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I. AN EXAMPLE OF HIERARCHICAL
MODELS APPLIED TO INSURANCE

EXTREMES

From the book chapter Bayesian Risk Analysis by R.L. Smith
and D.J. Goodman (2000)

http://www.stat.unc.edu/postscript/rs/pred/inex1.pdf

See also:

R.L. Smith (2003), Statistics of Extremes, With Applications
in Environment, Insurance and Finance. In Extreme Values in
Finance, Telecommunications and the Environment, edited by
B. Finkenstadt and H. Rootzen, Chapman and Hall/CRC Press,
London, pp. 1-78.

http://www.stat.unc.edu/postscript/rs/semstatrls.pdf



The data consist of all insurance claims experienced by a large

international oil company over a threshold 0.5 during a 15-year

period — a total of 393 claims. Seven types:

Type Description Number Mean
1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 3.9
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

Total of all 393 claims: 2989.6

10 largest claims: 776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2,

45.2, 40.4, 30.7.
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Some plots of the insurance data.



Some problems:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution over

time?

3. What is the influence of the different types of claim?

4. How should one characterize the risk to the company? More

precisely, what probability distribution can one put on the amount

of money that the company will have to pay out in settlement

of large insurance claims over a future time period of, say, three

years?



Introduction to Univariate Extreme Value
Theory



EXTREME VALUE DISTRIBUTIONS

X1, X2, ..., i.i.d., F (x) = Pr{Xi ≤ x}, Mn = max(X1, ..., Xn),

Pr{Mn ≤ x} = F (x)n.

For non-trivial results must renormalize: find an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.



The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ



EXCEEDANCES OVER THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

Equivalence to three types theorem established by Pickands (1975).



The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.



POISSON-GPD MODEL FOR
EXCEEDANCES

1. The number, N , of exceedances of the level u in any one

year has a Poisson distribution with mean λ,

2. Conditionally on N ≥ 1, the excess values Y1, ..., YN are IID

from the GPD.



Relation to GEV for annual maxima:

Suppose x > u. The probability that the annual maximum of the

Poisson-GPD process is less than x is

Pr{ max
1≤i≤N

Yi ≤ x} = Pr{N = 0}+
∞∑
n=1

Pr{N = n, Y1 ≤ x, ... Yn ≤ x}

= e−λ +
∞∑
n=1

λne−λ

n!

{
1−

(
1 + ξ

x− u
σ

)−1/ξ
}n

= exp

{
−λ

(
1 + ξ

x− u
σ

)−1/ξ
}
.

This is GEV with σ = ψ+ξ(u−µ), λ =
(
1 + ξu−µψ

)−1/ξ
. Thus the

GEV and GPD models are entirely consistent with one another

above the GPD threshold, and moreover, shows exactly how the

Poisson–GPD parameters σ and λ vary with u.



ALTERNATIVE PROBABILITY MODELS

1. The r largest order statistics model

If Yn,1 ≥ Yn,2 ≥ ... ≥ Yn,r are r largest order statistics of IID

sample of size n, and an and bn are EVT normalizing constants,

then (
Yn,1 − bn

an
, ...,

Yn,r − bn
an

)
converges in distribution to a limiting random vector (X1, ..., Xr),

whose density is

h(x1, ..., xr) = ψ−r exp

−
(

1 + ξ
xr − µ
ψ

)−1/ξ

−
(

1 +
1

ξ

) r∑
j=1

log

(
1 + ξ

xj − µ
ψ

) .



2. Point process approach (Smith 1989)

Two-dimensional plot of exceedance times and exceedance levels

forms a nonhomogeneous Poisson process with

Λ(A) = (t2 − t1)Ψ(y;µ, ψ, ξ)

Ψ(y;µ, ψ, ξ) =

(
1 + ξ

y − µ
ψ

)−1/ξ

(1 + ξ(y − µ)/ψ > 0).



 

Illustration of point process model.



An extension of this approach allows for nonstationary processes

in which the parameters µ, ψ and ξ are all allowed to be time-

dependent, denoted µt, ψt and ξt.

This is the basis of the extreme value regression approaches

introduced later

Comment. The point process approach is almost equivalent to

the following: assume the GEV (not GPD) distribution is valid for

exceedances over the threshold, and that all observations under

the threshold are censored. Compared with the GPD approach,

the parameterization directly in terms of µ, ψ, ξ is often easier

to interpret, especially when trends are involved.



ESTIMATION

GEV log likelihood:

`Y (µ, ψ, ξ) = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

Yi − µ
ψ

)

−
∑
i

(
1 + ξ

Yi − µ
ψ

)−1/ξ

provided 1 + ξ(Yi − µ)/ψ > 0 for each i.

Poisson-GPD model:

`N,Y (λ, σ, ξ) = N logλ− λT −N logσ −
(

1 +
1

ξ

) N∑
i=1

log
(

1 + ξ
Yi
σ

)
provided 1 + ξYi/σ > 0 for all i.

Usual asymptotics valid if ξ > −1
2 (Smith 1985)



Bayesian approaches

An alternative approach to extreme value inference is Bayesian,

using vague priors for the GEV parameters and MCMC samples

for the computations. Bayesian methods are particularly useful

for predictive inference, e.g. if Z is some as yet unobserved ran-

dom variable whose distribution depends on µ, ψ and ξ, estimate

Pr{Z > z} by ∫
Pr{Z > z;µ, ψ, ξ}π(µ, ψ, ξ|Y )dµdψdξ

where π(...|Y ) denotes the posterior density given past data Y



 

Plots of women’s 3000 meter records, and profile log-likelihood

for ultimate best value based on pre-1993 data.



Example. The left figure shows the five best running times by

different athletes in the women’s 3000 metre track event for

each year from 1972 to 1992. Also shown on the plot is Wang

Junxia’s world record from 1993. Many questions were raised

about possible illegal drug use.

We approach this by asking how implausible Wang’s performance

was, given all data up to 1992.

Robinson and Tawn (1995) used the r largest order statistics

method (with r = 5, translated to smallest order statistics) to

estimate an extreme value distribution, and hence computed a

profile likelihood for xult, the lower endpoint of the distribution,

based on data up to 1992 (right plot of previous figure)



Alternative Bayesian calculation:

(Smith 1997)

Compute the (Bayesian) predictive probability that the 1993 per-

formance is equal or better to Wang’s, given the data up to 1992,

and conditional on the event that there is a new world record.

The answer is approximately 0.0004.



Insurance Extremes Dataset

We return to the oil company data set discussed earlier. Prior
to any of the analysis, some examination was made of clustering
phenomena, but this only reduced the original 425 claims to 393
“independent” claims (Smith & Goodman 2000)

GPD fits to various thresholds:

u Nu Mean σ ξ
Excess

0.5 393 7.11 1.02 1.01
2.5 132 17.89 3.47 0.91
5 73 28.9 6.26 0.89

10 42 44.05 10.51 0.84
15 31 53.60 5.68 1.44
20 17 91.21 19.92 1.10
25 13 113.7 74.46 0.93
50 6 37.97 150.8 0.29



Point process approach:

u Nu µ logψ ξ
0.5 393 26.5 3.30 1.00

(4.4) (0.24) (0.09)
2.5 132 26.3 3.22 0.91

(5.2) (0.31) (0.16)
5 73 26.8 3.25 0.89

(5.5) (0.31) (0.21)
10 42 27.2 3.22 0.84

(5.7) (0.32) (0.25)
15 31 22.3 2.79 1.44

(3.9) (0.46) (0.45)
20 17 22.7 3.13 1.10

(5.7) (0.56) (0.53)
25 13 20.5 3.39 0.93

(8.6) (0.66) (0.56)

Standard errors are in parentheses



Predictive Distributions of Future Losses

What is the probability distribution of future losses over a specific

time period, say 1 year?

Let Y be future total loss. Distribution function G(y;µ, ψ, ξ) —

in practice this must itself be simulated.



Traditional frequentist approach:

Ĝ(y) = G(y; µ̂, ψ̂, ξ̂)

where µ̂, ψ̂, ξ̂ are MLEs.

Bayesian:

G̃(y) =
∫
G(y;µ, ψ, ξ)dπ(µ, ψ, ξ | X)

where π(· | X) denotes posterior density given data X.
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Carlo runs are shown for each plot.



Hierarchical models for claim type and year effects

Further features of the data:

1. When separate GPDs are fitted to each of the 6 main types,

there are clear differences among the parameters.

2. The rate of high-threshold crossings does not appear uniform,

but peaks around years 10–12.



A Hierarchical Model:

Level I. Parameters mµ, mψ, mξ, s
2
µ, s

2
ψ, s

2
ξ are generated from

a prior distribution.

Level II. Conditional on the parameters in Level I, parameters

µ1, ..., µJ (where J is the number of types) are independently

drawn from N(mµ, s2
µ), the normal distribution with mean mµ,

variance s2
µ. Similarly, logψ1, ..., logψJ are drawn independently

from N(mψ, s
2
ψ), ξ1, ..., ξJ are drawn independently from N(mξ, s

2
ξ ).

Level III. Conditional on Level II, for each j ∈ {1, ..., J}, the point

process of exceedances of type j is generated from the Poisson

process with parameters µj, ψj, ξj.



This model may be further extended to include a year effect, as

follows. Suppose the extreme value parameters for type j in year

k are not µj, ψj, ξj but µj + δk, ψj, ξj. We fix δ1 = 0 to ensure

identifiability, and let {δk, k > 1} follow an AR(1) process:

δk = ρδk−1 + ηk, ηk ∼ N(0, s2
η)

with a vague prior on (ρ, s2
η).

We show boxplots for each of µj, logψj, ξj, j = 1, ...,6 and for

δk, k = 2,15.
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https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Example from Cooley et al. (2019)

• Climate model output (CESM1) — “initial condition ensem-

ble” with 30 members

• Use historical runs from 1920–2005 though they are also

extended to 2100 under RCP 4.5 and RCP 8.5

• Problem: Does extreme precipitation show a time trend

• Notation: M
(j)
b (s) annual max daily precipitation for year b

at location s in ensemble member j

• GEV model G(y) = exp
{
−
(
1 + ξ · y−ητ

)−1/ξ

+

}
, density g



First model

• M(j)
b (s) ∼ GEV (η(j)

b (s), τ(j)(s), ξ(j)(s)) where η(j)
b (s) = β

(j)
0 (s)+

β1(s)(j)(b− 1919)

• Fit separate model for each j and s

• Fig. 1 shows β(j)
1 (s) and ξ(j)(s) for each j for one grid cell s

(Fort Collins, CO) and each ensemble member j

• Overall: wide variability in both parameters



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Alternative Viewpoints

• Look just at ensemble member 17 (Fig. 2, top left) with

fitted trend lines), or

• Combine all ensemble members together (Fig. 2, top right),

or

• Look at just ensemble member 17 but with neighboring grid

cells (Fig. 2, bottom)

• Most climate model outputs do not contain multiple ensem-

bles, so second approach may not be practical for all appli-

cations.



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Borrowing strength across locations

• One ensemble member (j = 17)

• Grid cells s1, ..., s9

• Assume β0(s), τ(s) (different for s = s1, ..., s9) but β1 and ξ

same for all locations

• Maximize log likelihood `(β0, β1, τ, ξ)

=
∏9
i=1

∏2005
b=1920 g(Mb(si); ηb(si) = β0(si)+β1(b−1919), τ(si), ξ)

• In this model, the 95% confidence interval for β1 includes 0

(no significant trend)



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



A more general model

• We could extend this to a model for all locations s simulta-

neously

• β0(s), β1(s), τ(s), ξ(s) form a 4-dimensional Gaussian spatial

process

• A hierarchical model would allow the parameters of the full

spatial process to be estimated simultaneously with the indi-

vidual parameters β0(s), β1(s), τ(s), ξ(s)

• Applications include looking for trends in extremes, estimat-

ing extreme quantiles, etc.

• If we did this simultaneously for models that do or do not

include anthropogenic forcing factors, this could be a basis

for “attribution of extremes”



Introduction to Multivariate Extremes

• Simplest model: 2-dimensional (Y1, Y2) with marginal CDFs

F1, F2

• Tail dependence parameter χ (Coles et al, 1999) defined by

χ = limu→1 P (F1(Y1) > u | F2(Y2) > u)

• χ = 0 is asymptotically independent case, χ > 0 is asymp-

totically dependent.

• Earliest examples were always for χ > 0 but in recent years it

has become recognized that χ = 0 is both harder and more

important in practice



Multivariate EVDs and componentwise
block maxima

• Assume samples (Yi,1, Yi,2), i = 1, ..., n independent for each

i but dependent between the two components

• Componentwise maxima Mn = (maxni=1 Yi,1,maxni=1 Yi,2)

• Limit laws of form

Mn − bn

an
→ G (in distribution)

• G is said to be a bivariate extreme value distribution (BVEVD)

• Obvious generalization to more than two dimensions (MVEVD)



Characterization of MVEVDs

• Without loss of generality, we may transform the marginal
CDFs to anything we like. The theory is simplified if we
assume unit Fréchet margins, Fi(y) = e−1/y for 0 < y <∞

• In that case, bn = 0 and an = (n, n) (in dimension 2)

• G(y) = exp {−V (y)} where V is homogeneous of degree –1 :
V (sy) = s−1V (y) for all s > 0.

• Example with d = 2, G(y) = exp
{
−
(
y
β
1 + y

β
2

)−1/β
}

for y1 >

0, y2 > 0, 0 < β ≤ 1, known as the logistic model

• Simplest case of a large class of parametric BVEVD models
— suggests fitting by MLE etc. However, this whole ap-
proach is now recognized as too restrictive to cover the full
range of multivariate extreme behaviour that we want



Background 1: Probability Integral Transforms

• Suppose U ∼ Unif(0,1) and F is a CDF. Let X = F−1(U).
Then the CDF of X is F .

– Remark: This does not require F be continuous, so long
as you are careful about the definition of F−1 in this case.

• Suppose X is a random variable with distribution function F ,
where F is continuous. Then F (X) has a uniform distribution
on (0,1).

• Suppose U ∼ Unif(0,1) and Z = − 1
log(U). Then Z has a unit

Fréchet distribution (CDF e−1/z, 0 < z <∞).

• If Y has a GEV distribution with parameters (µ, ψ, ξ) then Z =(
1 + ξY−µψ

)1/ξ
has a unit Fréchet distribution. In particular,

the case µ = ψ = ξ = 1 is unit Fréchet.



Background 2: Max-Stability

• Suppose Z has unit Fréchet margins, so an = (n, n) and

bn = 0.

• Pn
(
Z
n ≤ y

)
→ e−V (y).

• For fixed k as n→∞, Pnk
(
Z
nk ≤ y

)
→ e−V (y).

• Also write as
{
Pn

(
Z
n ≤ ky

)}k
→ e−kV (ky).

• So V (ky) = k−1V (y) for any positive integer k, all y > 0

• Hence V (sy) = s−1V (y) for any positive rational s, all y > 0

• By rational approximation, this holds for irrational s as well.



Threshold Approaches

• Alternate viewpoint is just to plot all the datapoints (rather

than block maxima) — look for evidence of dependence in

upper tails

• Unit Fréchet transformation useful to visually what is going

on

• Simulated example from logistic model

• Generate Zi = (zi,1, zi,2), i = 1, ..., n, plot the values of Zi
n .

See Fig. 4.



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Regular Variation
• Assume IID vectors Zi = (Zi,1, Zi,2) for i = 1, ..., n. Generic name Z. Let
Mn,j = max(Z1,j, ..., Zn,j) for j = 1,2.

• RV condition: for “continuity sets” A,

nP

(
Z

an
∈ A

)
v→ ν(A)

where
v→ means vague convergence. In the unit Fréchet case, an = (n, n).

• Consider a set A of the form {(z1, z2) : z1 > y1 or z2 > y2} (see (a) on
next figure)

• Then

P

(
Mn,1

an,1
≤ y1,

Mn,2

an,2
≤ y1

)
= P n

(
Z

an
/∈ A

)
≈

(
1−

ν(A)

n

)n
→ e−ν(A).
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Derivation of BVEVDs from the regular variation formulation.

In (b), B is the set {w ∈ [0,1] : w1 < w < w2}.



Regular Variation Page 2

• If we consider the case when A is defined by (y1, y2), we write
instead ν(A) = V (y) which satisfies the scaling condition

ν(cA) = c−1/ξν(A) (Unit Fréchet : ξ = 1)

• Alternative: write in polar coordinates, R = ||Z||, W = Z
R.

• Could use any norm, but easiest is ||Z|| = |z1|+ |z2|.

• Consider set A′ = {(R,W), R > r,W ∈ B} for some r > 0
and angle set B (see (b) of figure). Then

nP

(
Z

an
∈ A′

)
= nP

(
R

an
> r, W ∈ B

)
→ r−1/ξH(B)

where H is some measure on the space of W.



Derivation of V (y)
• A is the set (z1 > y1 or z2 > y2)

• Set Z1 = Rw, Z2 = R(1 − w), the condition becomes R >
min

(
y1
w ,

y2
1−w

)
.

• So V (y) is the same as

ν(A) =
∫ ∞

0

∫ ∞
0

I(Z ∈ A)dν(Z)

=
∫ w2

w1

∫ ∞
r

I((Rw,R(1− w)) ∈ A)qR−2dRdH(w)

=
∫ w2

w1

max

(
w

y1
,
1− w
y2

)
dH(w).

• H(w) is an arbitrary measure over [0,1] subject to∫ 1

0
wdH(w) =

∫ 1

0
(1− w)dH(w) = 1.

• This is true because V (y,∞) = V (∞, y) = 1
y for 0 < y <∞.



Examples of Santa Ana winds

• A weather condition defined by a combination of high winds

and dry conditions — conducive to wildfires

• Example from 2003: Cedar Fire of 10/25/03. Another more

extreme example was the Witch Fire of 2007.

• Data from 2003 shows combination of high windspeeds and

low night time relative humidity.

• Define a wind index and a dryness index from these



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Formulating Extreme Values Model

• Initial plot of untransformed data suggests positive depen-
dence. Define two potential risk regions R1 and R2 respec-
tively based on Cedar Fire and on largest combined value
in the series (red boxes). Our objective is to estimate ex-
ceedance probabilities associated with these events

• Too extreme to estimate empirically, especially R2

• Dependence plot suggests χ ≈ 0.3 — “asymptotically depen-
dent” case

• Tranform to unit Fréchet margins — use GPD above 95th
percentile and empirical CDF for the rest

• Risk regions now R∗1 and R∗2. Illustrates extreme behavior
but also hard to visualize (5 points outside picture, including
Witch Fire)



Estimating Risk Region Probabilities

• Fit parametric model for H — suggests “mixture of betas”

model (see histograms)

• First method: plug in parameter estimates. p̂1 ≈ 3.5× 10−3,

p̂2 ≈ 1.7× 10−4.

• Second method: nonparametric, use scaling property. p̂1 ≈
6.8× 10−3, p̂2 ≈ 1.5× 10−4.

• Confidence intervals by bootstrapping

• Compare with Gaussian copula — probability estimates this

way are much higher

• No direct implication for climate change but could explore

that using climate models



https://rls.sites.oasis.unc.edu/postscript/rs/8-Cooley-Extremes.pdf



Conclusions

• Univariate and bivariate cases

• Although parametric models have been used (GEV, GPD,

parametric models for H) these are fitted only to the tails of

the distribution (“letting the tail speak for itself”)

• Parameter estimation is not straightforward but we have used

both MLE and Bayesian methods. Estimation of uncertainty

is critical.

• In climate examples, more complex analyses possible in prin-

ciple by combining observational and climate model output.

This has applications to “extreme event attribution” and pro-

jection of future extreme event probabilities.


