likelihood calculation.

5.4.1 Method of composite likelihood

The difficulty here is that, while the formulas (5.32)–(5.33) define the d-dimensional
joint distributions of Zi(s j) for any set of s1, . . . ,sd , there is no direct method for
calculating the joint density and hence the likelihood function, which is needed for
exact maximum likelihood or Bayesian estimation. Nevertheless, for many of the
standard models for max-stable processes, including the Brown-Resnick, Extremal t,
Smith and Schlather models, it is possible to write a closed-form expression for the
joint density of any d = 2 sampling points. This fact prompted Padoan et al. [171] to
propose the composite likelihood method, which we onw describe.

Suppose we observed Zi(s), i = 1, . . . ,n, for d sampling points s j, j = 1, . . . ,d.
We assume these are dependent observations for each i, but the processes for different
values of i ∈ {1, . . . ,n} are independent. We consider a composite log likelihood of
the form

CL(θθθ) =
n

∑
i=1

d

∑
j=2

j

∑
j′=1

w j j′`i, j, j′(θθθ) (5.44)

where `i, j, j′(θθθ) = log f (zi j,zi j′ ;θθθ), f being the bivariate joint density of zi j,zi j′ when
the parameter vector is θθθ . Note that we can restrict the inner sum to indices j′ < j
because the joint density is symmetric in j and j′ and the case j = j′ reduces to the
univeriate density which is known to be unit Fréchet and therefore independent of θθθ .
The function w j j′ is some fixed set of weights, which could be identically 1 or could
be some deistance-weighted function, for example w j j′ = 1 if the distance between
sampling points s j and s′j is less than some threshold distance D, and 0 otherwise.

The composite maximum likelihood estimator θ̂θθC is the value of θθθ that maxi-
mizes CL(θθθ).

To examine the properties of this estomator, consider the expressions

K̂ = ∑
i

∑
j′< j

∂`i, j, j′(θθθ)

∂θθθ

∂`i, j, j′(θθθ)

∂θθθ
T ,

Ĵ = −∑
i

∑
j′< j

∂ 2`i, j, j′(θθθ)

∂θθθ∂θθθ
T ,

both evaluated at θ̂θθC.
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We use the “sandwich estimator” Ĵ−1K̂Ĵ−1 as an estimator of the covariance
matrix of θ̂θθC. Padoan et al. showed that this is asymptotically a consistent estimator
of the covariance matrix of θθθC and proved a central limit theorem of the form

(Ĵ−1K̂Ĵ−1)−1/2
(

θ̂θθC−θθθ

)
d→Np(0, Ip)

where p is the dimension of θθθ and Ip is the p× p identity matrix.
They also defined a “composite likelihood information criterion”

CLIC = 2
{

tr(Ĵ−1K̂)−CL(θ̂θθC)
}

to discriminate among models, the best model among some finite family of models
being judged to be the one that minimizes the CLIC. Precise statements and proofs
of these results are in [171].

5.4.2 Progress towards exact maximum likelihood

5.5 Other Approaches to Spatial Extremes

See papers by [185, 186]
Others refs are [22, 21, 221, 162, 236, 169, 206, 123, 48, 49, 98, 77, 13, 204, 208,

51, 27, 38]
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lications de l’Institut de Statistique de l’Université de Paris, 9:171–173, 1960.
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