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Analysis of Designed Experiments

8.1 Introduction

In this chapter we discuss experiments whose main aim is to study and
compare the effects of treatments (diets, varieties, doses) by measuring
response (yield, weight gain) on plots or units (points, subjects, patients).
In general the units are often grouped into blocks (groups, sets, strata) of
‘similar’ plots or units.

We assume we have a response y which is continuous (for example,
a normal random variable). We also have possible explanatory variables
which are discrete or qualitative, called factors. Here we consider treat-
ment factors whose values are assigned by the experimenter. The values
or categories of a factor are called levels, so that the levels of a treatment
factor are labels for the different treatments. For example, in comparing
engineering components from several different manufacturers, we could de-
fine indicator variables to denote the manufacturer. If there are k different
manufacturers, one way to do it is to define

xij =
{

1 if component i comes from manufacturer j,
0 otherwise, (8.1)

for j = 1, 2, ..., k − 1. We do not need to define xik because if xi1 = ... =
xi(k−1) = 0 then it automatically follows that component i is from manu-
facturer k. It is possible to use the regressor variables defined by 8.1, either
on their own or in conjunction with other continuous regressors, to fit a
linear regression model using standard software. If that were all there was
to it, we would not need a separate theory for the analysis of variance.
However, the specific issues raised by these models are such as to justify
and require a detailed treatment in their own right.

8.2 Completely Randomized Design

We allocate r treatments randomly to the n sample units such that the ith
treatment is allocated to ni units (i = 1, 2, . . . , r) (i.e. each treatment has
ni replications). Note there is no blocking here: very often in experimental
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design, the units are blocked into groups of similar units before being allo-
cated to treatments, but we are not assuming that kind of experiment yet
(see Section 7.3) — all n =

∑
i ni units are regarded as ‘similar’ and there

is one treatment factor with r levels. If the ni are all equal, then the exper-
iment is called balanced. Note that a completely randomized design with
r = 2 gives an experiment which is the same set-up as for a two-sample t-
test (Appendix A). An experiment with two treatments arranged in blocks,
so that each block contains one member assigned to the first treatment and
one member assigned to the second, corresponds to a matched pairs t-test.

For the completely randomized design we use the one-way model

yij = µ + αi + εij

where j = 1, 2, . . . , ni, i = 1, 2, . . . , r and
∑r

i=1 ni = n. In this model yij

is the response of the jth unit receiving the ith treatment, µ is an overall
mean effect, αi is the effect due to the ith treatment and εij is random
error. Another natural way to write this model is

yij = µi + εij

where j = 1, 2, . . . , ni, i = 1, 2, . . . , r and
∑r

i=1 ni = n. The only difference
between these two models is that µi is used to denote the total response to
treatment i. The first specification has the advantage that αi has a specific
interpretation as a “treatment effect” associated with treatment i.

We have the usual least squares assumptions that the εijs have zero
mean and constant variance σ2 and are uncorrelated. In addition we usu-
ally make the normality assumption that the εijs are independent normal
random variables. Together these mean that

yij ∼ N(µ + αi, σ
2)

and are independent.
We may note the following:

1. If treatment acts multiplicatively on the response, where yij = µαiεij

(where in this kind of model εij > 0 for all i and j), then the variance
of yij is non-constant, but by taking logarithms of the response, the
one way model may then be valid. (The model assumes the variance
is the same for each treatment group.)

2. Units, even in the same treatment group, are assumed to be uncorre-
lated.

3. The original response may need to be transformed to achieve normality.
Within this framework, some of the questions that we might want to

answer include
(a) estimating the µis, or equivalently µ and the individual αis,
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(b) estimating linear combinations of the µis or αis, especially contrasts:
linear combinations of the form

∑
i ciαi where

∑
i ci = 0,

(c) testing equality of all the µis, or equivalently the hypothesis H0 : α1 =
... = αr = 0.

Theoretical treatments of the analysis of variance often focus unduly
on objective (c), though it is important to remember that this is rarely an
interesting objective in its own right. It may well be a necessary preliminary
to some more meaningful question such as determining which of several
drugs or agricultural varieties is the best, or whether any of a number
of engineering manufacturers is differing unacceptably from a predefined
standard.

We can write the model in matrix form y = Xβ + ε,




y11

y12
...

y1n1

y21

y22
...

yrnr




=




1 1 0 0 . . . 0
1 1 0 0 . . . 0
...

...
...

...
. . .

...
1 1 0 0 . . . 0
1 0 1 0 . . . 0
1 0 1 0 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 1







µ
α1

α2
...

αr




+




ε11
ε12
...

ε1n1

ε21
ε22
...

εrnr




.

We can estimate the unknown parameters β = (µ, α1, α2, . . . , αr) by
least squares or equivalently by maximum likelihood under the normality
assumption by solving the normal equations

(XT X)β̂ = XT y.

These are (r + 1) equations in (r + 1) unknowns. We have

XT X =




n n1 n2 . . . nr

n1 n1 0 . . . 0
n2 0 n2 . . . 0
...

...
...

. . .
...

nr 0 0 . . . nr




,

XT y =




∑
i

∑
j yij∑

j y1j∑
j y2j

...∑
j yrj




=




G
T1

T2
...

Tr




,

where G is the grand total and Ti is the total for the ith treatment.



Chapter 8. Analysis of Designed Experiments 391

The normal equations are therefore

nµ̂ +
r∑

i=1

niα̂i =
∑

i

∑

j

yij , (8.2)

niµ̂ + niα̂i =
∑

j

yij i = 1, 2, . . . , r. (8.3)

The equations are not independent as the sum over i in (8.3) equals the
total in (8.2), so there are only r equations for r + 1 unknowns and there
are infinitely many solutions. However, this does not prevent the model
being estimated, because the fitted values are always the same whichever
solution is chosen and hence the residuals and residual sum of squares are
the same.

In order to solve the equations we have to add another equation or
constraint on the estimates. Consider three possible constraints:

1. Applying the constraint
∑

i niαi = 0 imples that µ equals the overall
mean,

µ̂ = ȳ =
G

n
=

∑∑
yij

n
.

Hence αi is estimated by

α̂i = ȳi· − ȳ··

where ȳi· =
∑

j yij/ni and ȳ·· =
∑

i

∑
j yij/n.

2. A second method is to set µ = 0, so that

α̂i = Ti/ni = ȳi·

3. Take α̂1 = 0. This is the solution adopted by some statistical packages
e.g. GLIM. It follows that µ̂ = ȳ1. and hence that

α̂i = ȳi· − ȳ1. for i = 2, 3, . . . , n.

For each of the three solutions the fitted values (estimated means) are

µ̂ + α̂i = ȳi·

for a unit in the ith treatment group. So the fitted values are identical, as
are the residuals,

eij = yij − ȳi·,

the residual sum of squares (SSE or deviance) and hence s2. The residual
sum of squares is given by

SSE =
∑

i

∑

j

(yij − ȳi·)2.
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8.2.1 The ANOVA Table

As in Chapters 2 and 3, a convenient way to represent the results of an anal-
ysis of variance is through a table known as the ANOVA table. Although
this is mathematically just a special case of the general development in
Section 3.5, it is useful to re-derive the results directly for this model.

The total (corrected) sum of squares is

SSTO =
∑

i

∑

j

(yij − ȳ··)2,

which is also known as the deviance after fitting the null model yij = µ+εij ,
i.e. a model with no treatment effects, α1 = α2 = . . . = αr = 0. The total
sum of squares SSTO can be decomposed:

∑

i

∑

j

(yij − ȳ··)2

=
∑

i

∑

j

[(yij − ȳi·) + (ȳi· − ȳ··)]2

=
∑

i

∑

j

(yij − ȳi·)2 +
∑

i

ni(ȳi· − ȳ··)2 + 2
∑

i

(ȳi· − ȳ··)
∑

j

(yij − ȳi·)

=
∑

i

∑

j

(yij − ȳi·)2 +
∑

i

ni(ȳi· − ȳ··)2

since
ni∑

j=1

(yij − ȳi·) = 0.

Hence
SSTO = SSE + SSTR

where SSE is the deviance under the full model

yij = µ + αi + εij .

The SSTR is the “sum of squares due to treatments”, analogous to SSR
in an ANOVA table for regression. It is the difference in deviances between
the null model and the full model, in other words, the extra sum of squares
due to the treatment effects or the increase in deviance when we assume
H0 : α1 = · · · = αr = 0 to be true. This is the extra sum of squares due
to H0. In order to test H0, note that

E{SSE} = E{
∑

i

∑

j

(yij − ȳi·)2}
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=
∑

i

E{
∑

j

(yij − ȳi·)2}

=
∑

i

(ni − 1)σ2

= (n− r)σ2

and hence

s2 =
SSE

n− r

is an unbiased estimate of σ2. Note that the divisor is total number of
observations minus number of independent parameters, which is also the
total number of degrees of freedom when the treatment means are uncon-
strained. Under the null model yij = µ + εij , all treatments have the same
effect. If H0 is true

E{SSTO} = (n− 1)σ2

and

E{extra SS due to treatments} = (n− 1)σ2 − (n− r)σ2

= (r − 1)σ2

Hence if H0 is true
SSTR

r − 1

is an unbiased estimate of σ2. Under the normality assumption it can be
shown that

SSTR

σ2
∼ χ2

r−1

and
SSE

σ2
∼ χ2

n−r

and that they are independent. Hence

F =
SSTR/(r − 1)
SSE/(n− r)

=
Treatment Mean Square

s2
∼ Fr−1,n−r (8.4)

under H0. So we reject H0 (and hence conclude that there are significant
differences among the treatments) if F > Fr−1,n−r;1−α.

The whole information may be summarized in the form of an analysis
of variance (ANOVA) table as in Table 8.1.
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Source DF SS MS F

Treatments r − 1
∑

i
T 2

i

ni
− G2

n
SS
r−1

SS/(r−1)
s2

Residual n− r by subtraction s2

Total n− 1 SSTO =
∑

i

∑
j y2

ij − G2

n

Table 8.1 ANOVA table for one-way analysis of variance.

8.2.2 Testing equality of variances
The preceding analysis has assumed that the variances are the same in all
samples. If the variances are allowed to be completely arbitrary, then there
is no exact procedure to test equality of the means — in the case r = 2,
this is just the Behrens-Fisher problem discussed in Appendix A. However,
it is advisable to test for the equality of variances. We describe here how
to construct a likelihood ratio test for this.

Define Si =
∑

j(yij − ȳi.)2 for i = 1, ..., r. Assume that yij ∼ N(µi, σ
2
i )

independently for all i and j, and consider testing H0 : σ2
1 = ... = σ2

r

against the alternative H1 that imposes no constraints on the {σ2
i }. The

likelihood L, maximized with respect to {µi}, is given by

L ∝
r∏

i=1

{(
1
σ2

i

)ni/2

exp
(
− Si

2σ2
i

)}
.

This is maximized with respect to σ2
i by setting σ̂2

i = Si/ni. Hence the
maximized likelihood under H1 is given, up to a constant of proportionality,
by

L1 =
r∏

i=1

{(
1
σ̂2

i

)ni/2

e−ni/2

}
.

Under H0, we replace σ2
i by a common σ2 in L, and maximize with respect

to σ2. This leads to σ̂2 =
∑

i Si/N , and the resulting likelihood given by

L0 =
(

1
σ̂2

)N/2

e−N/2.

Consequently the log likelihood ratio statistic is

T = 2 log
(

L1

L0

)
=

r∑

i=1

ni log
(

σ̂2

σ̂2
i

)
. (8.5)

Under H0, the approximate distribution of this statistic is

T ∼ χ2
r−1.
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8.2.3 Bartlett’s modification

Bartlett (1937), in the earliest example of what is now known as the Bartlett
correction, proposed a modification of this test to improve the χ2 approxi-
mation.

The steps in this modification are:

1. Replace ni by ni − 1 everywhere, so that σ̂2
i = Si/(ni − 1),

σ̂2 =
∑

i Si/(N − r) and replace ni by ni − 1 in (8.5),
2. With the definition of T thus modified, the distributional approxima-

tion is

{
1 +

1
3(r − 1)

r∑

i=1

(
1

ni − 1
− 1

N − r

)}−1

T ∼ χ2
r−1.

Hence reject H0 at level α if T > χ2
r−1;1−α, the upper-α quantile of

the χ2
r−1 distribution.

8.2.4 Two examples.

(i) The PEMA data.

Our first example is based on Streete et al. (1986).
Table 8.2 gives the serum levels of 2-ethyl-2-phenylmalonamide (PEMA)

in patients receiving anticonvulsant medication. The aim is to measure
PEMA levels in patients who are prescribed primidone either singly or
in combination with other anticonvulsants. In this example we shall only
consider patients who had similar dose levels of each of the four drug com-
binations listed below. The first group were given primidone alone, the
second primidone and phenobarbitone, the third primidone and phenytoin
and the last a combination of all three, primidone, phenobarbitone and
phenytoin. We shall fit a one-way model and look for evidence to indicate
real differences among the four different drug combinations.

DRUG
1 2 3 4

9.9 8.8 4.9 11.0
8.6 11.8 6.7 8.3
6.0 6.6 5.6 12.6
1.2 26.6 7.2 7.8
4.2 27.0 10.1 5.9
10.5 13.4 11.1 8.8
4.1 37.2 2.8 8.6

Table 8.2 PEMA data.



396 Chapter 8. Analysis of Designed Experiments

Quick inspection of the data suggests a highly skewed distribution in
some of the groups, so a logarithmic transformation was taken to improve
the fit to a normal distribution.

The ANOVA table for these transformed data is in Table 8.3.

Source DF SS MS F
Treatments 3 4.883 1.628 5.142
Residual 24 7.598 0.317
Total 27 12.481

Table 8.3 ANOVA table for the logged PEMA data.

From tables we find F24,3;0.99 = 4.718 and therefore there is very strong
evidence for differences between the treatments which in this case are the
drugs (the p-value is .007).

Table 8.4 gives the fitted values and residuals.

DRUGS
1 2 3 4

1.659+0.634 2.760−0.585 1.848−0.259 2.172+0.226
1.659+0.493 2.760−0.292 1.848+0.054 2.172−0.056
1.659+0.134 2.760−0.873 1.848−0.125 2.172+0.362
1.659−1.477 2.760+0.521 1.848+0.126 2.172−0.118
1.659−0.224 2.760+0.536 1.848+0.465 2.172−0.397
1.659+0.692 2.760−0.165 1.848+0.559 2.172+0.003
1.659−0.248 2.760+0.856 1.848−0.818 2.172−0.020

Table 8.4 Fitted values and residuals for the PEMA data.

For example, for drug 1 the average of log PEMA values is 1.659 and the
residuals are log(9.9)–1.659=0.634, log(8.6)–1.659=0.493, etc. Note that
from the ANOVA table s2 = 0.317 so that s = 0.563. The largest crude
residual in modulus is 1.477, for a t statistic of 2.623. Based on the nom-
inal t24 distribution, the two-sided p-value associated with that (in other
words, 2Pr{T > 2.623} when T ∼ t24) is .0149, not especially surprising
considering that this is the largest of 28 values.

We could plot the residuals (or the standardized residuals) against both
the fitted values and the treatment group number to check for homogeneity
of variance. Using Bartlett’s modified test produces the values in Table 8.5.
Here n = 28 and t = 4. We find that T = 6.66. With a null distribution of
χ2

3, this has a p-value of .084, so there is some slight evidence against H0.
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ȳi· 1.659 2.760 1.848 2.172
s2

i 0.572 0.418 0.217 0.059
ni 7 7 7 7

Table 8.5 Bartlett’s test for the PEMA data

(ii) Round-robin data.

Round-robin tests are tests performed under supposedly the same con-
ditions in a series of laboratories. They play an important part in the stan-
dardization of measurement procedures in physics and engineering. How-
ever, the tests are often expensive to perform, so the results of such studies
are often small unbalanced sets of data.

Table 8.6 is based on an actual example of such a study into the mea-
surement of the rate of creep rupture. Samples of a material were sent to 11
laboratories which were asked to perform repeat measurements. Tabulated
are ni, the number of tests performed at laboratory i, and the mean and
standard deviation (S.D.) of the measurements made at laboratory i. Also
computed in column 5 is Si = (ni − 1)(S.D.)2. The last two columns will
be explained a little further on.

Laboratory i ni Mean S.D. Si α̂i S.E.
1 5 102.1 48.1 9254.44
2 9 92.8 8.3 551.12 3.62 2.06
3 4 97.2 8.6 221.88 8.02 3.28
4 5 79.9 9.2 338.56 −9.28 2.90
5 5 87.0 4.8 92.16 −2.18 2.90
6 5 93.1 5.5 121.00 3.92 2.90
7 5 82.2 4.4 77.44 −6.98 2.90
8 6 54.9 1.9 18.05
9 5 94.0 8.3 275.56 4.82 2.90

10 5 90.4 2.2 19.36 1.22 2.90
11 5 84.7 5.7 129.96 −4.48 2.90

Table 8.6 Round-robin test data

It can be seen immediately that the S.D. for laboratory 1 is much larger
than the others, and an application of (8.5) immediately confirms that
this is significant: the likelihood ratio statistic is 103.3 with a nominal χ2

10

distribution. The 0.0001% point of χ2
10 is 46.9. In fact, the raw data for

laboratory 1 showed one extreme outlier which was not deleted from the
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reported data, almost certainly due to a recording error. If we ignore the
apparent discrepancy in variances and compute the F statistics (8.4) for
equality of means, the F value is 3.86, which is highly significant (with a
nominal distribution of F10,48, the p-value is .0007). However, in this case
the discrepancy in variances is to some extent masking differences in the
means, and to avoid such a bias in other comparisons, we delete laboratory
1 for the rest of the discussion.

To proceed with the analysis, deleting laboratory 1 and repeating the
tests for the other 10 laboratories, (8.5) yields the test statistic 22.6, nom-
inally χ2

9, which is still high (significant at 1% — actual p-value 0.007)
but not nearly as bad as before. In this case, the F statistic in (8.4) is
20.2, very highly significant against the nominal F9,44 distribution (theo-
retical p-value about 10−13). Further inspection of the data indicates that
laboratory 8 has a much lower mean than the others, and also the low-
est standard deviation. Omission of laboratory 8 (as well as laboratory 1)
leads to the test statistics 13.2 in (8.5), 3.67 in (8.4). The value 13.2 is not
significant against χ2

8 at the 10% level, so seems acceptable for the equality
of variances.

If the likelihood ratio statistics (8.5) are modified by the Bartlett correc-
tion, they become 77.9 for the full model with all 11 laboratories, 16.9 for
the model with laboratory 1 omitted, and 11.4 for the model with laborato-
ries 1 and 8 both omitted. The modification in the first case is substantial
but irrelevant. The value 16.9 is almost exactly at the 5% point for χ2

9, so
the effect of the modification here is to conclude that the assumption of
equality of variances might just be acceptable in this case (with labora-
tory 1 omitted), though since it is clear that laboratory 8 is discrepant in
its mean value, this does not affect our overall conclusions. The correction
from 13.2 to 11.4 in the third model strengthens the conclusion that the
variances can be assumed equal in this case. Thus the Bartlett correction
does not change any of our conclusions, but it does turn out to be numeri-
cally not negligible. In general it can be recommended that, in experiments
of this nature when the individual ni are small, it is worthwhile to apply
the Bartlett correction.

For the final model, with laboratories 1 and 8 both omitted, an ANOVA
table is shown in Table 8.7. The final F statistic for the hypothesis of no
treatment effect is 3.66, for a p-value of .003. Thus, we conclude that even
when laboratories 1 and 8 are omitted, there is still a significant difference
among the remaining 9 laboratories.

The last two columns of Table 8.6 show the estimates α̂i and their
standard errors for all laboratories except 1 and 8. To compute the standard
errors, note that
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Source DF SS MS F
Treatments 8 1374.0 171.75 3.66
Residual 39 1827.0 46.85
Total 47 3201.0

Table 8.7 One way ANOVA table for the round-robin test data with laboratories

1 and 8 omitted.

α̂i = ȳi. − ȳ.. =
(

1
ni
− 1

N

) ∑

j

yij − 1
N

∑

i′ 6=i

∑

j

yi′j

and consequently

Var(α̂i) =
(

1
ni
− 1

N

)2

σ2ni +
(

1
N

)2

σ2(N − ni)

= σ2 N − ni

Nni

so the standard error of α̂i may be computed as s
√

(N − ni)/(Nni) where
s2 is the usual unbiased estimate of σ2. From Table 8.7 this is calculated as
s2 = 46.85 and hence s = 6.84, and this is used to calculate the standard
errors in Table 8.6.

In the light of these calculations we can now see that the treatment
effects are significantly negative in laboratories 4 and 7, and significantly
positive in laboratory 3, while the others are not significantly different from
0.

The overall conclusion therefore is that laboratories 1 and 8 are gross
outliers, while laboratories 3, 4 and 7 are also producing results signifi-
cantly different from the remainder. Follow-up studies would be expected
to identify the reasons for this — for example, it is possible that some of the
laboratories were using a different measurement technique from the others,
and the conclusion in that case would be that the different techniques could
not be regarded as interchangeable.

8.2.5 Multiple Comparisons

If we have not pre-planned any specific comparisons between treatments
and there is evidence for differences we may still wish to investigate where
these differences lie. We shall describe three methods

(i) Least significant differences (LSD)

Suppose we have a balanced experiment so that n = rt. A general pro-
cedure for paired comparisons is to compute a “least significant difference”
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LSD = tν;0.025s

√
2
t
,

where ν = n− r and s
√

2
t is the estimated standard error of the difference

between two treatment means.
This gives a lower bound for a significant difference between pairs, so

that if a preplanned pair of means differs by more than LSD then there is
evidence to contradict the hypothesis that the two treatment effects are the
same. Note that there are r(r−1)/2 pairs of treatments, so even if there are
no differences in treatment effects, approximately 5% of differences between
pairs will exceed LSD. We should use LSD sparingly!

(ii) Scheffé’s method

Suppose we have an arbitrary set of treatments for which the treatment
sum of squares is significant (i.e. we reject a null hypothesis that the treat-
ment means are all equal), but there are no specific comparisons (or con-
trasts) for which we planned in advance to test. In this context, it is natural
to try to find simultaneous 100(1 − α)% confidence intervals for all possi-
ble contrasts. This raises issues similar to the discussion of simultaneous
confidence intervals in Sections 2.8 and 3.6. A contrast

∑r
i=1 aiαi = aT α

is estimated by aT α̂ or
∑r

i=1 aiȳi with variance
∑r

i=1 a2
i

σ2

ni
. Hence in the

case of a preplanned comparison a 100(1−α)% confidence interval for this
contrast would be

r∑

i=1

aiȳi ± tn−r; 12 αs

√√√√
r∑

i=1

a2
i

ni

and if this confidence interval includes the value zero, then this contrast is
‘not significant’, i.e. there is no evidence against the hypothesis

H0 :
r∑

i=1

aiαi = 0.

An adaptation of Scheffé’s method (Section 3.8) to this scenario shows that
the set of all confidence intervals of the form

r∑

i=1

aiȳi ± s

√√√√
r∑

i=1

a2
i

ni

√
(r − 1)Fr−1,n−r;α

contain the true values (
∑r

i=1 aiαi) with joint probability 1 − α (so are
‘simultaneous’ confidence intervals.

A useful property of Scheffé’s method is that at least one contrast will
be ‘significant’ (in other words, the confidence interval will exclude zero) if
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the treatment sum for squares of the standard F test is significant at the
same level of significance α.

(iii) Tukey’s method

This method gives simultaneous 100(1 − α)% confidence intervals for
all contrasts

r∑

i=1

aiȳi ± s

r∑

i=1

|ai|
2
√

ni
q(α, r, ν)

where q(α, r, ν) represents the percentage points of the distribution of the
studentized’ range statistic

1
s2

{
max

i
(ȳi)−min

i
(ȳi)

}

for which several published tables are available (e.g. Harter 1960, Rohlf and
Sokal 1995). Here ν = n− r the degrees of freedom in this case.

For paired comparisons with balanced design the three methods give us
the following intervals:

Scheffé : ȳi − ȳj ± s

√
2
t
(r − 1)Fr−1,n−r;α,

Tukey : ȳi − ȳj ± s√
t
q(α, r, n− r),

LSD : ȳi − ȳj ± s

√
2
t
tn−r,α/2.

A method of illustrating the comparisons is to write the means in order
on a scaled line and underline pairs not significantly different from each
other. For the PEMA data, the Scheffé interval width is ±0.904, Tukey is
±0.970 and LSD is ±0.621. The four drug means are 1.659, 2.760, 1.848
and 2.172 for drugs 1 to 4 respectively. The only two drugs which have a
difference larger than these values is obtained when comparing drugs 1 and
2 where the difference is 1.101. Hence using the methods of multiple com-
parisons suggests that only treatments 1 and 2 are significantly different.

8.3 The Two-Way Layout

In the one-way layout, there is only one factor that varies between the
groups. A more complicated and typical situation, however, is that there is
more than one factor. For example, in the round-robin example discussed in
section 8.2.4, it is possible that the different laboratories, instead of simply
repeating the same experiment a number of times, were in fact asked to
perform a fixed sequence of experiments, the objective being to determine
whether there was any overall difference among the laboratories. Another
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example is in clinical trials. Suppose a trial is set up to compare two drugs.
If the patients are simply assigned at random to the two drugs, it is likely
that the final distribution of ages, sexes and other prognostic variables such
as disease condition, will be quite different between the two groups. This
could seriously bias the results. A better way is first to stratify, i.e. divide
the patients into subgroups of roughly comparable individuals, and then
assign the two drugs randomly within each subgroup (or stratum).

In general, there could be many different factors that have to be taken
into account, and a complex arrangement could be necessary to do that.
The two-way layout refers to a set-up in which there are just two kinds of
effect, a treatment effect which is the main variable of interest, and a block
effect which is not of direct interest but which would bias the results if it
were not taken into account. In the round-robin example, assuming that it is
still the differences among laboratories that are of interest, the treatment
effect is the laboratory and the block effect is an individual experiment
within a laboratory. For a clinical trial, the treatment effect is usually the
treatment itself, e.g. the type of drug, while the block effect refers to the
factors such as the age, sex and clinical condition of the patients, which
determine the subdivision into strata.

We consider only a balanced experiment, in which the same number t
of observations are collected for each treatment-block combination, known
as a randomized block design. Initially, we only consider the case t = 1.
Assume there are r treatments and c blocks, and let yij denote the ob-
servation for treatment i and block j. A plausible model for this situation
is

yij = µ + αi + βj + εij , 1 ≤ i ≤ r, 1 ≤ j ≤ c, (8.6)

in which µ is an overall mean and αi and βj are respectively a treatment
effect and a block effect. The constraints on these are

∑

i

αi = 0,
∑

j

βj = 0, (8.7)

and we make the usual assumption that the {εij} are independent N(0, σ2).
Typically the {βj} are thought of as nuisance parameters and the real
interest is still in the {αi}. The hypothesis of no treatment effect is still
formulated as

H0 : α1 = α2 = ... = αr = 0 (8.8)

but now we want to test this without making any implicit or explicit as-
sumption that the {βj} are also 0. We can also test the hypothesis of no
block effect which is formulated as

H ′
0 : β1 = β2 = ... = βc = 0. (8.9)
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8.3.1 Estimates of the treatment and block effects

If we define ȳi. =
∑

j yij/c to be the i’th treatment mean, ȳ.j =
∑

i yij/r
to be the j’th block mean, and ȳ.. =

∑
i

∑
j yij/(rc) the overall mean, then

the appropriate estimates are obtained by minimizing

S =
r∑

i=1

c∑

j=1

(yij − µ− αi − βj)2,

and this is achieved by differentiating with respect to αi, i = 1, . . . , r and
βj , j = 1, . . . , c. There are r+c+1 equations, but only r+c−1 independent
equations. So there are an infinite number of solutions.
One possible solution is to assume that

∑r
i=1 α̂i = 0 and

∑c
j=1 β̂j = 0 and

hence
µ̂ = ȳ.., α̂i = ȳi. − ȳ.., β̂j = ȳ.j − ȳ...

The fitted values (estimated means) are

µ̂ + α̂i + β̂j = ȳi. + ȳ.j − ȳ..

For all solutions the residual sum of squares

Smin =
r∑

i=1

c∑

j=1

(yij − µ̂− α̂i − β̂j)2

=
r∑

i=1

c∑

j=1

(yij − ȳi· − ȳ·j + ȳ··)2

As in the one-way layout (with N = rc, ni = c), we may calculate
the variance of α̂i to be (r − 1)σ2/(rc), and similarly variance of β̂j is
(c − 1)σ2/(rc). For a contrast of the form

∑
i ciαi (

∑
i ci = 0) we have

the estimator
∑

i ciα̂i =
∑

i ciȳi., which has variance σ2
∑

i c2
i /c. Orthog-

onal contrasts can be used as before for preplanned comparisons of both
treatments and blocks when either of these two tests show evidence for
differences. Otherwise the methods of multiple comparisons (e.g. Scheffé)
can be used.

8.3.2 The ANOVA table

Consider the decomposition

∑

i

∑

j

(yij − ȳ..)2
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=
∑

i

∑

j

{(yij − ȳi. − ȳ.j + ȳ..) + (ȳi. − ȳ..) + (ȳ.j − ȳ..)}2

=
∑

i

∑

j

(yij − ȳi. − ȳ.j + ȳ..)2 + c
∑

i

(ȳi. − ȳ..)2 + r
∑

j

(ȳ.j − ȳ..)2

=
∑

i

∑

j

(yij − µ̂− α̂i − β̂j)2 + c
∑

i

α̂2
i + r

∑

j

β̂2
j

where as in earlier ANOVA calculations, the cross-product terms all turn
out to be 0. The final result may also be written in the form

SSTO = SSE + SSTR + SSB

as a decomposition of the total sum of squares SSTO into a sum of squares
due to error (or residual) SSE, a sum of squares due to treatment SSTR
and a sum of squares due to blocks SSB. The corresponding partition of
the degrees of freedom is

rc− 1 = (r − 1)(c− 1) + (r − 1) + (c− 1).

Hence we derive the ANOVA table in Table 8.8.

SOURCE SUM OF SQUARES D.F. MEAN SQUARE
Treatments SSTR r − 1 SSTR/(r − 1)
Blocks SSB c− 1 SSB/(c− 1)
Residual SSE (r − 1)(c− 1) SSE/{(r − 1)(c− 1)}
Total SSTO rc− 1

Table 8.8 Two-way ANOVA table.

To test the hypothesis (8.8) we use the F statistic

SSTR/(r − 1)
SSE/{(r − 1)(c− 1)} =

(c− 1)SSTR

SSE
∼ Fr−1,(r−1)(c−1) under H0.

Similarly to test the hypothesis (8.9) we use the F statistic

SSB/(c− 1)
SSE/{(r − 1)(c− 1)} =

(r − 1)SSB

SSE
∼ Fc−1,(r−1)(c−1) under H ′

0.

Example - Tensile properties of an alloy.

A quantity of an alloy was prepared under careful processing conditions
to attain precision and homogeneity of its properties. The alloy was rolled
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Bar Laboratories Mean
1 2 3 4 5 6

1 3.06 3.01 2.84 3.48 3.24 2.42 3.01
2 2.59 2.75 3.13 3.58 2.35 2.58 2.83
3 3.32 2.93 3.27 3.80 3.55 2.77 3.27
4 3.08 2.87 2.76 2.94 2.24 2.58 2.74

Mean 3.01 2.89 3.00 3.45 2.84 2.59 2.96

Table 8.9 Tensile properties of four alloy bars measured at six laboratories

into bars and lengths cut from four of these bars were sent to six laborato-
ries. The analysis concerned a particular tensile property. The data given in
Crowder (1992), form a balanced layout in which each laboratory conducts
a test on only one length from each of the four bars, and are given in Table
8.3.2. To calculate the ANOVA table by hand, we need

SSTO =
∑

i

∑

j

(yij − ȳ..)2

=
∑

i

∑

j

y2
ij − crȳ2

..

= 214.6906− 24× 2.96422 = 3.819,

SST = c
∑

i

(ȳi. − ȳ..)2

= c
∑

i

ȳ2
i. − crȳ2

..

= 212.4756− 24× 2.96422 = 1.605,

SSB = r
∑

j

(ȳ.j − ȳ..)2

= r
∑

j

ȳ2
.j − crȳ2

..

= 211.8522− 24× 2.96422 = 0.981,

SSE = SSTO − SST − SSB = 1.233.

The complete ANOVA table is therefore given in Table 8.10. The re-
spective F -tests that both the laboratories and bars are significant with
resultant p-values of 0.018 and 0.029 respectively. Residual plots can be
done to check the model assumptions.
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SOURCE SUM OF SQUARES D.F. MEAN SQUARE F
Laboratories 1.605 5 0.321 3.90
Bars 0.981 3 0.327 3.98
Residual 1.233 15 1.233
Total 3.819 23

Table 8.10 ANOVA table for tensile property data.

8.4 The two-way layout with interaction

The analysis in section 8.3 relies on the assumption that (8.6) is an appro-
priate model. This is known as an additivity assumption, since it implies
that one can deduce the combined effect of treatment and block simply by
adding up the separate effects for the two. One consequence of this assump-
tion, for example, is that it implies that differences between treatments are
the same for all blocks: if drug 1 is better than drug 2 on one group of
patients, then it is also better (by the same amount) on any other group of
patients. Such an assumption is often good enough as a first approximation
but may not be valid in general. Indeed one may even argue that detecting
interactions is sometimes the main purpose of the analysis. An example
of an interaction would be a statement that a certain drug is particularly
effective in comparison with another drug with one group of patients, but
not necessarily with other groups.

This implies that we might want to consider a more general model

yijk = µ + αi + βj + γij + εijk, 1 ≤ i ≤ r, 1 ≤ j ≤ c, 1 ≤ k ≤ t, (8.10)

subject to the constraints (8.7) plus

∑

j

γij = 0 for each i,

∑

i

γij = 0 for each j.

In this model we are assuming that there are t > 1 observations for
each treatment-block combination. The total number of parameters for
the treatment-block means is 1 for µ, r − 1 for the treatment effects (i.e.
r treatment effects subject to 1 constraint), c − 1 for the block effects
and (r − 1)(c − 1) for the interactions, a total of rc. This means that any
combination of the rc treatment-block means may be handled within the
framework of (8.10). However, if t = 1 then there are no degrees of freedom
left over to estimate σ2, hence our need to assume t > 1.

As in previous notation we use a dot to indicate averaging over the
dotted parameter - thus ȳi.. is the mean of all observations with treatment
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i, ȳij. is the mean of all observations with the i’th treatment and the j’th
block, and so on. In this notation we have

µ̂ = ȳ...,
α̂i = ȳi.. − ȳ...,
β̂j = ȳ.j. − ȳ...,
γ̂ij = ȳij. − ȳ.j. − ȳi.. + ȳ....

The ANOVA decomposition becomes

∑

i

∑

j

∑

k

(yijk − ȳ...)2

=
∑

i

∑

j

∑

k

(yijk − ȳij.)2 + t
∑

i

∑

j

γ̂2
ij + ct

∑

i

α̂2
i + rt

∑

j

β̂2
j

which may also be written as

SSTO = SSE + SSI + SSTR + SSB

with degrees of freedom

rct− 1 = rc(t− 1) + (r − 1)(c− 1) + (r − 1) + (c− 1).

Here SSI stands for sum of squares due to interaction. The ANOVA table
is Table 8.11.

SOURCE SUM OF SQUARES D.F. MEAN SQUARE
Treatments SSTR r − 1 SSTR/(r − 1)
Blocks SSB c− 1 SSB/(c− 1)
Interaction SSI (r − 1)(c− 1) SSI/{(r − 1)(c− 1)}
Residual SSE rc(t− 1) SSE/{rc(t− 1)}
Total SSTO rct− 1

Table 8.11 Two-way ANOVA table with interactions.

For example, one could test the hypothesis of no treatment effect with

SSTR/(r − 1)
SSE/{rc(t− 1)} ∼ Fr−1,rc(t−1) under H0 : αi = 0 for all i.

However, it might also be of interest to test whether there is any interaction,
in which case the appropriate F -test is based on
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SSI/{(r − 1)(c− 1)}
SSE/{rc(t− 1)} ∼ F(r−1)(c−1),rc(t−1) under H0 : γij = 0 for all i, j.

8.4.1 Tukey’s 1-DF test for additivity

Suppose we only have one observation for each treatment-block combina-
tion, but we still want to test for interactions. As previously explained, we
cannot fit the full model in which all the interactions are unconstrained.
Tukey (1949) proposed a solution to this problem. The idea is to assume
the model

yij = µ + αi + βj + θαiβj + εij , 1 ≤ i ≤ r, 1 ≤ j ≤ c, (8.11)

in which the interaction γij takes the specific form θαiβj . This is unlikely
to be the correct model but a test of θ = 0 should be a useful indication of
whether the model is additive or not.

To define a test for this, let us first define

zij = yij − ȳi. − ȳ.j + ȳ..,

and consider the model
zij = θaibj + eij (8.12)

in which the constants ai and bj are known and subject to
∑

i ai =
∑

j bj =
0, and the eij are errors.

In (8.12), the usual least squares estimation of θ (treating the errors as
independent) yields

θ̂ =

∑
i

∑
j zijaibj∑

i a2
i

∑
j b2

j

=

∑
i

∑
j yijaibj∑

i a2
i

∑
j b2

j

, (8.13)

the two expressions being identical because
∑

i ai =
∑

j bj = 0. From the
second expression, it can be seen that the variance of θ̂ is

σ2

∑
i a2

i

∑
j b2

j

.

Hence under H0 : θ = 0 we have

θ̂2
∑

i a2
i

∑
j b2

j

σ2
=

(
∑

i

∑
j yijaibj)2

σ2
∑

i a2
i

∑
j b2

j

∼ χ2
1.

Consider the ANOVA decomposition
∑

i

∑

j

z2
ij =

∑

i

∑

j

(zij − θ̂aibj)2 + θ̂2
∑

i

a2
i

∑

j

b2
j
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which we also write as

SSI = SSIE + SSG

with degrees of freedom

(r − 1)(c− 1) = (rc− r − c) + 1.

Let us calculate Cov(zij , θ̂) for given i, j. From (8.13) we have that

Cov(zij , θ̂) =
1∑

a2
i′

∑
b2
j′

∑

i′

∑

j′
ai′bj′Cov(zij , yi′j′).

However

Cov(zij , yi′j′) = Cov(yij − ȳi. − ȳ.j + ȳ.., yi′j′)

= σ2

(
δii′δjj′ − 1

c
δii′ − 1

r
δjj′ +

1
rc

)

where δ is the Kronecker delta (δij = 1 if i = j, 0 otherwise). Hence

Cov(zij , θ̂) =
σ2

∑
a2

i′
∑

b2
j′

∑

i′

∑

j′
ai′bj′

(
δii′δjj′ − 1

c
δii′ − 1

r
δjj′ +

1
rc

)

=
aibjσ

2

∑
a2

i′
∑

b2
j′

= aibjVar(θ̂).

Thus zij − aibj θ̂ is uncorrelated with θ̂ for each i, j. Since everything is
jointly normal, uncorrelated implies independent and hence the two sums
of squares, SSIE and SSG, are themselves independent. From this we
deduce the F test, that under H0 : θ = 0 we have

SSG

SSIE/(rc− r − c)
∼ F1,rc−r−c. (8.14)

Now comes the key step: we can do all this with the constants ai, bj

replaced by α̂i, β̂j respectively, and the final result (8.14) is still valid. The
reason is simply that all the {zij} are independent of the {α̂i} and {β̂j} so
that none of the distributional arguments leading to (8.14) are affected by
the fact that the {αi} and {βj} are estimated rather than known.

To summarize, the procedure is as follows. First calculate the {α̂i}, {β̂j}
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and {zij}, then compute

SSI =
∑

i

∑

j

z2
ij , SSG =

(
∑

i

∑
j zijα̂iβ̂j)2∑

i α̂2
i

∑
j β̂2

j

=
(
∑

i

∑
j yijα̂iβ̂j)2∑

i α̂2
i

∑
j β̂2

j

,

and let SSIE = SSI − SSG. Then 8.14 gives an exact F test of the
additivity of the model.

8.4.2 Example - Fisher data.

The data in Table 8.12 are taken from Fisher (1971), page 68, and give the
yields of five varieties of barley in six locations in each of two years, 1931 and
1932. The interest here is presumably in the comparison among different
varieties of barley (so “treatment” is variety), and one possible strategy
is to treat each place-year combination as a separate block. This suffers
from the disadvantage that it may not be possible to detect interactions.
A second strategy is to treat the places as blocks and the two years’ of
data as separate replications of the whole experiment, producing a 5 × 6
table with two observations per cell. The disadvantage of this is that the
residuals may be correlated with year. We shall try both strategies, starting
with the second one. (A third strategy might be to consider variety, place
and year all as separate factors and to do a three-way analysis, but we shall
not consider that.)

Place year Manchuria Svansota Velvet Trebi Peatland Mean
1 1931 81.0 105.4 119.7 109.7 98.3 102.82
1 1932 80.7 82.3 80.4 87.2 84.2 82.96
2 1931 146.6 142.0 150.7 191.5 145.7 155.30
2 1932 100.4 115.5 112.2 147.7 108.1 116.78
3 1931 82.3 77.3 78.4 131.3 89.6 91.78
3 1932 103.1 105.1 116.5 139.9 129.6 118.84
4 1931 119.8 121.4 124.0 140.8 124.8 126.16
4 1932 98.9 61.9 96.2 125.5 75.7 91.64
5 1931 98.9 89.0 69.1 89.3 104.1 90.08
5 1932 66.4 49.9 96.7 61.9 80.3 71.04
6 1931 86.9 77.1 78.9 101.8 96.0 88.14
6 1932 67.7 66.7 67.4 91.8 94.1 77.54

Column Mean 94.392 91.133 99.183 118.200 102.542 101.09

Table 8.12 Fisher’s data on barley varieties

Table 8.13 shows the analysis of variance table for this model. The F
statistics are 1327.5/458.9=2.89 for varieties, 4244.2/458.9=9.25 for places,



Chapter 8. Analysis of Designed Experiments 411

SOURCE SUM OF SQUARES D.F. MEAN SQUARE
SST 5309.97 4 1327.5
SSB 21220.90 5 4244.2
SSI 4433.02 20 221.7
SSE 13768.46 30 458.9
Total 44732.35 59

Table 8.13 ANOVA Table for 2-way model with interactions

.15 11.55 19.65 11.25 7.05
−.15 −11.55 −19.65 −11.25 −7.05
23.10 13.25 19.25 21.90 18.80

−23.10 −13.25 −19.25 −21.90 −18.80
−10.40 −13.90 −19.05 −4.30 −20.00

10.40 13.90 19.05 4.30 20.00
10.45 29.75 13.90 7.65 24.55

−10.45 −29.75 −13.90 −7.65 −24.55
16.25 19.55 −13.80 13.70 11.90

−16.25 −19.55 13.80 −13.70 −11.90
9.60 5.20 5.75 5.00 .95

−9.60 −5.20 −5.75 −5.00 −.95

Table 8.14 Residuals from 2-way model

221.7/458.9=0.48 for interactions. These are barely significant for a variety
effect (the 5% point of F4,30 is 2.69), highly significant for a place effect,
and not at all significant for interactions.

However, Table 8.14, which gives the residuals from this model, shows
that there is indeed a correlation with year. In nearly every case the yield in
1931 was higher than 1932, except for place 3 where the pattern is curiously
reversed. The (linear) correlation coefficient between residual and year is
−0.525, obviously a significant effect.

In view of this we try a second analysis, in which each place-year com-
bination is treated as a separate block (12 blocks in all), and Tukey’s test
is used to test for interactions. The analysis of variance table is given in
Table 8.4.2.

The F ratios are 8.18 for variety, 17.9 for the block effects, and 3.27 for
the interaction effect. However the latter is not significant, the 5% point
for the F1,43 distribution being about 4.1.
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SOURCE SUM OF SQUARES D.F. MEAN SQUARE
SST 5309.97 4 1327.5
SSB 31913.32 11 2901.2
SSG 531.09 1 531.1
SSIE 6977.97 43 162.3
Total 44732.35 59

Table 8.15 ANOVA Table for Tukey’s 1-DF test
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Figure 8.1 Plot of residuals vs. fitted values for barley data, 2-way model
without interactions

Finally, the residuals from this model have been examined with nothing
suspicious being observed. As an example, Figure 8.1 shows a plot of the
residuals against fitted values.

From this it appears that the second analysis is satisfactory. The prob-
lem with the first analysis was that, by failing to treat year as a separate
block effect, the estimated variance was inflated because of what was evi-
dently a significant difference between the two years.

8.5 Implementation in SAS and S-PLUS
8.5.1 ANOVA in SAS

The SAS procedure ANOVA may be used to fit any version of one-way
or two-day analysis of variance, and many more different types of models.
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Here is a simple example, applied to the PEMA data from Section 8.2.4.
First, we create a data file ‘pema.dat’, as follows:

1 9.9
1 8.6
1 6.0
1 1.2
1 4.2
1 10.5
1 4.1
2 8.8
2 11.8

...
4 8.8
4 8.6

Here, the data are arranged in two columns with the drug in the first
column and the serum level in the second.

A SAS program to analyze these data is as follows:

options ls=64 ps=58;
data pema;
infile ’pema.dat’
input drug serum;
lserum=log(serum);
run;
;
proc anova;
class drug;
model lserum=drug;
means drug /lsd sheffe tukey;
run;
;

In the call to ‘proc anova’, the statement ‘class drug’ means that ‘drug’
is being treated as a classified variable (or factor), rather than as a numer-
ical variable. The ‘model’ statement then fits the one-way ANOVA model,
with log serum as the response variable. The ‘means’ statement asks for
comparisons among the mean responses for each drug, with differences
evaluated according to each of the three criteria discussed in Section 8.2.7.

The output from this procedure is as follows:

The ANOVA Procedure

Class Level Information
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Class Levels Values

drug 4 1 2 3 4

Number of observations 28

Dependent Variable: lserum

Sum of
Source DF Squares Mean Square

Model 3 4.88313231 1.62771077

Error 24 7.59836533 0.31659856

Corrected Total 27 12.48149764

Source F Value Pr > F

Model 5.14 0.0069

Error

Corrected Total

R-Square Coeff Var Root MSE lserum Mean

0.391230 26.66922 0.562671 2.109814

Source DF Anova SS Mean Square

drug 3 4.88313231 1.62771077

Source F Value Pr > F

drug 5.14 0.0069

t Tests (LSD) for lserum

NOTE: This test controls the Type I comparisonwise error rate,
not the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 24
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Error Mean Square 0.316599
Critical Value of t 2.06390
Least Significant Difference 0.6207

Means with the same letter are not significantly different.

t Grouping Mean N drug

A 2.7597 7 2
A

B A 2.1719 7 4
B
B 1.8482 7 3
B
B 1.6594 7 1

Tukey’s Studentized Range (HSD) Test for lserum

NOTE: This test controls the Type I experimentwise error rate,
but it generally has a higher Type II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 0.316599
Critical Value of Studentized Range 3.90126
Minimum Significant Difference 0.8297

Means with the same letter are not significantly different.

Tukey Grouping Mean N drug

A 2.7597 7 2
A

B A 2.1719 7 4
B
B 1.8482 7 3
B
B 1.6594 7 1

Scheffe’s Test for lserum
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NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 24
Error Mean Square 0.316599
Critical Value of F 3.00879
Minimum Significant Difference 0.9036

Means with the same letter are not significantly different.

Scheffe Grouping Mean N drug

A 2.7597 7 2
A

B A 2.1719 7 4
B
B 1.8482 7 3
B
B 1.6594 7 1

The first part of the output reproduces the analysis of variance table
given earlier. The three sets of results in response to the ‘means’ state-
ment all come to the same conclusion: the order of the drugs in terms of
decreasing serum levels is 2, 4, 3, 1; drugs 2 and 4 form a common group
in the sense that they are no significantly different when judged by any of
the three tests; similarly, drugs 4, 3 and 1 form a common group. The ac-
tual critical values of t or F which determine these groupings are, however,
different.

Now let us consider a two-way ANOVA without interaction, using the
alloys data set of Section 8.3.2. The data are again arranged in column
format, in a file ‘alloy.dat’:

1 1 3.06
1 2 3.01
1 3 2.84

...
2 1 2.59
2 2 2.75
2 3 3.13

...
4 6 2.58

A sample SAS code is now as follows:

options ls=64 ps=58;
data alloy;
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infile ’alloy.dat’;
input bar lab strength;
run;
;
proc anova;
class bar lab;
model strength=bar lab;
means bar /sheffe;
means lab / sheffe;
run;
;

The only difference from the previous example is that the are now two
‘class’ variables, ‘bar’ and ‘lab’, and the model includes both of them.
The ‘means’ statement asks for comparisons of both, using the Scheffé test
criterion.

Here is part of the output (edited):

Dependent Variable: strength

Sum of
Source DF Squares Mean Square

Model 8 2.58635000 0.32329375

Error 15 1.23343333 0.08222889

Corrected Total 23 3.81978333

...

Source DF Anova SS Mean Square

bar 3 0.98141667 0.32713889
lab 5 1.60493333 0.32098667

Source F Value Pr > F

bar 3.98 0.0286
lab 3.90 0.0182

Scheffe’s Test for strength

...
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Scheffe Grouping Mean N bar

A 3.2733 6 3
A

B A 3.0083 6 1
B A
B A 2.8300 6 2
B
B 2.7450 6 4

...

Scheffe Grouping Mean N lab

A 3.4500 4 4
A

B A 3.0125 4 1
B A
B A 3.0000 4 3
B A
B A 2.8900 4 2
B A
B A 2.8450 4 5
B
B 2.5875 4 6

The results of the ANOVA table are the same as given earlier, result-
ing in the conclusion that both ‘bar’ and ‘lab’ are significant factors. The
’means’ comparison shows that bars 3, 1 and 2 form a common group (not
separated by the Scheffé test); likewise, bars 1, 2 and 4 form a common
group, but there are significant differences among all four groups. The cor-
responding comparisons for laboratories show that laboratories 4, 1, 3, 2, 5
form a common group, as do 1, 3, 2, 5, 6, but again, we reject the hypothesis
that all six laboratories are the same.

Now let us consider the Fisher barley yields example of Section 8.4.
The data set is again arranged in columns, with year in column 1, place in
column 2, variety (coded as 1–5) in columns 3, and yield in column 4:

1931 1 1 81.0
1931 1 2 105.4
1931 1 3 119.7
1931 1 4 109.7
1931 1 5 98.3
1932 1 1 80.7

...



Chapter 8. Analysis of Designed Experiments 419

1932 6 5 94.1

A possible SAS program is as follows:

options ls=64 ps=58;
data fisher;
infile ’fisher.dat’;
input year place variety yield;
run;
;
proc anova;
class year place variety;
model yield=place variety place*variety;
run;
;
proc anova;
class year place variety;
model yield=year place variety;
run;
;

The first analysis ignores ‘year’, but treats the experiment as a two-
way ANOVA with interaction — the variable ‘place*variety’ creates this
interaction. The second analysis is slightly different from the one given
earlier — in effect a three-day analysis of variance without interactions,
treating each of ‘year’, ‘place’ and ‘variety’ as a categorical variable.

The ANOVA table from the first analysis gives:

Sum of
Source DF Squares Mean Square

Model 29 30963.04083 1067.69106

Error 30 13767.46500 458.91550

Corrected Total 59 44730.50583

Source DF Anova SS Mean Square

place 5 21217.25483 4243.45097
variety 4 5313.39500 1328.34875
place*variety 20 4432.39100 221.61955

Source F Value Pr > F

place 9.25 <.0001
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variety 2.89 0.0387
place*variety 0.48 0.9535

This analysis confirms that, analyzed as a two-way ANOVA, the inter-
action term is nowhere near significant. However, the three-way analysis
including ‘year’ yields the following:

Sum of
Source DF Squares Mean Square

Model 10 30327.57133 3032.75713

Error 49 14402.93450 293.93744

Corrected Total 59 44730.50583

Source DF Anova SS Mean Square

year 1 3796.92150 3796.92150
place 5 21217.25483 4243.45097
variety 4 5313.39500 1328.34875

Source F Value Pr > F

year 12.92 0.0008
place 14.44 <.0001
variety 4.52 0.0035

This confirms that the ‘year’ variable is highly significant, with a p-value
of .0008, and therefore speaks strongly towards including it in the model.

8.5.2 ANOVA in R

In R, it is possible to do an analysis of variance using the lm command that
we usually use for linear regression, after first using factor to redefine the
treatment or block variable as a factor variable. For example, to fit the
PEMA data using lm, we could try
dat1<-matrix(scan(’D:/r/b/s105/dat1/pema.dat’),ncol=2,byrow=T)
drug<-factor(dat1[,1])
lpema<-log(dat1[,2])
lm1<-lm(lpema~drug)

The command summary(lm1) then produces the output
Call:
lm(formula = lpema ~ drug)

Residuals:
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Min 1Q Median 3Q Max
-1.477082 -0.251050 -0.008663 0.471353 0.856561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.6594 0.2127 7.803 4.9e-08 ***
drug2 1.1003 0.3008 3.659 0.00124 **
drug3 0.1888 0.3008 0.628 0.53614
drug4 0.5125 0.3008 1.704 0.10128
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5627 on 24 degrees of freedom
Multiple R-Squared: 0.3912, Adjusted R-squared: 0.3151
F-statistic: 5.141 on 3 and 24 DF, p-value: 0.006902

From this we see, in particular, that the F statistic for no treatment effect
has a p-value of about .007, implying we should reject that null hypothesis.
In this analysis, the treatment effect for drug 1 is by default assumed to be
0, and the analysis shows that the estimated treatment effects for drugs 2,
3, 4 are respectively 1.10, 0.19 and 0.51 about that for treatment 1.

Alternatively may replace the lm command with

aov1<-aov(lpema~drug)

The command summary(aov1) then yields

> summary(aov1)
Df Sum Sq Mean Sq F value Pr(>F)

drug 3 4.8831 1.6277 5.1412 0.006902 **
Residuals 24 7.5984 0.3166
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

At first sight, this is not more informative. However, the aov object offers
more. For example,

> TukeyHSD(aov1)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = lpema ~ drug)

$drug
diff lwr upr p adj

2-1 1.1003440 0.2706641 1.93002384 0.0063672
3-1 0.1887808 -0.6408991 1.01846067 0.9221370
4-1 0.5125161 -0.3171638 1.34219600 0.3435628
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3-2 -0.9115632 -1.7412430 -0.08188329 0.0275509
4-2 -0.5878278 -1.4175077 0.24185204 0.2329535
4-3 0.3237353 -0.5059445 1.15341521 0.7068677

This computes the mean and a 95% confidence limit for all the pairwise
treatment differences, using the Tukey pairwise comparisons procedure to
correct for multiple comparisons. The result shows that drug 2 yields a
higher mean response than either drug 1 or drug 3; however, none of the
other pairwise differences is statistically significant.

Another useful command is plot(aov1). This produces a number of
diagnostic plots, illustrated in Figure 8.2.

The next analysis performs a similar job for the alloys data set.

x<-matrix(scan(file=’alloy.dat’),ncol=3,byrow=T)
strength<-x[,3]
bar<-factor(x[,1])
lab<-factor(x[,2])
aov2<-aov(strength~bar+lab)

This performs a two-way analysis without interactions, treating both
“bar” and “lab” as factor variables. The command summary(aov2) pro-
duces

Df Sum Sq Mean Sq F value Pr(>F)
bar 3 0.98142 0.32714 3.9784 0.02862 *
lab 5 1.60493 0.32099 3.9036 0.01820 *
Residuals 15 1.23343 0.08223
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

confirming that both the lab effect and the bar effect are statistically sig-
nificant. If we which to know which pairwise differences are significant, we
can use TukeyHSD(aov2) yielding

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = strength ~ bar + lab)

$bar
diff lwr upr p adj

2-1 -0.1783333 -0.65549765 0.29883099 0.7081269
3-1 0.2650000 -0.21216432 0.74216432 0.4075721
4-1 -0.2633333 -0.74049765 0.21383099 0.4128340
3-2 0.4433333 -0.03383099 0.92049765 0.0730144
4-2 -0.0850000 -0.56216432 0.39216432 0.9546021
4-3 -0.5283333 -1.00549765 -0.05116901 0.0277449
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$lab
diff lwr upr p adj

2-1 -0.1225 -0.78128343 0.53628343 0.9890835
....
6-4 -0.8625 -1.52128343 -0.20371657 0.0074210

For the bar variable, the result shows that the bar 3 has a higher mean than
bar 4 but the other pairwise differences are not statistically significant. For
the lab variable, most of the rows have been edited out, but only for labs
4 and 6 is the difference statistically significant.

For the third example, we consider the Fisher barley yield data. In this
case, our R program is as follows:

x<-matrix(scan(file=’fisher.dat’),ncol=4,byrow=T)
yield<-x[,4]
place<-factor(x[,2])
year<-factor(x[,1])
var<-factor(x[,3])
aov3<-aov(yield~var*place)
aov4<-aov(yield~year+var+place)

The first aov call is to a two-way interaction on var and place, including in-
teraction (that is the meaning of writing var*place instead of var+place).
The ANOVA table

> summary(aov3)
Df Sum Sq Mean Sq F value Pr(>F)

var 4 5313.4 1328.3 2.8945 0.03872 *
place 5 21217.3 4243.5 9.2467 2.077e-05 ***
var:place 20 4432.4 221.6 0.4829 0.95347
Residuals 30 13767.5 458.9
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

shows significant effects for variety and place, but no interaction.
The second aov call is for a three-way analysis of variance without

interactions. In this case the ANOVA table is

> summary(aov4)
Df Sum Sq Mean Sq F value Pr(>F)

year 1 3796.9 3796.9 12.9174 0.0007541 ***
var 4 5313.4 1328.3 4.5192 0.0034655 **
place 5 21217.3 4243.5 14.4366 1.091e-08 ***
Residuals 49 14402.9 293.9
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

This shows all three main effects as statistically significant, but also a
much smaller mean squared error (293.9 against 458.9). This shows the
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importance of including the year variable in the model. The corresponding
diagnostic plots are shown in Figure 8.3.

Finally, if we call the TukeyHSD(aov4) command, we get the following
(most differences that are not statistically significant have been edited out):

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = yield ~ year + var + place)

$year
diff lwr upr p adj

1932-1931 -15.91 -24.80582 -7.014178 0.0007541

$var
diff lwr upr p adj

4-1 23.816667 3.9951888 43.638145 0.0111752
4-2 27.075000 7.2535221 46.896478 0.0028645
4-3 19.025000 -0.7964779 38.846478 0.0655987
5-4 -15.666667 -35.4881445 4.154811 0.1830523

$place
diff lwr upr p adj

2-1 43.15 20.413194 65.8868057 0.0000125
3-2 -30.73 -53.466806 -7.9931943 0.0027118
4-2 -27.14 -49.876806 -4.4031943 0.0108434
5-2 -55.48 -78.216806 -32.7431943 0.0000000
6-2 -53.19 -75.926806 -30.4531943 0.0000001
5-3 -24.75 -47.486806 -2.0131943 0.0255350
6-3 -22.46 -45.196806 0.2768057 0.0546248
5-4 -28.34 -51.076806 -5.6031943 0.0069063
6-4 -26.05 -48.786806 -3.3131943 0.0161431

This analysis confirms that both year and place are statistically significant
effects, but if our main interest were in the effect of variety, the conclusion is
that variety 4 is clearly better than varieties 1 and 2; the difference between
variety 4 and either of 3 or 5, although in both cases favoring variety 4, is
not statistically significant according to this analysis.
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Figure 8.2. Analysis of variance plots for PEMA data (from plot(aov1)
command in R).
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Figure 8.3. Analysis of variance plots for Fisher data, second analysis
(from plot(aov4) command in R).
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8.6 Exercises

1. In a round-robin experiment, the individual sample numbers ni, sam-
ple means ȳi and sample standard deviations si are as in Table 1.

i ni ȳi si

1 5 37.4 5.1
2 5 42.3 3.1
3 5 49.3 2.7
4 8 36.1 1.7

Table 8.16 Data set for problem 8.1

It looks as though sample 3 has higher mean than the others. Do
the data in fact support that this is a significant difference? (Assume
the individual observations are all normally distributed with common
variance σ2).

2. Ozonation as a secondary treatment for effluent following absorption
by ferrous chloride was studied for three reaction times and three PH
levels. The data in Table 8.17 were obtained for effluent decline.

PH Level
7 9 10.5

23 16 14
Reaction 20 21 18 13

22 15 16
20 14 12

Time 40 22 13 11
19 12 10
21 13 11

(Minutes) 60 20 12 13
19 12 12

Table 8.17 Data for Problem 8.2.

(a) Obtain the ANOVA table for a two-way analysis with interactions.

Based on the table just computed, answer the following questions:
(b) Are the effects due to PH and reaction time significant?
(c) Are the interactions significant?
(d) In future operation, it is expected to maintain the PH level as 7,

while the reaction time will be 20 minutes for half the total time of
operation, and 40 minutes for the other half. Obtain an estimate,
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with its standard error, for the mean effluent decline, assuming (i)
interactions are present, and (ii) that they are not, and comment
on any noticeable differences between the two results.

3. This question is about an analysis of variance experiment, reinter-
preted as a linear regression. It does not assume detailed knowledge
about analysis of variance.
A recent paper (Lee, J. and Wrolstad, R.E. (2004), Extraction of an-
thocyanins and polyphenolics from blueberry-processing waste, Jour-
nal of Food Science 69, No. 7, C564–C573) discussed the following
experiment related to the extraction of juice from blueberries. Three
control variables were considered: temperature, level of sulfur diox-
ide (SO2) and citric acid (coded as 0 or 1). Two response variables
were measured: ACY (anthocynanin) and TP (total phenolics), both
of which are considered to have beneficial health effects. The data were
as follows:

Number Temp SO2 Citric ACY TP
(deg C) (ppm) Acid

1 50 0 0 27.5 55.9
2 50 0 1 42.6 62.6
3 80 0 0 50.2 71.4
4 80 0 1 62.4 88.8
5 50 50 0 92.2 307.3
6 50 50 1 96.5 316.4
7 80 50 0 97.5 420.6
8 80 50 1 102.2 413.8
9 50 100 0 90.6 386.0

10 50 100 1 82.2 337.5
11 80 100 0 92.1 641.0
12 80 100 1 91.4 684.3

Consider the model

yijk = µ + αi + βj + γk + δij + ηik + ζjk + εijk, (8.15)

where αi, i = 1, 2, βj , j = 1, 2, 3, γk, k = 1, 2 are main effects
due to temperature, SO2 and citric acid respectively, δij , ηik, ζjk are
interaction terms, and εijk are independent N(0, σ2) errors. To make
the model identifiable, assume any of αi, βj , γk, δij , ηik, ζjk is 0 when
any of i, j, k is 1 (note that this is a different identifiability condition
from the ones assumed in most of the examples of this chapter).

(a) Write the model (8.15) in the form Y = Xβ + ε, where Y is the
vector of responses (of dimension 12), the vector β consists of all
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the non-zero unknown parameters, and X is a design matrix of
zeros and ones. (You should find that X is 12× 10.)

(b) Using SAS’s PROC REG or the “lm” command in R or S-PLUS,
fit the model (8.15) to the data, where temperature, SO2 and cit-
ric acid are the three factor variables and ACY is the response.
Also consider possible transformations of the response and indi-
cate which you prefer. (For example, you should consider both the
square root and the log transformation, and others in the Box-Cox
family if you have time. It is not necessary to give detailed tables
of parameter values, but state the value of the residual sum of
squares or the estimated s, and any other statistics that are di-
rectly relevant to the question.)

(c) Now using whatever transformation you selected in (b), decide
which of the main effects and interactions is significant. (Again, I
don’t want very detailed regression output, but indicate the main
steps of your analysis and how you did them.)

(d) Repeat the steps of (b) and (c) for the TP response variable. (It’s
not necessary that the transformation of TP be the same as that
for ACY.)

(e) Write a short report on your conclusions for the company. Recall
that the company’s objective is to choose one setting of the three
control variables so that both ACY and TP are high. Your report
should indicate which settings you recommend, but should also
make clear to what extent the differences among different possi-
ble settings are statistically significant, and whether you would
recommend further experimentation.

Note: The proposed analysis in this question differs substantially from
that in the paper from which the data are derived.


