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Chapter 2

Limit Theory for Univariate Extremes

2.1 The Three Types Theorem

The earliest papers on extreme value theory as we now know it were due to Fréchet
[8] and Fisher and Tippett [7]. These papers explored limit distributions for sample
extremes, and in particular, Fisher and Tippett identified what we now know as the
“three types” of limiting distributions. Von Mises [19] recast the Fisher-Tippett re-
sults into what we now know as the Generalized Extreme Value distribution. The
first rigorous proof that the three types are the only possible limit distributions for
univariate extremes was given in the seminal paper of Gnedenko [9] who also char-
acterized the domains of attraction of the three limit laws. The domain of attraction
problem was completed by de Haan [11] in his seminal 1970 thesis. The following
discussion is based primarily on the paper of de Haan [12] that included a simplified
proof of the three types theorem and a simplified set of sufficient conditions for the
domains of attraction.

Suppose X1,X2, ... are a sequence of independent and identically distributed (IID)
random variables with a common cumulative distribution function (CDF) F ,

Pr{Xi ≤ x} = F(x), x ∈ R, i = 1,2, ...,

Let Mn = max{X1,X2, ...,Xn}. Then

Pr{Mn ≤ x} = Fn(x), x ∈ R.

We are interested in limit laws of the form

Pr
{

Mn −bn

an
≤ x

}
= Fn(anx+bn)

w→ G(x) (2.1)

where an > 0, bn ∈ R are normalizing constants, G is a nondegenerate CDF (mean-
ing there is at least one value of x for which 0<G(x)< 1 and w→ is weak convergence
(also called convergence in distribution) which means that (2.1) holds at all continu-
ity points of G. In this case, G is called an extreme value distribution and F is said
to be in the domain of maximum attraction of G. The latter phrase will be simpli-
fied to domain of attraction where there is no ambiguity about the operation being
conducted.

The key questions arising from these definitions are:
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4 LIMIT THEORY FOR UNIVARIATE EXTREMES

1. How can we characterize the extreme value distributions — are there simple nec-
essary and sufficient conditions to determine whether any given G is an extreme
value distribution?

2. For any given extreme value distribution G, how can we characterize the domain
of attraction — necessary and sufficient conditions on F so that (2.1) holds for
some sequences an > 0, bn ∈ R, n = 1,2, ....?

We should note that the same theory applies with only minor changes to sample
minima, because of the relationship

min{X1, ...,Xn} = −max{−X1, ...,−Xn}. (2.2)

Definition 2.1. Two CDFs G1 and G2 are said to be of the same type if there exist
a > 0, b ∈ R such that

G2(x) = G1(ax+b), x ∈ R.

We now state the main:
Theorem 2.1 (Extremal Types Theorem). If (2.1) holds, then G must be of the

same type as one of

Φα(x) =

{
0, if x ≤ 0,
exp(−x−α), if x > 0,

(2.3)

Ψα(x) =

{
exp(−(−x)α), if x < 0,
1, if x ≥ 0,

(2.4)

Λ(x) = exp
(
−e−x) , x ∈ R. (2.5)

In (2.3) and (2.4), α > 0 is an arbitrary positive parameter.
Before going into the proof of this result, we show why equations (2.3)–(2.5) are

equivalent to the Generalized Extreme Value (GEV) distribution

G(y) = exp

{
−
(

1+ξ
y−µ

ψ

)−1/ξ

+

}
(2.6)

where µ ∈ R, ψ > 0, ξ ∈ R. In (2.6), the symbol (·)+ is positive part, or x+ = x if
x ≥ 0, x+ = 0 if x < 0.

We divide the analysis of (2.6) into three cases.
Case 1: ξ > 0. In this case, 1+ ξ y−µ

ψ < 0 if and only if y < y∗ = µ − ψ
ξ and

for such y, G(y) = e−∞ = 0. If the random variable Y has CDF G and we define
Z = ξ

ψ (Y − y∗) then for z > 0,

Pr{Z ≤ z} = Pr
(

Y ≤ y∗+
ψz
ξ

)
= exp

[
−
{

1+
ξ
ψ

(
µ − ψ

ξ
+

ψz
ξ

−µ
)}−1/ξ

]
= exp

(
−z−1/ξ

)
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which is of the form (2.3) with α = 1/ξ .
Case 2: ξ < 0. In this case, 1+ ξ y−µ

ψ < 0 if and only if y > y∗ = µ − ψ
ξ where

G(y)= 1. After similar manipulations to Case 1, this reduces to (2.4) with α =−1/ξ .
Case 3: ξ = 0. In this case we interpret (2.6) as the limit as ξ → 0. Noting that

limξ→0

(
1+ z

ξ

)−1/ξ
= e−z, (2.6) reduces to exp

{
−exp

(
− y−µ

ψ

)}
which is the same

as (2.5) after a translation by µ and a scaling by ψ .
Now we turn to the proof of the Extremal Types Theorem. Our proof will very

closely follow de Haan [12].
First, a key lemma due to Khinchine:
Lemma 2.1. Suppose Fn, n = 1,2, ... is a sequence of CDFs. Then the statements

Fn(anx+bn)
w→ G(x), (2.7)

Fn(αnx+βn)
w→ G∗(x), (2.8)

for nondegenerate CDFs G, G∗ and sequences an > 0, bn ∈ R, αn > 0, βn ∈ R, are
true if and only if there exist some a > 0, b ∈ R such that

lim
n→∞

αn

an
= a and lim

n→∞

βn −bn

an
= b. (2.9)

In that case,

G∗(x) = G(ax+b). (2.10)

Proof. Let us begin by defining the inverse function for any CDF F :

F−1(y) = inf{x : F(x)> y} . (2.11)

Our first claim is that (2.7) and (2.8) hold if and only if

F−1
n (y)−bn

an

w→ G−1(y), (2.12)

F−1
n (y)−βn

αn

w→ G−1
∗ (y). (2.13)

The simplest proof of this uses the Lévy metric L(F,G) between two distribution
functions F and G, defined by

L(F,G) = inf{ε : F(x− ε)− ε ≤ G(x)≤ F(x+ ε)+ ε for all x}.

One property of L is that L(F,G) = L(F−1,G−1) [29]. If we define F∗
n (x) = Fn(anx+

bn) then F−1
n (y) = an(F∗

n )
−1(y)+bn and F∗

n
w→ G if and only if (F∗

n )
−1 w→ G−1 (be-

cause both statements are equivalent to L(F∗
n ,G) → 0). Hence (2.7) and (2.12) are

equivalent, and similarly (2.8) and (2.13).
Since we are assuming G is nondegenerate, G−1 must take at least two distinct
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values, say G−1(y1)> G−1(y0). Similarly there exist y∗1 and y∗0 such that G−1
∗ (y∗1)>

G−1
∗ (y∗0). Take some number z1 ≥ max(y1,y∗1) and z0 ≤ max(y0,y∗0) such that z0 and

z1 are continuity points of G−1 and G−1
∗ . Applying (2.12) for y and z0 we find

F−1
n (y)−F−1

n (z0)

an

w→ G−1(y)−G−1(z0) (2.14)

and with (2.12) also

bn −F−1
n (z0)

an

w→ −G−1(z0).

From (2.14) with y = z1 we get

F−1
n (z1)−F−1

n (z0)

an

w→ G−1(z1)−G−1(z0) > 0.

Similarly, starting with (2.13) we deduce that the last two equations are also true
with βn, αn replacing an, bn and G∗ replacing G. Hence (2.9) holds, and this implies
(2.10).

One consequence of Lemma 2.1 is that a relationship such as (2.1) only charac-
terizes G up to type — if (2.1) is true for one G, then by redefinition of an and bn we
can make (2.1) true for any other G of the same type. Stated another way, if G and
G∗ are two CDFs of the same type, their domains of attraction are identical.

Lemma 2.2. A nondegenerate CDF G has non-empty domain of attraction if and
only if, for every s > 0, there exist A(s)> 0 and B(s) ∈ R such that

Gs(A(s)x+B(s)) = G(x) for all x ∈ R. (2.15)

Proof. If (2.15) holds, then automatically (2.1) holds with F = G. Therefore, we
concentrate on proving that (2.1) implies (2.15).

For s > 0, write ⌊ns⌋ for the integer part of ns. Then

F⌊ns⌋ (a⌊ns⌋x+b⌊ns⌋
) w→ G(x)

and hence

Fn (a⌊ns⌋x+b⌊ns⌋
) w→ G1/s(x)

Lemma 2.1 implies that G and G1/s are of the same type, so (2.15) follows.

Definition 2.2. A nondegenerate CDF G is said to be max-stable if, for any n∈N,
there exist constants An > 0 and Bn ∈ R such that

Gn(Anx+Bn) = G(x).

To derive the Extremal Types Theorem, we need one additional result from analysis:
Lemma 2.3. Suppose u : R→ R+ is monotone and satisfies

u(t + s) = u(t)+u(s)

for all real s, t. Then either u(t) = 0 for all t or u(t) = eρt for some real ρ .
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Proof. Suppose u(t0) ̸= 0 for some t0 ̸= 0, for definiteness assume t0 > 0. For all
integers m and n we have u(mt0) = u(t0)m and u

( t0
n

)
= u(t0)1/n so u

(mt0
n

)
= u(t0)m/n.

But the set
{m

n t0 : m,n ∈ N
}

is dense in R+ and u is monotone, hence u is continuous
and u(tt0) = u(t0)t for all t > 0. This is of the form eρt with ρ = logu(t0). The proof
for t < 0 follows from u(−t) = u(t)/u(2t).

Remark. This is also called the Cauchy functional equation and is true under
weaker assumptions than monotonocity, for example, measurability suffices. See
Theorem 1.1.7 of [1].

Proof of Theorem 2.1. We have seen that (2.1) implies that G obeys (2.15) for
each s > 0 with some A(s)> 0 and B(s) ∈R. The challenge is therefore to show that
any G obeying (2.15) is of the same type as one of (2.3)–(2.5).

For 0 < G(x)< 1 we have

− log[− log{G(A(s)x+B(s))}]− logs = − log[− log{G(x)}].

Let U(·) be the inverse of − log[− log{G(·)}]. Then

U(x+ logs)−B(s)
A(s)

= U(x)

for s > 0, x ∈ R. Substracting the same relation fpor x = 0, we get

U(x+ logs)−U(logs)
A(s)

= U(x)−U(0).

Defining A1(y) = A(ey), Ũ(x) =U(x)−U(0), y = logs, we have

Ũ(x+ y)−Ũ(y) = Ũ(x)A1(y). (2.16)

Also writing (2.16) with x and y interchanged, and subtracting,

Ũ(x)(1−A1(y)) = Ũ(y)(1−A1(x)). (2.17)

Case 1. Suppose A1(x) = 1 for all x. THen from (2.16), Ũ(x+ y) = Ũ(x)+Ũ(y)
for all x and y. By Lemma 2.3 (applied to eŨ(x)), we have Ũ(x) = ρx for all x, for
some ρ > 0. This is equivalent to the statement that G is of type (2.5).

Case 2. Suppose there is an x with A1(x) ̸= 1. We claim that this implies A1(y) ̸= 1
for all y ̸= 0. Suppose, for contradiction, A1(y) = 0. Then Ũ(y) = 0 and hence, from
(2.16), Ũ(x) = Ũ(x+y) for all x. Since Ũ is monotone, that would imply that Ũ(x) is
constant for all x, in which case G is degenerate, contrary to assumption. So A1(x) ̸= 1
for all x ̸= 0. By (2.17), there exists some real c1 ̸= 0 such that Ũ(x) = c1(1−A1(x))
for all x. Substituting into (2.16) and rearranging terms, we deduce

A1(x+ y) = A1(x)A1(y)

for all x and y. By Lemma 2.3, A1(x) = eρx where ρ ̸= 0 because we excluded the
case A1(x)≡ 1. If ρ > 0 then G is of the same type as (2.3) with α = 1/ρ; if ρ < 0
then G is of the same type as (2.4) with α =−1/ρ . This concludes the proof.
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2.2 Domains of Attraction

2.2.1 Von MIses Conditions

Now that we have characterized the possible extreme value distributions, the next
step is to develop general conditions on a particular F such that (2.1) holds. More
specifically, we would like to show how to find constants an and bn for common
distributions (e.g. normal, lognormal, beta, gamma, Pareto, etc.) so that Mn−bn

an
con-

verges in distribution, as well as determining the limit itself. Particularly useful in
this regard are the von Mises conditions, due originally to von Mises [19], which
are a set of simple sufficient though not necessary conditions for the domain of at-
traction. The theory given here may be regarded as a modern reinterpretation of von
Mises.

We consider only absolutely continuous distributions. In practice nearly all con-
tinuous distributions are in the domain of attraction of some extreme value limit.

Suppose, then F is absolutely continuous, with density f (x) = dF(x)
dx existing and

positive on a range x∗ < x < x∗ (x∗ ≥−∞, x∗ ≤+∞).
Define

ϕ(x) =
1−F(x)

f (x)
, x∗ < x < x∗, (2.18)

and suppose that ϕ is continuously differentiable. We may write

1−F(x) = exp
{
−
∫ x

x∗

dt
ϕ(t)

}
, x∗ < x < x∗. (2.19)

Consider the ratio

1−F(u+ xϕ(u))
1−F(u)

= exp
{
−
∫ u+xϕ(u)

u

dt
ϕ(t)

}
= exp

{
−
∫ x

0

ϕ(u)
ϕ(u+ sϕ(u))

ds
}
. (2.20)

When x > 0 (which we are not necessarily assuming), equation (2.20) is the condi-
tional probability that X −u > xϕ(u) given X > u, when X is a random variable with
the distribution function F .

Now consider the ratio

ϕ(u+ sϕ(u))
ϕ(u)

= 1+
∫ s

0
ϕ ′(u+wϕ(u))dw.

By the Mean Value Theorem, this is 1+ sϕ ′(u+ θsϕ(u)) where θ = θ(s,u) is be-
tween 0 and 1. By considering∫ x

0

{
ϕ(u)

ϕ(u+ sϕ(u))
− 1

1+ sϕ ′(u+ tϕ(u))

}
ds

as a function of t between 0 and x, it is continuous (because ϕ ′ is), and takes on both
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positive and negative values (unless ϕ ′ is constant). Hence it is 0 for at least one t.
Thus there exists y between u and u+ xϕ(u) such that

1−F(u+ xϕ(u))
1−F(u)

= exp
{
− log(1+ xϕ ′(y))

ϕ ′(y)

}
. (2.21)

(We interpret the right side of (2.21) as e−x if ϕ ′(y) = 0). Now suppose

lim
x→x∗

ϕ ′(x) = ξ . (2.22)

Suppose we fix x and let u → x∗, u+ xϕ(u)→ x∗. Then

1−F(u+ xϕ(u))
1−F(u)

→

{
(1+ξ x)−1/ξ , if ξ ̸= 0,
e−x, if ξ = 0.

(2.23)

For x > 0, we may think of u as a threshold value and (2.23) gives the limiting
distribution of excesses over the threshold; this is called the Generalized Pareto fam-
ily following Pickands [21], who showed that ((2.23) holds in general if and only if
F is in the domain of attraction of an extreme value distribution with index ξ (see
(2.6). The range of x is 0 < x < ∞ if ξ ≥ 0 and 0 < x <−1/ξ if ξ < 0.

For the purposes of the present section, we define bn by F(bn) = 1−1/n and set
an = ϕ(bn). Then

lim
n→∞

n{1−F(anx+bn)}=

{
(1+ξ x)−1/ξ , if ξ ̸= 0,
e−x, if ξ = 0,

and so

lim
n→∞

Fn(anx+bn) =

{
exp{−(1+ξ x)−1/ξ}, if ξ ̸= 0,
exp(−e−x), if ξ = 0.

(2.24)

To summarize: if ϕ is defined by (2.18) and if (2.22) holds, then (2.24) holds with
bn = F−1(1−1/n) and an = ϕ(bn) = 1/{n f (bn)}.

This argument has skated over one point: the range of values of x for which (2.24)
holds. If x∗ =+∞ then (2.22) implies

lim
x→∞

ϕ(x)
x

= ξ . (2.25)

Hence, for any x > −1/ξ , we have that u → ∞ implies u+ xϕ(u) → ∞ and (2.24)
holds. If x∗ < ∞, then ϕ(x)→ 0 and (2.22) implies

lim
x→x∗

ϕ(x)
x∗− x

= −ξ . (2.26)

In this case (2.24) is valid on −∞ < x < 1/ξ .
It may also be noted that, if ξ > 0, then by (2.25) we have an ∼ ξ bn and it does
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not change the asymptotics if we define an = ξ bn instead of an = ϕ(bn). In this case
(2.24) becomes

lim
n→∞

Fn{bn(1+ξ x)} = exp{−(1+ξ x)−1/ξ}.

If we now replace bn by an, ξ by α = 1/ξ and 1+ξ x by x, we get Fn(anx)→ Φα(x)
as n → ∞. This shows that it is possible to recover the conventional limit results from
the theory given here, at least under the smoothness assumptions made about F .

Similarly, if ξ < 0, we may define an =−ξ (x∗−bn) when (2.24) becomes

lim
n→∞

Fn{x∗− (1+ξ x)(x∗−bn)}= exp{−(1+ξ x)−1/ξ}

whenever 1+ξ x > 0. Redefining an = x∗−bn, bn = x∗, y =−(1+ξ x), α =−1/ξ ,
we have

lim
n→∞

Fn(any+bn) = exp{−(−y)α} for y < 0.

2.2.2 Sample minima.

The theory for sample minima is a mirror image of the theory for sample maxima:
just replace F(x) by 1−F(−x) everywhere. It is convenient, however, to have the
main results for sample minima stated separately, so this will be done here.

Suppose F is a continuous distribution function with range (x∗,x∗), let f (x) =
dF(x)/dx and define

ϕ(x) =
F(x)
f (x)

. (2.27)

We now assume

lim
x→x∗

ϕ ′(x) = −ξ . (2.28)

Define bn by F(bn) = 1/n, an = ϕ(bn). Then

lim
n→∞

{1−F(anx+bn)}n =

{
exp{−(1−ξ x)−1/ξ}, if ξ ̸= 0,
exp(−ex), if ξ = 0.

The range of x is −∞ < x < 1/ξ for ξ > 0, 1/ξ < x < ∞ for ξ < 0. If ξ > 0, then
necessarily x∗ = −∞ and an alternative scheme is to set an = −F−1(1/n), bn = 0,
α = 1/ξ when

lim
n→∞

{1−F(anx+bn)}n = exp{−(−x)−α}, x < 0.

If ξ < 0, then x∗ > −∞ and with bn = x∗, an defined by F(x∗+an) = 1/n and α =
−1/ξ we have

lim
n→∞

{1−F(anx+bn)}n = exp(−xα), x > 0.
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Corresponding to (2.25) and (2.26) we have

lim
x→−∞

ϕ(x)
x

= −ξ , ξ > 0,

lim
x→x∗

ϕ(x)
x− x∗

= −ξ , ξ < 0. (2.29)

2.2.3 Examples

1. Pareto-type distributions. Suppose 1−F(x)∼ cx−α as x → ∞ (c > 0, α > 0) and
that this asymptotic relation remains valid under at least two differentiations, i.e.
f (x)∼ αcx−α−1, f ′(x)∼−α(α +1)cx−α−2. Then ϕ(x)∼ x/α , ϕ ′(x)→ 1/α so
(2.22) and (2.25) are satisfed with ξ = 1/α . Defining an either by F(an) = 1−1/n
or else an = (nc)1/α , we have Fn(anx) → Φα(x). Examples include the Pareto
distributions of the first and second kind [15], the Cauchy, t and F distributions.

2. Suppose F(x) ∼ cxα as x ↓ 0 (and f (x) ∼ αcxα−1, f ′(x) ∼ α(α − 1)cxα−2) and
consider the distribution of sample minima. Defining ϕ by (2.27), we have that
(2.28) and (2.29) are satisfied with ξ =−1/α . Defining an either by F(an) = 1/n
or else an = (nc)−1/α , we have {1−F(anx)}n → exp(xα), 0 < x < ∞. Examples
include the uniform and exponential distributions, and more generally anything in
either the beta or gamma classes.

3. Normal extremes. Let Φ(x) = (2π)−1/2 ∫ x
−∞ exp(−t2/2)dt denote the standard

normal ditribution function. From the well-known expansion

1−Φ(x) = (2π)−1/2e−x2/2(x−1 − x−3 +3x−5 −15x−7 + ....) (2.30)

(see, for example [6], page 193) it follows that

ϕ(x) = x−1 − x−3 + ...

Note that, as a notational point, we are using ϕ in the same context as previously
and not to denote the standard normal density as is very often done. In this case
ϕ ′ ∼−x−2 which tends to 0, so we are in the Gumbel domain of attraction. Defin-
ing bn by Φ(bn) = 1−1/n, an = ϕ(bn) or an = 1/bn, we have

Φn(anx+bn)→ Λ(x).

It is possible to replace bn by the closed form expression

bn = (2logn)1/2 − 1
2
(2logn)−1/2{log logn+ log(4π)} (2.31)

which can be derived as an asymptotic approximation from (2.30). This is not
the best choice from the point of view of rate of convergence [14], but it can be
useful in obtaining expressions for the growth rate of normal extremes. The first
order of approximation is that the largest of n standard normals is asymptotic to
(2logn)1/2 in probability.
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4. Lognormal extremes. Let F(x) = Φ(σ−1 logx) for x > 0, where Φ is the stan-
dard normal distibution function. For maxima, define ϕ by (2.18); then ϕ(x) ∼
σ2x(logx)−1 by (2.30), and ϕ ′(x) ∼ σ2(logx)−1 → 0. So we are in the domain
of attraction of Gumbel; if we define Bn by Φ(Bn) = 1− 1/n then suitable nor-
malizing constants for the lognormal are bn = exp(σBn), an = σ2bn(logbn)

−1 =
σbn/Bn. For minima, define ϕ by (2.27), then ϕ(x) ∼ −σ2x(logx)−1 as x → 0;
now define bn = exp(−σBn), an = σbn/Bn to get (2.26) with ξ = 0. This is useful
as an explicit example for which the range of the distribution is bounded below,
but the limiting extreme value distribution for minima is still of the Gumbel form.

5. Continuous distributions not in any domain of attraction. These are hard to con-
struct but they do exist! Here are two examples:

(a) Any distribution function with slowly varying tail, for instance F(x) = 1 −
1/ logx for x > e.

(b) Consider Fδ (x) = 1− x−1{1+ δ sin(logx)} valid for x ≥ some x0, with |δ |
small enough to make it a valid distribution function. Resnick [22] proved the
curious result that Fδ is not in any domain of attraction, but the product Fδ F−δ
is.

Background. Von Mises’ conditions as they are usually stated are (2.24), (2.25)
and (2.26) respectively for the cases ξ = 0, ξ > 0, ξ < 0. These are known to be suf-
ficient but not necessary for the domain of attraction. The single condition (2.22) (for
all ξ ) is also sometimes referred to as von Mises’ condition, though it is a little more
restrictive than (2.25) or (2.26) when ξ ̸= 0. The calculations in this section form
useful background to the more detailed discussion of rates of convergence which
will follow. For a short proof of the sufficiency of the von Mises conditions, see de
Haan [12].

2.2.4 Penultimate approximations

Let us go back to (2.21). In the preceding section we replaced ϕ ′(y) by ξ , defined by
(2.22), and deduced (2.23). However, in (2.21) we know y is close to u, and a better
approximation might result if we replace ϕ ′(y) by ϕ ′(u) rather than its “ultimate”
limit ξ . Defining an and bn as before, and

ξn = ϕ ′(bn),

(2.24) is replaced by

lim
n→∞

|Fn(anx+bn)− exp{−(1+ξnx)−1/ξn}| = 0 (2.32)

for each real x and hence uniformly over all x.
Whereas (2.24) represents the ultimate approximation in the sense that it gives

a single extreme value distribution to which the extremes are eventually attracted,
(2.32) defines a sequence of approximating distributions within the extreme value
family. This has been termed the “penultimate approximation”. The original motiva-
tion for this was given by Fisher and Tippett [7]. They proved that normal extremes
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are attracted to Λ, but showed numerically that a much better approximation was
within the Type III family, with ξ < 0. Recall that ϕ ′ < 0 in the normal case.

Cohen [3] proved that, in the normal case, the penultimate approximation has a
faster rate of convergence than the ultimate approximation. Cohen [2] and Gomes
[10] showed that the same is true for a very wide class of distributions in the domain
of attraction of Λ.

As an example, let us return to the case of normal extremes [3]. Using (2.30), we
have

1−Φ(u+ xϕ(u))
1−Φ(u)

=

(
1+

xϕ(u)
u

)−1

· exp
[
− (u+ xϕ(u))2

2
+

u2

2

]
·

·
{

1− 1
((u+ xϕ(u))2 +

1
u2 +O

(
1
u4

)}
and hence

log
[

1−Φ(u+ xϕ(u))
1−Φ(u)

]
= − log

(
1+

xϕ(u)
u

)
− xϕ(u)− 1

2
x2ϕ 2(u)+O

(
1
u4

)
= −xϕ(u)

u
+

x2ϕ 2(u)
u2 − x

(
1− 1

u2

)
− x2

2u2 +O
(

1
u4

)
= −x− x2

2u2 +O
(

1
u4

)
= u2 log

(
1− x

u2

)
+O

(
1
u4

)
where in the third term of the second line we used uϕ(u) = 1− u−2 +O(u−4) and
elsewhere simply uϕ(u)→ 1 as u → ∞. Hence

1−Φ(u+ xϕ(u))
1−Φ(u)

=
(

1− x
u2

)u2

+O
(

1
u4

)
(2.33)

= e−x +O
(

1
u2

)
(2.34)

where (2.34) follows from (2.33) by the well-known result
(
1− x

n

)n → e−x as n→∞.
These results may be interpreted in two ways. First, if we define bn by 1 −

Φ(bn) = 1/n and an = ϕ(bn), then (2.34) shows

n{1−Φ(anx+bn)} = e−x +O
(

1
b2

n

)
and hence

Φn(anx+bn) = e−e−x
+O

(
1
b2

n

)
pointwise for each x and ultimately uniformly over all x. This is the “ultimate ap-
proximation”.
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However, if we also define ξn =−1/b2
n, (2.33) shows

n{1−Φ(anx+bn)} = (1+ξn)
−1/ξn +O

(
1
b4

n

)
and hence the “penultimate approximation” Φn(anx+bn)≈ exp

{
−(1+ξnx)−1/ξn

}
also has error O

(
1
b4

n

)
.

Since bn also satisfies (2.31), we have finally that the ultimate approximation has
error O( 1

logn ) and the penultimate approximation has error O( 1
log2 n

). This result (with
uniformity over all x) was first proved rigorously by Cohen [3].

The implication of this result is that, even though the Gumbel distribution (2.5)
is the “ultimate” limit, the penultimate approximation with ξn = −1/b2

n is a better
approximation in practice. Since ξn < 0, this is therefore of Weibull type (2.4), with
α = −1/ξn. From a statistical point of view, it’s better to fit the three-parameter
GEV even though this will approximate the Gumbel distribution for large n. Such
results extend beyond the case of the normal distribution [2], and have contributed
to the virtual disappearance of the Gumbel distribution from practical extreme value
analysis.

2.3 Regular variation and domains of attraction

The previous section has shown a simple set of conditions, due originally to von
Mises, that are adequate in the vast majority of cases for determining convergence of
sample extremes to an extreme value limit. But for a full understanding of the theory,
and as background to our eventual exploration of multivariate and spatial/temporal
extremes, we need to introduce the key mathematical concept of regular variation.

There are by now numerous books on regular variation: the classic by Bingham,
Goldie and Teugels [1] is the most comprehensive, but numerous books on extreme
value theory, including those by Resnick [23, 24] and de Haan [11, 13] include full
detailed treatments.

2.3.1 Regular Variation

Definition 2.3. A measurable function h : R+ → R+ is regularly varying at infinity
if there exists a function ψ : R+ → R+ such that

lim
x→∞

h(tx)
h(x)

= ψ(t) for all t > 0. (2.35)

If (2.35) holds, then by letting x → ∞ in the relationship

h(tsx)
h(x)

=
h(tsx)
h(sx)

· h(sx)
h(x)

we deduce

ψ(ts) = ψ(t)ψ(s)



REGULAR VARIATION AND DOMAINS OF ATTRACTION 15

for all s, t ∈ R+, and hence by the Cauchy functional equation (Lemma 2.3), ψ(t) =
tρ for some ρ ∈ R. When ρ = 0 the function is called slowly varying.

When (2.35) we write h ∈ RVρ . Some basic properties are:

(a) If (2.35) holds for each t > 0, then the convergence is uniform on compact sets.
(b) The Karamata representation: if h satisfies (2.35), for x greater than some x0 we

have

h(x) = c(x)exp
{∫ x

x0

ρ(t)
t

dt
}

where c(x) is some measurable function that converges to a limit c ∈ (0,∞) are
x → ∞, and ρ(x)→ ρ as x → ∞.
A corollary of this result is that if h ∈ RVρ , there exists some h∗ ∈ RVρ which
is infinitely differentiable and such that h(x) ∼ h∗(x) as x → ∞ (in the sense that
h/h∗ tends to 1).

(c) Inverses of regularly varying functions: if h ∈ RVρ with ρ > 0 and if we define an
inverse function h−1(y) = inf{t : h(t)> y} then h−1 ∈ RV1/ρ .

2.3.2 Domains of Attraction

Now suppose the distribution function F is such that (2.1) holds for suitable an >
0, bn ∈R and distribution function G. We then say F is in the domain of (maximum)
attraction of G, formally F ∈ D(G). We already know by the Three Types Theorem
that G must be the same type as one of (2.3) through (2.5), or equivalently, of the
same type as Hξ , where Hξ (x)= exp

{
−(1+ξ x)−1/ξ

+

}
, some ξ ∈R. As everywhere,

we interpret the case ξ = 0 as the limit ξ → 0, in which case H0(x) = exp(−e−x).
First, we state a lemma, which in some respects is an extension of Lemma 2.1:

Lemma 2.4. Suppose {Fn, n = 1,2, ...,} is a sequence of distribution functions
and G is some nondegenerate limit. Let F−1

n and G−1 be inverses of Fn and G. Then
(2.7) holds, for some an > 0 and bn ∈ Rm if and only if

F−1
n (p)−F−1

n (p1)

F−1
n (p2)−F−1

n (p1)

w→ G−1(p)−G−1(p1)

G−1(p2)−G−1(p1)
(2.36)

where 0 ≤ p1 < p2 ≤ 1 are continuity points of G−1 and p ∈ [0,1]. Moreover, when
(2.36) holds, we may take an,bn to be defined by

an =
F−1

n (p2)−F−1
n (p1)

G−1(p2)−G−1(p1)
, bn = F−1

n (p1)−anG−1(p1).

Proof. We already saw in the proof of Lemma 2.1 that (2.7) is equivalent to

F−1
n (p)−bn

an

w→ G−1(p). (2.37)
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The left side of (2.36) is

F−1
n (p)−F−1

n (p1)

an
+G−1(p1) =

F−1
n (p)−F−1

n (p1)

F−1
n (p2)−F−1

n (p1)
· {G−1(p2)+G−1(p1)}+G−1(p1).

Hence, (2.37) is equivalent to (2.36).

Define

Hξ (x) =

{
exp

{
−(1+ξ x)−1/ξ

+

}
if ξ ̸= 0,

exp(−e−x) if ξ = 0.
(2.38)

and also let hξ (t) = (tξ −1)/(eξ −1), or log t when ξ = 0.
Theorem 2.2. F ∈ D(Hξ ) if and only if

lim
n→∞

F−1
(
1− 1

nt

)
−F−1

(
1− 1

n

)
F−1

(
1− 1

ne

)
−F−1

(
1− 1

n

) = hξ (t) for all t > 0. (2.39)

If (2.39) holds, then if suffices to take

an =
F−1

(
1− 1

ne

)
−F−1

(
1− 1

n

)
(eξ −1)/ξ

, bn = F−1
(

1− 1
n

)
.

Proof. Let H−1
ξ (p) = ((− log p)−ξ −1)/ξ if ξ ̸= 0, or − log(− log p) if ξ = 0, and

let p1 = e−1, p2 = e−1/e, p = e−1/t . Then Lemma 2.4 implies that (2.6) holds (with
G = Hξ ) if and only if

lim
n→∞

F−1
n (e−1/t)−F−1

n (e−1)

F−1
n (e−1/e)−F−1

n (e−1)
=

H−1
ξ (e−1/t)−H−1

ξ (e−1)

H−1
ξ (e−1/e)−H−1

ξ (e−1)
= hξ (t) (2.40)

where Fn is the same as Fn. Moreover, F−1
n (p) = F−1(p1/n). If we define tn by(

1− 1
ntn

)n
= e−1/t (this implies tn → t) then as n → ∞, (2.40) is equivalent to (2.39).

Let us now offer an alternative interpretation of the condition (2.39). Define U to
be the inverse function of 1/(1−F): thus U(y) = F−1(1− 1/y). Also, since F and
hence U are monotone, there is no change in the condition if we make n a continuous
variable in (2.39) and write x in place of n. With those changes, (2.39) is the same as

lim
x→∞

U(xt)−U(x)
U(xe)−U(x)

= hξ (t) for all t > 0. (2.41)

Now let us interpret some special cases of (2.41).
Case 1. Suppose ξ > 0. Write α = 1/ξ . Rewriting (2.41) in the form

U(xt)/U(x)−1
U(xe)/U(x)−1 → (tξ − 1)/(eξ − 1), we see this is equivalent to U(xt)/U(x) → tξ , in
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other words, U is regularly varying with index ξ . Since U is the inverse of 1/(1−F),
this implies that 1/(1−F) is regularly varying with index α . This in turn implies that

lim
x→∞

1−F(tx)
1−F(x)

= x−α

which is the classical condition for the domain of attraction of Φα first proved by
Gnedenko [9].

Case 2. Suppose ξ < 0. This corresponds to the limit Ψα with α = −1/ξ . In
this case the classical necessary and sufficient condition of Gnedenko [9] is that
x∗ = sup{x : F(x)< 1}<∞ and 1−F(x∗−1/t)∈RV−α as t →∞. This is equivalent
to saying that

V (t) =
1

1−F(x∗−1/t)
∈ RVα

and hence for the inverse function, V−1 ∈ RV1/α .
Now, U(x) = x∗−1/t at a continuity point if and only if 1/{1−F(x∗−1/t)}=

x =V (t) and hence t =V−1(x). So U(x) = x∗−1/V−1(x). Hence

lim
x→∞

U(xt)−U(x)
U(xe)−U(x)

= lim
x→∞

1/V−1(xt)−1/V−1(x)
1/V−1(xe)−1/V−1(x)

= lim
x→∞

V−1(x)/V−1(xt)−1
V−1(x)/V−1(xe)−1

=
t−1/α −1
e−1/α −1

which is (2.41).

2.4 Lecture of Feb 11

Start by assuming

U(tx)−U(x)
a(x)

=
tξ −1

ξ
+A(x)H(t)+o(A(x)) (2.42)

Let bn = a(n), an = a(n),

U(nt)−bn

an
=

tξ −1
ξ

+A(n)H(t)+o(A(n)).

Solving y = U(nt)−bn
an

means U(nt) = any+bn so F(any+bn) = 1−1/(nt) so

n(1−F(any+bn)) =
1
t
. (2.43)
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This also means

n logF(any+bn) = n log{1− (1−F(any+bn))}

= n log
(

1− 1
nt

)
= −1

t
+O

(
1
n

)
and hence

Fn(any+bn) = e−1/t +O
(

1
n

)
. (2.44)

Our objective is to solve for t as a function of y. We start from

y =
tξ −1

ξ
+A(n)H(t)+o(A(n)).

First guess is to ignore A(n) altogether: t = (1+ξ y)1/ξ .
Second guess: write t = (1+ξ y)1/ξ (1+ ε). In that case,

tξ −1
ξ

= y+ ε(1+ξ y)+o(ε)

so

y = y+ ε(1+ξ y)+A(n) ·H((1+ξ y)−1/ξ )+ ...

and hence

ε ∼ A(n) ·H((1+ξ y)−1/ξ )

(1+ξ y)
.

Hence t−1 = (1+ξ y)−1/ξ (1− ε +o(ε)) and so

1
t

= (1+ξ y)−1/ξ − A(n) ·H((1+ξ y)−1/ξ )

(1+ξ y)
+o(A(n)). (2.45)

Combining (2.45) with (2.43) or (2.44) gives our desired approximation. In most
cases A(n) >> 1/n so the O(1/n) error in (2.44) does not affect the quality of the
approximation.

Example 1. Suppose F satisfies

1−F(x) = cx−α
(

1+dx−β +o(x−β )
)

(2.46)

as x → ∞, where α > 0, β > 0, c > 0 and d ∈ R. In that case,

1
1−F(x)

= c−1xα
(

1−dx−β +o(x−β )
)

= y say.
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Solve for x: the first-order solution is x = (cy)1/α so we aim to improve on that by
writing x = (cy)1/α(1+ ε). By writing

y = c−1 · cy · (1+αε +o(ε) ·
{

1−d(cy)−β/α +o(y)−β/α)
}

we deduce ε ∼ d
α (cy)−β/α and hence

U(y) = (cy)1/α
{

1+
d
α
(cy)−β/α +o(y)−β/α)

}
.

After a little manipulation,

U(tx)−U(t)
(cx)1/α/α

= α
(

t1/α −1
)
+d(cx)−β/α

(
t(1−β )/α −1

)
+o(x−β/α).

If we write a(x) = (cx)1/α , ξ = 1/α, ρ =−β/α , we have

U(tx)−U(t)
a(x)

=
tξ −1

ξ
+d(cx)ρ(tξ+ρ −1)+o(xρ)

which is exactly of the form (2.42).
Example 2: Normal Extremes. Suppose F =Φ, the CDF of the standard normal

distribution.
Fix some large y and s ∈ R+. Asymptotics will be as y → ∞. Then

F
(

y+
s
y

)
−F(y) =

1√
2π

∫ y+s/y

y
e−t2/2dt

=
1

y
√

2π

∫ s

0
exp

{
−1

2

(
y+

u
y

)2
}

du

=
e−y2/2

y
√

2π

∫ s

0
e−u · exp

{
−1

2

(
u
y

)2
}

du

=
e−y2/2

y
√

2π

∫ s

0
e−u ·

{
1− 1

2

(
u
y

)2

+o
(

1
y2

)}
du

=
e−y2/2

y
√

2π

{
1− e−s − 1

2y2 (2− e−s(2+2s+ s2))+o
(

1
y2

)}
.

Suppose we are given 1−F(y) = 1/x and 1−F(y+ s/y) = 1/(tx) — our objective
will be to determine s as a function of t with x and y fixed. Thus

1
x

(
1− 1

t

)
=

e−y2/2

y
√

2π

{
1− e−s − 1

2y2 (2− e−s(2+2s+ s2))+o
(

1
y2

)}
.

Substituting from (2.30),

e−y2/2

y
√

2π

{
1− 1

y2 +o
(

1
y2

)}(
1− 1

t

)
=

e−y2/2

y
√

2π

{
1− e−s − 1

2y2 (2− e−s(2+2s+ s2))+o
(

1
y2

)}



and hence (
1− 1

t

)
=

{
1− e−s +

e−s(2+2s+ s2)

2y2 +o
(

1
y2

)}
.

Solving for s, asymptotically with y → ∞,

s = log t
{

1− 2+2log t + log2 t
2y2 log t

+o
(

1
y2

)}
.

If we write U(x) = y and U(tx) = y+ s
y , then

U(tx)−U(x) =
s
y

=
log t
U(x)

{
1− 2+2log t + log2 t

2y2 log t
+o

(
1
y2

)}
.

Defining a(x) = 1/U(x),

U(tx)−U(x)
a(x)

= log t
{

1− 2+2log t + log2 t
2U(x)2 log t

+o
(

1
U(x)2

)}
.

Then with A(x) = 1
U(x)2 , H(t) =−

(
1+ log t + 1

2 log2 t
)
, we have

U(tx)−U(x)
a(x)

= log t +A(x)H(t)+o(A(x))

which is exactly of the form (2.42) (with ξ = 0).



Chapter 3

Joint Distributions of Extremes and
Point Processes

Our objective in this chapter will be to study the limiting behavior of extreme order
statistics in more detail, including the joint distribution of several largest or smallest
extremes. This will be achieved by embedding the process of extremes in a limiting
point process, also known as the extremal process, and then applying results from
point process theory. Other books that have made extensive use of point processes in
extreme value theory include [18, 23, 24].

In this chapter we will particularly follow the approach due to Weissman [27, 28].
Other papers proving similar results are due to Pickands [20] and Leadbetter [16, 17];
the latter covered generalizations to dependent stationary sequences.

3.1 Asymptotic distribution of kth largest order statistic

Suppose we have a sequence of independent random variables X1, X2, ... — not
necessarily identically distributed, though in many cases they will be. Write the order
statistics from the first n observations in the form X1:n ≥ X2:n ≥ ... ≥ Xn:n. Natural
questions to ask include

1. What is the asymptotic distribution of Xk:n?
2. What is the asymptotic joint distribution of (X1:n,X2:n, ...,Xk:n) for some given k?

For both these questions, we focus here on limit as n → ∞ for fixed k. Alternative
limiting forms (such such as k = kn → ∞ as n → ∞ with kn/n → p, some p ∈ (0,1])
are also of interest but involve a different kind of theory from that considered here.

Let In(x) = ∑n
i=1 I(Xi > x). Here I(·) is the indicator function (1 if the expression

inside the parentheses is true, 0 otherwise). This immediately leads to the identity

{Xk:n ≤ x} = {In(x)< k} .

In words: the k largest observation among X1, ...,Xn is ≤ x if and only if the number
of observations that exceed x in the same sample is less than k.

Now suppose X1, ...,Xn all have the same distribution function F . We deduce

Fkn(x) = P{Xk:n ≤ x} =
k−1

∑
j=0

(
n
j

)
F̄ j(x)Fn− j(x)

21
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where F̄ = 1−F .
Now suppose we are in the domain of attraction of an extreme value distribution,

so limn→∞ Fn(anx+bn) = G(x) for suitable an, bn, G. This is equivalent to

nF̄(anx+bn) → − logG(x) = Λ(x) say.

Note that we are (here and subsequently) using Λ as a general symbol for a Poisson
generating measure; there is no connection with the Gumbel distribution (2.5). Let
anx+bn = un, Λ(x) = τ , so

lim
n→∞

nF̄(un) = τ if and only if lim
n→∞

Fn(un) = e−τ .

So

lim
n→∞

Fkn(un) = e−τ
k−1

∑
i=0

τ i

i!

or alternatively

lim
n→∞

Fkn(anx+bn) = G(x)
k−1

∑
i=0

Λ(x)i

i!
= ψk(G(x))

where ψk(x) = x∑k−1
i=0 (− logx)i/i!. This result was originally given by Smirnov [25].

Equivalently, one can write the result as follows:

In(anx+bn)
d→ I(x) (3.1)

where I(x) is a Poisson random variable with mean Λ(x). Equation (3.1) is just a
restatement of the well-known convergence of a binomial distribution to a Poisson
limit.

3.2 Point process viewpoint

So far, this is all for a single x (or equivalently, a single sequence {un}). A statement
of the form (3.1) is much more powerful if interpreted in a stochastic process sense,
treating x as a process parameter. Under suitable conditions, then, (3.1) may be rein-
terpreted as convergence to a Poisson process I(x) with mean Λ(x), for any x ∈R for
which G(x)> 0.

Let us make some definitions. Although we are concerned here with the case
of a one-dimensional process, in general a Poisson process may be defined on any
standard measurable space such as Rd for integer d, so we write I(A) to denote
the number of points in A where A is a Borel set in some general measure space
S ⊆ Rd . For the specific case when S = R and A = (x,∞) for some x ∈ R, we may
also write I(x) in place of I(A), consistent with (3.1). There are numerous definitions
of a Poisson process: following the Appendix of [18], we may define I(A), A ⊆ S to
be a Poisson process with intensity measure Λ, if it satisfies the following conditions:
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(a) For any set A with Λ(A)< ∞, I(A) has a Poisson distribution with mean Λ(A);
(b) I(A1), I(A2), ... I(Aq) are independent random variables for any mutually disjoint

sequence of sets A1,A2, ...,Aq.

If the measure Λ is absolutely continuous, the Poisson process also has the prop-
erty of no multiple points, e.g. if I(A) = q > 1 for some A then it is possible to write
A = A1 ∪A2 ∪ ...∪Aq where A1, ...,Aq are disjoint and I(A j) = 1 for each j = 1, ...,q.
A point process with no multiple points is also called simple.

In order to establish limit statements such as (3.1) in a point process context, we
need a notion of convergence of point processes. There are two standard definitions:
convergence in distribution and vague convergence.

Definition 3.1 (convergence in distribution, following the Appendix of [18]). In
In is a sequence of point processes and I is a limiting point process, each defined on
a space S with Borel sets S , then we say

In
d→ I

(In converges in distribution to I) if and only if

(In(A1), In(A2), . . . , In(Aq))
d→ (I(A1), I(A2), . . . , I(Aq))

for each choice of q and bounded Borel sets Ai ∈ S such that I(∂Ai) = 0 almost
surely for each i = 1,2, . . . ,q (∂Ai denotes the boundary of the set Ai).

Definition 3.2 (vague convergence, following [24], pp. 48–49). Suppose S is a
“nice space” (a locally compact topological space with a countable base, such as Rd

for any d) and S is a sigma-field on S. A measure µ : S → [0,∞] is an assignment
of positive numbers to sets in S such that
1. µ(ϕ) = 0 and µ(A)≥ 0 for all A ∈ S ;
2. σ -additivity: if {An, n ≥ 1} are mutually disjoint sets in S then µ (∪∞

i=1Ai) =

∑∞
i=1 µ(Ai).

A measure µ is called Radon if µ(K)< ∞ for any compact set K.
Next, let

M+(S) = {µ : µ is a nonnegative measure on S and µ is Radon} .

Define

C+
K (S) = { f : S → R : f is continuous with compact support} .

(Compact support means that f = 0 outside some compact set.)
If µn ∈ M+(S) for n ≥ 0, then µn converges vaguely to µ0, written µn

v→ µ0, if
for all f ∈C+

K (S),

µn( f ) =
∫

S
f (x)µn(dx) → µ0( f ) =

∫
S

f (x)µ0(dx).

Vague convergence implies convergence in distribution, but the converse implication
does not hold in general.
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For the present chapter, convergence in distribution will suffice, but in later chap-
ters involving multivariate and spatial extreme value theory, we may need the concept
of vague convergence as well.

3.3 Poisson Convergence for Extreme Order Statistics from an Independent
Sequence

This essentially follows Weissman [27].
We consider an extremal process generated by a sequence of independent random

variables {Xi, i = 1,2, . . .}, assumed to be defined on some common probability
space (Ω,F ,P). The case where the Xis are not only independent but also identically
distributed (IID) is of particular interest, but the theory applies in this more general
setting so we shall follow that for the genral presentation.

Assume, as in classical extreme value theory, that there are normalizing constants
an > 0 and bn ∈R such that {max(X1, . . . ,Xn)−bn}/an converges in distribution, and
define

Xni =
Xi −bn

an
.

For each n and k, define mk
n(t) to be the kth largest among Xn1, . . . ,Xn[nt]. Here [nt]

is the integer part of nt and we are explicitly thinking of this as a function of the
continuous time variable t (we define mk

n(t) =−∞ if k > [nt]).
Suppose there exists a process mk =

{
mk(t) : t > 0

}
such that

mk
n → mk

in the sense of convergence of finite-dimensional distributions. Let us define

In(t;x) =
[nt]

∑
i=1

I(Xni>x).

Note that the definition of In(t;x) is different from the corresponding definition of
In(x) in Section 3.1 because we have renormalized the Xis before defining the process
rather than after. This turns out to be a more convenient formulation for point process
convergence.

Our objective, then, is to establish conditions sufficient to guarantee that In(t;x)
converges in distribution to a limiting point process I(t;x) and, in such cases, to
derive the structure of I(t;x).

The limiting distribution function (when it exists) of m1
n(t) will be written Gt . In

the IID case when m1
n(1)

d→ m1(1)∼ G, we will have Gt = Gt , but in general we do
not require that structure.

More explicitly, for the IID case where G = G1 exists, it may be written in the
form of the GEV distribution and therefore

Gt(x) = exp

{
−t

(
1+ξ

x−µ
σ

)−1/ξ

+

}



for some µ,σ ,ξ , and although this is only a special case of the general theory, it will
be useful to fix ideas.

In the general case, we assume that Gt is non-degenerate for all t > 0 and for
0 ≤ s < t define

Gst(x) =
Gt(x)
Gs(x)

, Gs(x,y) =
Gs(y)
Gs(x)

(y ≤ x),

both quantities defined to be 0 when Gs(x) = 0. The support for Gt is assumed to be
( ∗xt , x∗t ) where −∞ ≤ ∗xt < x∗t ≤ ∞. We also write Y ∼ P(λ ) as a shorthand to
denote that the random variable Y has a Poisson distribution with mean λ .

Define T = {(t,x) : t > 0,x >∗ xt} and let I = {I(t;x) : (t,x) ∈ T} be a point
process on T , where I(t;x) is the number of points in (0, t]× (x,∞). We define
I(0,x)≡ 0.

Changing notation slightly, for a rectangle E = (s, t]× (x,y] with 0 ≤ s < t and
x < y ≤ ∞, we define the increment of I around E to be

I(E) = I(t;x)− I(s;x)− I(t;y)+ I(s;y)

= I(s, t;x,y) say.

If we also let Λ(t;x) =− logGt(x), we can regard Λ as a measure on [0,∞)× [∗xt ,∞]
where

Λ(E) = Λ(t;x)−Λ(s;x)−Λ(t;y)+Λ(s;y)

= Λ(s, t;x,y).

This defines a measure on all Borel sets of T ; in particular, again slightly abusing
notation,

Λ((0, t]× (x,∞]) = Λ(t;x).

In the special case of the GEV,

Λ(t;x) = t
(

1+ξ
x−µ

σ

)−1/ξ

defined on t > 0 and x ∈ (∗x,x∗) where

∗x =

{
µ − σ

ξ , ξ > 0,

−∞, ξ ≤ 0





Chapter 4

Statistics Based on the Extreme Value
Distributions

At this point in the book, we have seen four basic models used for extremes:

1. The extreme value distributions, derived mathematically through the Three Types
Theorem, but most frequently represented in practice by the Generalized Extreme
Value (GEV) distribution, G(x; µ,σ ,ξ ) = exp

[
−{1+ξ (x−µ)/σ}−1/ξ

+

]
;

2. The Generalized Pareto distribution (GPD), G(x;σ ,ξ )= 1−(1+ξ x/σ)
−1/xi
+ , x>

0 which is used as a limiting distribution for exceedances over thresholds;
3. The limiting joint distribution for the k largest maxima from a sample, which we

saw in Chapter 3 and is directly derived from the GEV;
4. The point process viewpoint, also derived in Chapter 3, which represents the two-

dimensional process of exceedances over a threshold, together with the associated
times of exceedances, as a point process that can be approximated as a Poisson
process; in the homogeneous case, the intensity measure of the point process is
also derived from the GEV distribution.

In practice, each of these models may be extended by bringing in covariates: for
example, in the GEV case, instead of assuming the same GEV parameters for every
observation, we may write Yi ∼ GEV (µi,σi,ξi) where each of µi,σi,ξi may depend
on covariates; in the simplest case, µi = ∑ j β jxi j (with corresponding expressions, if
desired, for either σi or for logσi, and for ξi). As we proceed to develop practical ex-
amples, the reader will see many examples where relevant covariates are introduced
into the analysis. More complicated questions — such as what to do if there is tem-
poral dependence in the observations — will be deferred for the time being, but we
return to questions like these later.

All of the models described so far are parametric models — even with covariates,
we assume explicit parametric representations for the covariates — so they may in
principle be estimated by well-established methods for parametric statistical models,
of which the best known are maximum likelihood and Bayesian inference. We begin
this chapter with a brief review of those methods, before turning to more specific
issues associated with extreme value distributions.

27
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4.1 Maximum Likelihood and Bayesian Statistics

To present the general theory, we assume Y1, ...,Yn are independent random variables
where Yi has density fi(yi;θ) where fi is a known density depending on unknown
parameters θ ∈ Θ for some parameter space Θ ⊆Rp for some p. For example, in the
simplest case where Yi has a GEV distribution with parameters (µ,σ ,ξ ) (the same
for all i), the estimated parameter vector is θ = (µ,σ ,ξ ) and the parameter space
Θ may be represented as R×R+×R though, as we shall see, there may be some
advantage to restricting the range of one of more of these parameters (especially ξ ).

The likelihood function for parameters θ based on a specific set of observations,
Y =

(
Y1 Y2 . . . Yn

)
may be written

L(θ ; Y) =
n

∏
i=1

fi(Yi ; θ). (4.1)

We also write ℓ(θ ; Y) =− logL(θ ; Y) to denote the negative log likelihood func-
tion. We can now define:

Definition 4.1: The maximum likelihood estimator of θ based on Y is the value
θ̂ that maximizes L(θ ;Y) or, equivalently, minimizes ℓ(θ ;Y).

Already, this definition runs into a small complication. The most common meth-
ods of finding a maximum likelihood estimator use calculus (analytically in simple
cases, numerically in more complicated models such as the GEV) which means, in
effect, they are trying to find estimates that solve the likelihood equations,

∂ℓ(θ ; Y)

∂θj
= 0, j = 1,2, . . . , p. (4.2)

However, in general there is no guarantee that a θ satisfying (4.2) will achieve the
global maximum of L. In fact, in the GEV case, we can show that it does not (unless
we restrict the range of ξ , or which more momentarily). Nevertheless, in practice, we
usually define the maximum likelihood estimator (MLE) as a vector θ̂ that satisfies
(4.2)

As an explicit example, for the GEV distribution without covariates we have, on
the range where the distribution function G and its density g are defined,

G(y ; µ,σ ,ξ ) = exp

{
−
(

1+ξ
y−µ

σ

)−1/ξ
}
, (4.3)

g(y ; µ,σ ,ξ ) =
∂G(y ; µ,σ ,ξ )

∂y

=
1
σ

(
1+ξ

y−µ
σ

)−1/ξ−1

exp

{
−
(

1+ξ
y−µ

σ

)−1/ξ
}
,

(4.4)
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and hence

ℓ(µ,σ ,ξ ; Y1, ...,Yn) =
n

∑
i=1

[
logσ +

(
1
ξ
+1

)
log

(
1+ξ

Yi −µ
σ

)
+

(
1+ξ

Yi −µ
σ

)−1/ξ
]
.

(4.5)

The MLE chooses µ,σ ,ξ to minimize ℓ, which in practice is found by optimization
routines designed to solve the likelihood equations.

In the case of covariates, we replace µ,σ ,ξ by µi,σi,ξi as appropriate; for ex-
ample, if we represent time dependence by the function µi = β0 +β1ti (ti being the
time of observation i) then the three-parameter θ =

(
µ σ ξ

)
is expanded into

a four-parameter θ =
(

β0 β1 σ ξ
)

and we compute corresponding MLEs

θ̂ =
(

β̂0 β̂1 σ̂ ξ̂
)

.
As already noted, it is assumed that ℓ is differentiable and that the MLE satisfies

(4.2). In nearly all cases, we also evaluate (exactly or approximately) second-order
derivatives. If

h jk =
∂ 2ℓ

∂θ j∂θk

∣∣∣∣θ=θ̂
, j,k = 1, . . . , p,

and if H is the p× p matrix of
{

h jk
}

, then H is referred to as the Hessian matrix or,
specifically in the context of MLE, the observed information matrix. Alternatively,
if I(θ) is the matrix of i jk, defined as the expected value of ∂ 2ℓ

∂θ j∂θk
when the true

parameter vector is θ , then I(θ) is the expected or Fisher information matrix. In
practice, of course, θ is unknown so we calculate I(θ̂) in place of I(θ). Regardless
of whether H(θ̂) or I(θ̂) is used, for large samples and assuming certain regularity
conditions, the inverse or H−1(θ̂) or I−1(θ̂) is an asymptotic approximation to the
variance-covariance matrix of θ . A famous paper of Efron and Hinkley [5] argued
that the observed information matrix is the better approximation in practice, and
regardless of which one is theoretically superior, the observed information matrix is
usually easier to calculate. Therefore, for most practical applications of maximum
likelihood, the observed information is preferred.

The main alternative to the method of maximum likelihood is a Bayesian analy-
sis. As will be seen, an argument can be made that Bayesian methods do a better job
of representing the uncertainty of extreme value estimation, especially where related
to prediction. The fundamental formula of Bayesian statistics is

π(θ | Y) =
∏n

i=1 fi(Yi ; θ)π(θ)∫
Θ ∏n

i=1 fi(Yi ; θ)π(θ)dθ
, (4.6)

read as “the posterior density of θ given Y”, where we again assume that Y =(
Y1 Y2 . . . Yn

)
where the Yi are mutually independent and have densities

fi(· ; θ) as in (4.1). The formula π(θ) is known as “the prior density of θ” and
is usually chosen to be flat and diffuse (but typically proper) over the parameter
space Θ. In practice the integral in the formula (4.3) cannot be evaluated analytically
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and we resort to Monte Carlo simulation, for which the most popular algorithms are
variants on the Gibbs sample and the Hastings-Metropolis algorithm; see [4] for a
recent survey. For very large datasets, newer algorithms are becoming popular, such
as variational Bayes [26].

In practice, the interest in fitting these models often lies not in the parameter es-
timates themselves, but as an intermediate step towards calculating other quantities
that are of interest in connecting with predicting or characterizing extreme events.
One particular measure of interest is the N-year return value (where in applications
one may want to take N to be a relatively modest value such as 50 or 100, or some-
thing much larger, such as 500 or 1,000 or even 10,000, though the practical reality
of estimating very extreme return values is questionable). This is often defined by
defining yN to be the level that is exceeded with probability 1/N in any given year. If
the annual maximum distribution is given by (4.3), then we derive the formula

yN = µ +σ
{
− log

(
1− 1

N

)}−ξ −1
ξ

. (4.7)

Typically, yN is estimated by simply substituting the maximum likelihood estima-
tors µ̂, σ̂ , ξ̂ , in place of µ, σ , ξ , in 4.8). This is sometimes called the “plug-in
approach”. From a Bayesian point of view, a more natural alternative is the posterior
mean

ŷN =
∫

yN(µ,σ ,ξ )π(µ,σ ,ξ | Y), (4.8)

where the dependence of yN on the parameters µ,σ ,ξ is represented explicitly in the
equation.

Returning to the general case of arbitrary densities fi(yi ; θ) for some parameter
vector θ , we may be interested in some scalar quantity h(θ); (4.7) is the special
case where h is the N-year return value from the GEV distribution. Based on the
maximum likelihood estimators, this suggests using ĥ = h(θ̂) as an estimator, where
θ̂ is the MLE. There are the three ways of computing a confidence interval for h:

1. The normal or delta method approach, where we approximate the standard error
of ĥ by

√
(∇h)TV (∇h), where ∇h represents the gradient of h with respect to the

parameters θ (evaluated at θ̂ ) and V (θ) is an estimate of the variance-covariance
matrix of θ , usually approximated with the inverse of either the observed or the
Fisher information matrix. The endpoints of the confidence interval are then cal-
culated using a normal approximation.

2. The profile likelihood approach is an approach where, for each candidate value
h0 say, we maximize the likelihood function (or minimize ℓ) with respect to θ
under the constraint h(θ) = h0. The resulting minimized value of − logℓ is written
ℓ∗(h0). By definition, ℓ∗(h0) is minimized when h0 = h(θ̂), the overall MLE. An
approximate 100(1−α)% confidence interval for h may be defined as the set of
h0 for which

2
{
ℓ∗(h0)− ℓ∗(h(θ̂))

}
≤ χ2

1−α,1
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where χ2
1−α,1 is defined as the 1−α point of the χ2

1 distribution. This method re-
lies on the asymptotic χ2

1 distribution fo the likelihood ratio statistic in this case.
Even though this is also an approximation, it is generally considered a more accu-
rate approach than the delta method; in particular, profile likelihood intervals are
often highly asymmetric whereas the delta method necessarily leads to symmetric
confidence intervals.

3. The third method is a bootstrap, which in turn may be either parametric bootstrap
or nonparametric bootstrap. The parametric bootstrap assumes that the probabil-
ity model is correct; for each b = 1, . . . ,B (where B is the numer of bootstrap
samples, and b is an index) generate a sample of size n from the assumed distri-
bution, recalculate the MLE θ̂ b say, and calculate an estimate ĥb = h(θ̂ b). The
α/2 and 1−α/2 probability points of the sample

{
ĥb, b = 1, ...,B

}
then form a

natural 100(1−α)% confidence interval for h(θ). The alternative noparametric
bootstrap works the same way, except that the bootstrap samples are generated
by resampling from the data rather than generating simulated samples from the
underlying parametric distribution.

As an alternative to any of these methods, A Bayesian approach uses the posterior
density of h,

h(θ | Y) =
h(θ)∏n

i=1 { fi(Yi ; θ)}π(θ)∫
Θ h(θ)∏n

i=1 { fi(Yi ; θ)}π(θ)dθ
. (4.9)

Prediction intervals or credible intervals for h(θ) may be calculated from (4.9), typ-
ically using the same Monte Carlo sample as was used to calculate the posterior
density of θ .

4.2 Issues specific to the extreme value families

Let us look at the middle term in (4.5). Suppose ξ < −1. The condition 1+ ξ (Yi −
µ)/σ > 0 must apply to every term, so with ξ < 0, this means µ >Ymax+σ/ξ where
Ymax is the maximum among Y1, . . . ,Yn. As µ ↓Ymax+σ/ξ , the log term tends to −∞.
Because 1

ξ + 1 > 0 in this instance, that means the whole expression (4.5) tends to
−∞. That creates an obvious problem with the definition of the MLE. Essentially the
same issue arises with the other models used in extreme value theory, including the
Generalized Pareto model and the models based on joint distributions of k > 1 order
statistics.

In practice, this problem is solved in one of two ways. The most clean-cut solu-
tion is simply to define ξ ∈ (−1,1) and so avoid the problem. The upper end of this
interval is also a natural choice because of ξ ≥ 1, the variable Y has infinite mean,
which is also considered unrealistic for most (though not all) applications.

The alternative approach is just to ignore it. Numerical optimization techniques
hardly ever fail because of the singularity and generally find solutions which exactly
or approximately solve (4.2). However, in complicated models with many covariates,
it is possible that the optimization will fail because of the singularity, so this needs
to be borne in mind.



The second issue is regularity of the maximum likelihood estimates. Theoretical
accounts of maximum likelihood estimation [insert references] emphasize the need
for certain conditions, for example, the second-order derivatives of the log likelihood
must exist and be continuous, and the elements defining the Fisher information ma-
trix must be finite. Theoretical calculations of the Fisher information matrix have
been given by [Jenkinson, Presscott and Walden] for the GEV distribution, [Smith]
for the GPD, [Smith] for the k largest order statistics model based on the Gumbel
family, and [Tawn] for the k largest order statistics model based on the GEV fam-
ily. All of the models fail when ξ ≤ − 1

2 , in the sense that at least one entry of the
Fisher information matrix becomes infinite, and the asymptotic results of maximum
likelihood fail in this case. Theoretical solutions for the case ξ ≤− 1

2 were proposed
by [Smith] but have never been used in practice asthis case very rarely arises. More
practically, the results of [Smith, Bucher and Segers] confirm that for the cases where
ξ > − 1

2 , the MLEs defined by (4.2) exist and satisfy the standard asymptotic prop-
erties of maximum likelihood estimation, in particular consistency and asymptotic
normality, with asymptotic variance-covariance matrix given by the inverse of the
Fisher information matrix.

Thus, in practice, we may apply the method of maximum likelihood (possibly
with some restrictions on the range of ξ ) and the estimators have the same asymptotic
properties as in regular parametric problems. However, given some of the specific is-
sues that arise in extreme value theory (especially, estimating the N-year return value
YN for large N), there are still questions related to bias of the estimators or poor per-
formance of the asymptotic approximations. Sone alternatives include Generalized
Maximum Likelihood Estimation (GMLE) and the L-moments method.
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