
STOR 754 FINAL
DECEMBER 2–3 2008

This is a take-home exam. It is to be completed in your own time and returned to me no later
than 4:00pm, Wednesday December 3.

Use of the computer and all course materials is allowed. Solutions may be handwritten or
word-processed. Where you use the computer, you should hand in enough of the output that I can
follow the steps you took (including any graphs etc. that you feel are appropriate to illustrate your
answer — extra credit will be given for good illustrative answers) but I do not need or want you
to document every step.

Any result derived in the course notes or texts may be quoted without proof or detailed citation,
so long as you give enough information for me to follow your method. If you consult any other
references (including Internet), you should give a full citation.

In a multi-part question, an error in one part of the question will not prevent you getting full
marks in another part of the question, so long as your derivation is clear.

You are reminded that the Honor Code is in force during this exam. You are not allowed to
consult with each other, or with any outside person, in any way at all. You are allowed to ask me
questions in person or by phone or email.

1. (a) Suppose we have p observations from a stationary AR(1) process,

Ut = φUt−1 + εt, εt ∼ N [0, τ ].

Show that the covariance matrix of U1, ..., Up is

V =
τ

1− φ2


1 φ φ2 . . . φp−1

φ 1 φ . . . φp−2

φ2 φ 1 . . . φp−3

...
...

...
. . .

...
φp−1 φp−2 φp−3 . . . 1

 . (1)

(b) Show that V −1 is of the form

V −1 =



a b 0 0 . . . 0 0
b c b 0 . . . 0 0
0 b c b . . . 0 0
0 0 b c . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . c b
0 0 0 0 . . . b a


where a, b and c are constants (independent of p) to be determined.

You are also given (this doesn’t have to be proved) that |V | = τp

1−φ2 .

(c) Consider the simple linear regression model without intercept,

Yt = βxt + Ut



where xt is given (scalar), β is an unknown regression constant, and Ut is as in (a). Show
that the generalized least squares estimator of β is

β̂ =
∑p
t=1 xtyt − φ

∑p−1
t=1 (xtyt+1 + ytxt+1) + φ2∑p−1

t=2 xtyt∑p
t=1 x

2
t − 2φ

∑p−1
t=1 xtxt+1 + φ2

∑p−1
t=2 x

2
t

and give an explicit expression for its variance.

Hint: Use the GLS regression formula: if Y = Xβ + U , where U has mean 0 and
covariance matrix V , then β̂ = (XTV −1X)−1XTV −1Y and has covariance matrix
(XTV −1X)−1.

(d) Now suppose Y1, ...,Yn are independent p-dimensional random vectors where each Yi ∼
MVNp(µ, V ). Hypothesis H0 is that V is of form (1) for some τ and φ. Hypothesis
H1 is that V is completely unrestricted. (In either case, µ is an arbitrary p-dimensional
vector.) Let S0 = {sij , 1 ≤ i, j ≤ p} be the maximum likelihood sample covariance
matrix (with divisor n instead of n−1) defined from Y1, ...,Yn, and define A =

∑p
i=1 sii,

B =
∑p−1
i=1 si,i+1, C =

∑p−1
i=2 sii. Find expressions that must be satisfied by the joint

maximum likelihood estimators of τ and φ. (Note: You probably won’t be able to find a
closed-form expression for the estimators themselves, but you should still be able to find
an explicit equation that the estimators must satisfy.) Hence show how to construct the
likelihood ratio test of H0 against H1. What is the asymptotic distribution (as n→∞)
of the test statistic?

(e) Apply the method derived in (d) to the dataset examdata1.txt on the course webpage,
where n = 20 and p = 5. Use an approximation to φ̂ if you cannot find the exact MLE.
Do you accept or reject H0?

(Note: You are not expected to use any time series or multivariate analysis software in
solving (e). You may use the standard linear algebra commands that are available in
R.)

2. The data file raleighozone.txt contains daily data, from 01/01/1987 through 12/31/2000,
for daily maximum 8-hour ozone in Raleigh, NC. Units are parts per billion (ppb). This is
ground-level data, not connected with the so-called ozone hole that arises from stratosphere
data.

(a) Fit a suitable time series model to this dataset. Among the features you should take
into account are:

• How to deal with missing values. Note that data are only available from the months
April through October (which the EPA defines as the ozone period). Therefore, of
necessity, your results will only cover those months. There are also isolated missing
values during the ozone series. You will have to make your own decisions about how
to deal with those, but whatever you do, make sure you explain it.
• Long-term trends
• Seasonality (even during the ozone season it is unlikely that the mean is constant

across the whole season)
• Transformations of the data (e.g., to achieve homoscedasticity or normality)

(b) Ozone is a toxic pollutant that is regulated by the EPA. The current standard (since
March, 2008) is 75 ppb. Suppose you want to institute a warning system that will sound



an alarm when the probability that the next day’s ozone will exceed 75 ppb is at least
0.5. This alarm should be based on the current day’s ozone and may (at your discretion)
be also dependent on previous days. What is your proposed rule?

3. The data file NCnormals.txt contains summary meteorological data from 123 stations in
North Carolina. The data are

Column Description
1 Index number of station
2 Latitude
3 Longitude
4 Winter mean temperature
5 Spring mean temperature
6 Summer mean temperature
7 Fall mean temperature
8 Winter mean precipitation
9 Spring mean precipitation
10 Summer mean precipitation
11 Fall mean precipitation

(a) Using just the meteorological data in the last eight columns, use PCA, factor analysis,
or otherwise, to describe the main features of the data and (if appropriate) to propose
a dimension reduction.

(b) We can subdivide North Carolina into three regions as follows: “West” (west of longitude
80.7o), “Central” (longitude between 78.2o and 80.7o), “East” (east of longitude 78.2o).
Is there a significant difference in the climate among these three regions?

(c) Based on cluster analysis, is there any better way to subdivide the state than to use the
method in (b)? [Note: For this part, you will have to decide whether to apply cluster
analysis to the whole dataset or some reduction of it as determined in (a). In most cases,
it would make sense to remove components that look like pure noise.]



Solutions and Comments

1. (a) {3 Points.} Immediate from ACVF of AR(1).

(b) {6 Points.} a = 1
τ ; b = −φ

τ , c = 1+φ2

τ ; proof by multiplying out V and V −1 to verify
that the product is I.

(c) {6 Points.} We want to evaluate XTV −1X and XTV −1Y in the case when X is just a
single-column matrix with entries x1, ..., xp. In that case, from the structure of V −1 we
have

XTV −1Y =
1
τ

x1y1 + xpyp + (1 + φ2)
p−1∑
t=2

xtyt − φ
p−1∑
t=1

xtyt+1 − φ
p−1∑
t=1

xt+1yt

 .
The expression for XTV −1Y has the same structure (replace yt by xt) and β̂ is then just
XTV −1Y
XTV −1X

, equivalent to the stated answer. Variance: τ∑p

t=1
x2

t−2φ
∑p−1

t=1
xtxt+1+φ2

∑p−1

t=2
x2

t

.

[In econometrics this is known as the Cochrane-Orcutt estimator, based on a paper in
JASA (1949). The case with an intercept is essentially the same if you first center xt
and yt.]

(d) {10 Points.} If we define the model as Yi ∼ MVNp(µ, V ) then after maximizing the
likelihood with respect to µ, ignoring some constants,

−2 logL(µ̂, V ) = n log |V |+ n tr V −1S0. (2)

Under H1, (2) is minimized by V = S0, leading to −2 logL1 = n log |S0| + np. These
results so far follow from estimation results for the multivariate normal distribution that
were in the class notes.

Under H0, we have |V | = τp/(1− φ2) as given in the question, while the trace of V −1S0

is of the form aA+ 2bB + (c− a)C; then (2) becomes

−2 logL(µ̂, τ, φ) = n

[
p log τ − log(1− φ2) +

A− 2φB + φ2C

τ

]
. (3)

We minimize analytically with respect to τ ; (3) becomes

−2 logL(µ̂, τ̂ , φ) = n
[
p log(A− 2φB + φ2C)− log(1− φ2) + p− p log p

]
. (4)

We wish to minimize (4) with respect to φ; differentiating, the equation to be satisfied
is

p(φC −B)
A− 2φB + φ2C

− φ

1− φ2
= 0 (5)

and the resulting φ̂ leads to the likelihood ratio statistic

W = 2(logL1 − logL0) (6)

= n
[
p log(A− 2φ̂B + φ̂2C)− log(1− φ̂2)− p log p− log |S0|

]
. (7)

Under H0, W has an approximate χ2
ν distribution, where ν = p(p+1)

2 − 2 (the difference
in d.f. for the two models).



(e) {5 Points.} With the given data we find log |S0| = 23.57233, A = 1075.966, B =
625.2579, C = 675.665. The equation (5) is satisfied when φ̂ = 0.70524, resulting in
τ̂ = A−2φ̂B+φ̂2C

p = 106.02, W = 8.67. Under the null hypothesis this should have an
approximate χ2

13 distribution; the p-value is 0.8. Accept H0. [The actual dataset was a
simulation from the AR(1) model with φ = 0.7.] {30 Points Total for Question 1.}

2. {12 Points for (a); 8 Points for (b).} There are various possible analyses but here is one
that is fairly straightforward. I first removed all the Jan, Feb, Mar, Nov, Dec days from the
ozone series. This reduced the series from length 5114 to length 2996. However, examination
of the series shows that the first 445 values are missing, so we remove those. This leaves a
series of length 2551 of which 85 are missing, and I decided just to remove those (slightly over
3%) with no further correction. Strictly speaking, we should allow for the missing values in
fitting the time series model, but that is not easy to do, and would probably not change the
following analysis much.

Fitting this series by the arima command in R suggests that the best model according to AIC
is the ARMA(1,3) model:

Call:
arima(x = x1, order = c(p, 0, q))

Coefficients:
ar1 ma1 ma2 ma3 intercept

0.9676 -0.3588 -0.2871 -0.1498 54.0837
s.e. 0.0082 0.0218 0.0214 0.0198 1.5844

sigma^2 estimated as 158.1: log likelihood = -9742.21, aic = 19496.41

The standard diagnostic plots in R suggest that this model is perfectly satisfactory.

We can define the function π(z) =
∑∞
j=0 πjz

j = 1−φ1z
1+θ1z+θ2z2+θ3z3

and calculate the coefficients
πj recursively; the first five of these (after π0 = 1) are π1 = −0.6089, π2 = 0.0687, π3 =
−0.0004, π4 = −0.0716, π5 = −0.0155; note that π1 is by far the largest in magnitude. The
optimal forecasting rule based on the infinite past would be x̂t+1 = µ−

∑∞
j=1 πj(xt+1−j − µ);

here µ = 54.0837 and the forecast standard deviation is
√

158.1 = 12.6. A possible rule for
sounding the alarm is therefore that we would compute p = 1− Φ

(
75−x̂t+1

12.6

)
(where Φ is the

standard normal distribution function) and sound the alarm whenever p > 0.5.

The forecast standard deviation of 12.6 should be compared with the standard deviation of
the series itself, which is 16.8; this reduction of standard deviation is a measure of the skill
of the forecast (compared with an alarm rule that does not take past values of the series into
account at all).

However there’s actually a simpler rule: the first partial autocorrelation coefficient is .644 and
this suggests the predictor x̃t+1 = µ + .644(xt − µ) which has prediction standard deviation
12.8, almost as good as the above and far simpler to implement, especially in the presence of
missing values.

Further refinements: There is a day of week effect (ozone is lower at the weekend) but this
doesn’t seem to be very important. What is more significant is that if you look directly for a



seasonal effect, there is one: the mean ozone level drops off sharply in September and October
compared with the main summer months. Therefore, a superior analysis would probably be
to fit a separate time series model for each month, or in some other way to take account of
this seasonal variation in the mean.

3. (a) {7 Points.} Apply correlation-based form of PCA (to put temperature and precipitation
on comparable scale). The screeplot and biplot are as follows:
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We can also plot the PC1 scores on a map (see next page).

The cumulative proportions of variance associated with the leading PCs are 0.61, 0.91,
0.962, 0.984,... and this as well as the screeplot suggests that at least 3 PCs are needed
to capture most of the variability. The loadings on PC1 are –.407, –.429, –.437, –.423,
.291, .387, 0, .194, so PC1 is high when temperatures are low and precipitation is high.
The map shows a clear east to west drift (PC1 higher in the west), though there is also
a north-south gradient. The other PCs did not have such an obvious spatial pattern, as
far as I could tell.

(b) {6 Points.}We can define a “region” variable according to longitude, with values 1,2,3,
and then apply a MANOVA, as in the iris data example in class. The results for the
four tests are

Df Pillai approx F num Df den Df Pr(>F)
region 2 1.1477 19.1887 16 228 < 2.2e-16 ***

Df Wilks approx F num Df den Df Pr(>F)
region 2 0.1553 21.7232 16 226 < 2.2e-16 ***

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
region 2 3.4898 24.4284 16 224 < 2.2e-16 ***

Df Roy approx F num Df den Df Pr(>F)
region 2 2.790 39.765 8 114 < 2.2e-16 ***
Residuals 120



By all four tests, the regional differences are very clearly significant.

(c) {7 Points.} This could be answered my either hierarchical or model-based clustering.
I applied this using the scores from the first two PCs as the raw data for the cluster
algorithm. With model-based clustering, the best model by BIC is “VEV with 3 com-
ponents”, producing the scatterplot shown below. Then we display the same clusters on
a map.
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The map shows a more refined spatial grouping than the original three boxes, with red
dots in the mountains to the west, green dots along the coast, and blue dots for every-
thing else. So it probably was worth doing the clustering: there is a clear geographical
interpretation to the result.

Comments on Student Solutions

Question 1 was generally well answered though some students got lost in the detailed algebraic
calculations of part (d). The part that seemed to cause most difficulty was actually (e); only a
handful of students got the correct answer for the likelihood ratio test. For the calculation of φ̂, I
was perfectly happy with a curve-drawing or trial-and-error solution, which is actually how I did
it myself, but several students used optimization or equation-solving programs in R, which is of
course a superior method in principle, though not if you got the wrong answer; in cases where that
happened, however, I think it was because of putting the wrong function into the program and not
misuse of the program itself.

Question 2 was the most open-ended and I tried therefore to be open-ended also in my grading
(not requiring that you do any specific steps, but trying to evaluate what you did do to see how
completely you answered the question). Common errors were (i) failing to describe sufficiently
clearly what you were doing, (ii) failing to give an explicit answer to part (b) (I really did want to
see an explicit prediction rule here, rather than just general description of the steps to be followed
— some of you didn’t even define the fitted model explicitly). Here is a summary of some of the
steps that could be taken — I didn’t expect every answer to contain all of these steps, but at some
level a complete solution would have to consider them.

• Treatment of missing values — probably best to omit the November–March values completely
since there are too few of them to perform a complete analysis (also, it’s very unlikely that
there would ever be an ozone alert during these months). Also, omit the first two years for
which there are no data anyway. However, for the isolated missing values that arise during
the summer series, there are essentially two things you can do, (i) just leave out these values
and analyze the time series without them, (ii) fill in these values by interpolating in some
way. One student downloaded some multiple imputation software form Gary King’s webpage
at Harvard, which showed commendable initiative, though I was perfectly happy if students
used simpler interpolation rules such as linear interpolation between the nearest neighbors.



• Transformations — some used a square root transformations; other used likelihood methods
to select a Box-Cox transformation, coming up with a λ of around 0.8. Either of these is
probably an improvement on applying time series analysis to the untransformed data, though
it’s not a clear-cut decision.

• Seasonal variation — two reasonable ways of doing this, (i) fit a seasonal trend term (e.g. by
polynomial trend estimation) and subtract from the ozone data to produce an approximately
mean 0 series, (ii) use differencing across a time lag of 1 year. Either produces a reasonable
solution but it’s important to take account of this part of the model when answering part (b).

• Trends — various among you fitted a linear, quadratic or in one case cubic trend to the data.
All I can say is I looked for a trend myself, both by simple linear regression at the beginning
and by including time as a covariate in the eventual ARMA model, and I didn’t see any
evidence of a trend. So I don’t know why some of you decided there was.

Question 3 was really less open-ended because I did ask you for a specific sequence of steps,
though there is a lot of latitude in how those individual steps are performed.

In (a), I think it really is necessary to use a correlation-based analysis or else account in some
other way for the downweighting of the precipitation values if you used covariance-based PCA. Some
students used covariance-based PCA and even commented on the fact that the precipitation values
received less weight, but didn’t draw the obvious conclusion (i.e. either rescale the precipitation
values or use correlation-based PCA). Most students preferred 2 for the number of significant PCAs,
but I did want some form of interpretation of the PCAs themselves for full credit.

Not much to say about (b); I was looking for a MANOVA test here. Some students did that
but did not obtain the numerical results given above.

In (c), I was willing to accept either hierarchical or model-based clustering (or some combination
of both, as many did) but the main weakness in the solutions was failing to explain the result,
especially how the division of stations by cluster analysis was related to the geographical division
in (b). In hierarchical clustering, the software produces the dendogram automatically so I didn’t
give too much credit just for that; the key issue is whether you know how to interpret it.


