
STOR 664: FINAL EXAM
DECEMBER 14 2009

This is an open book exam. Course text, personal notes and calculator are allowed. You have
3 hours to complete the exam. Answers should preferably be written in blue books.

SHOW ALL WORKING: You are not expected to provide lengthy explanations or to reproduce
standard results that are in the text, but you should show all working in enough detail to make
clear how your answers were obtained.

The University Honor Code is in effect during this exam and you should sign the “pledge” at
the front of your exam book. If you have questions, please ask the instructor.

The total number of points on the exam is 100. To guide you in allocating your time, the points
available for each question or part of a question are shown in boldface type.

1. We are given three rectangular metal objects, for which the volumes are given by the formula

V olumej = Lengthj ×Breadthj ×Heightj , j = 1, 2, 3.

However, it is known that all three objects were made using exactly the same amount of
metal, therefore the three volumes are equal. If we define

θ1 = log Length1, θ2 = log Breadth1, θ3 = log Height1,

θ4 = log Length2, θ5 = log Breadth2, θ6 = log Height2,

θ7 = log Length3, θ8 = log Breadth3, θ9 = log Height3,

the problem becomes to estimate θ1, ..., θ9 under the constraint

θ1 + θ2 + θ3 = θ4 + θ5 + θ6 = θ7 + θ8 + θ9.

Suppose we are given measurements of the form yi = θi + εi, i = 1, 2, ..., 9, where εi are
independent N [0, σ2].

By recasting the problem in the form

θ1 = β1 + β2,

θ2 = β1 + β3,

θ3 = β1 − β2 − β3,

θ4 = β1 + β4,

θ5 = β1 + β5,

θ6 = β1 − β4 − β5,

θ7 = β1 + β6,

θ8 = β1 + β7,

θ9 = β1 − β6 − β7,

write down the normal equations for β̂1, ..., β̂7 (note: you are not being asked to solve the
normal equations). Find the variances of β̂1, ..., β̂7 and show theoretically that each of θ̂1 =
β̂1 + β̂2, θ̂2 = β̂1 + β̂3, etc., has variance 7

9σ2. [20 points.]
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2. A recent paper (by G.-H. Lee and M.-G. Shen, Journal of Food Science 74, E519–E525, 2009)
considered the influence of three process variables (feeding rate FR, air pressure AP and prod-
uct temperature PT) on the production of spherical red ginseng capsules. The experimental
design (in standardized units for each of the three variables) is as follows, together with the
yield Y:

Number FR AP PT Y Number FR AP PT Y
1 -1 -1 -1 76.27 9 0 0 0 84.91
2 -1 -1 1 67.29 10 -2 0 0 74.51
3 -1 1 -1 74.84 11 2 0 0 76.33
4 -1 1 1 64.95 12 0 -2 0 58.65
5 1 -1 -1 60.67 13 0 2 0 78.41
6 1 -1 1 61.02 14 0 0 -2 56.17
7 1 1 -1 64.30 15 0 0 2 58.43
8 1 1 1 62.69

We fit the model

yi = β0 + β1FR2
i + β2AP2

i + β3PT2
i + β4FRiAPi + β5FRiPTi + β6APiPTi

+β7FRi + β8APi + β9PTi + εi

with εi independent N(0, σ2) for some unknown σ2.

You are given the following fit of the model, where some of the entries have been intentionally
replaced by ?:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 80.4333 6.9468 11.579 8.43e-05 ***
FRFR -1.8129 ? ? ?
APAP -3.5354 2.3667 -1.494 0.1955
PTPT -6.3429 ? ? ?
FRAP 1.1337 ? ? ?
FRPT ? 2.7849 ? ?
APPT -0.3588 ? ? ?
FR -1.9394 ? ? ?
AP 2.5656 ? ? ?
PT ? ? ? ?
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.877 on 5 degrees of freedom
Multiple R-Squared: 0.7165, Adjusted R-squared: 0.2062
F-statistic: 1.404 on 9 and 5 DF, p-value: 0.3703

(a) Write down the X matrix for this problem, and calculate XT X. [8 points.]

(b) Fill in the entries marked by ? in the preceding table, as accurately as you are able to.
[12 points.]
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Hints: (i) This question does not require that you calculate the full matrix inverse of
XT X. (ii) For the last column of the table, use the following table of percentage points
of the t5 distribution. You are not expected to work out the last column to any greater
precision than the numbers in this table.

x 0 0.13 0.27 0.41 0.56 0.73 0.92 1.16 1.48 2.02 2.57 4.03
Pr{|t5| > x} 1 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.05 0.01

(c) Based on the estimates β̂0, ..., β̂9, it is stated that the fitted surface has a local maximum
at FR=–0.5566, AP=0.2828, PT=–0.1815. Without doing any detailed calculations,
explain how this calculation was made. [8 points.]

(d) The claim is made that the true values at which the maximum expected yield is at-
tained are FR=r, AP=s, PT=t (for given numbers r, s, t). Without doing any detailed
calculations, explain how to construct an F test of this hypothesis. [8 points.]

(e) How would you use the result of part (d) to construct a joint 95% confidence region for
the values of (FR, AP, PT) at which the maximum expected yield is attained? Once
again, detailed numerical calculations are not required. [4 points.]

3. Much of the recent debate over climate change has focussed on the possibility of reconstruct-
ing historical temperatures using various proxies for global temperature. One of the most
commonly used proxies is tree ring measurements. However, before such proxies can be reli-
ably used, it is necessary to test their ability to reproduce observed global temperatures for
the period for which direct observations are available.

To conduct such a test, annual tree ring measurements from 70 trees were compared with
direct measurements of global mean temperature for the years 1850–1980. We performed a re-
gression of global mean temperature (the y variable) on a subset of tree rings (the x variables)
in order to see how well the temperature could be approximated by a linear combination of
tree measurements. Two strategies were employed, with results shown in Appendices A–C.

(i) We first identified all the trees for which the correlation with the global temperature
series was greater than 0.4, a total of six trees. Then, a conventional variable selection
was performed with these six trees.

(ii) Prior to any regression, a principal components analysis was performed on the tree
rings, and the scores of the leading principal components were calculated. Recall that
in principal components analysis, it is customary to list the principal components in
decreasing order of variance. A variable selection was performed on the scores of the
leading 15 principal components.

(a) For strategy (i), which model would you select? Use F statistics to compare models of
different order. (Hint. Since 1 − R2 = SSE/SSTO, it is possible to compute all the
SSE values, modulo a constant, directly from the R2 values.) [10 points.]

(b) Write a detailed report for the model containing just trees 1, 5 and 6 (the analysis in
Appendix B). Using the detailed output statistics, highlight any features of the analysis
that might indicate a poor fit of the model. [20 points.]

(c) For strategy (ii), comment on which principal components you would include in the
model. Overall, do you think strategy (ii) is better than strategy (i)? [10 points.]
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Appendix A: R-Square Values for Strategy (i)
(Leading 2 models for each of model orders 1 through 6)

Number in
Model R-Square Variables in Model

1 0.3178 tree1
1 0.3134 tree2

-------------------------------------------------------------
2 0.4010 tree2 tree6
2 0.3957 tree1 tree6

-------------------------------------------------------------
3 0.4248 tree1 tree5 tree6
3 0.4169 tree2 tree5 tree6

-------------------------------------------------------------
4 0.4344 tree1 tree4 tree5 tree6
4 0.4311 tree1 tree2 tree5 tree6

-------------------------------------------------------------
5 0.4408 tree1 tree2 tree4 tree5 tree6
5 0.4399 tree1 tree2 tree3 tree5 tree6

-------------------------------------------------------------
6 0.4470 tree1 tree2 tree3 tree4 tree5 tree6

Appendix B: Detailed Analysis for Model Including Trees 1, 5, 6 Only

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 1.55269 0.51756 31.27 <.0001
Error 127 2.10233 0.01655
Corrected Total 130 3.65501

Root MSE 0.12866 R-Square 0.4248
Dependent Mean -0.26125 Adj R-Sq 0.4112
Coeff Var -49.24804

Parameter Estimates
Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 -0.90654 0.06766 -13.40 <.0001 0
tree1 1 0.22897 0.06513 3.52 0.0006 1.65526
tree5 1 0.15728 0.06204 2.54 0.0125 1.50829
tree6 1 0.17705 0.05022 3.53 0.0006 1.41039
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Output Statistics

Cook’s Hat Diag Cov
Obs -2-1 0 1 2 D RStudent H Ratio DFFITS

1 | *| | 0.003 -0.5744 0.0296 1.0526 -0.1004
2 | |* | 0.011 0.8330 0.0616 1.0760 0.2135
3 | | | 0.001 0.3307 0.0470 1.0793 0.0735
4 | | | 0.001 -0.2783 0.0461 1.0793 -0.0612
5 | | | 0.000 0.0254 0.0363 1.0710 0.0049
6 | | | 0.000 0.1106 0.0367 1.0710 0.0216
7 | | | 0.000 0.0965 0.0342 1.0684 0.0182
8 | | | 0.000 -0.1832 0.0493 1.0845 -0.0417
9 | **| | 0.008 -1.1192 0.0264 1.0190 -0.1843

10 | | | 0.000 -0.1771 0.0173 1.0492 -0.0235
11 | *| | 0.001 -0.6845 0.0118 1.0291 -0.0748
12 | | | 0.001 -0.3625 0.0197 1.0485 -0.0514
13 | **| | 0.007 -1.4625 0.0138 0.9784 -0.1731
14 | |* | 0.012 0.9863 0.0452 1.0483 0.2147
15 | ***| | 0.018 -1.5731 0.0289 0.9833 -0.2714
16 | |*** | 0.031 1.6255 0.0451 0.9947 0.3531
17 | | | 0.000 -0.2234 0.0196 1.0511 -0.0316
18 | | | 0.000 -0.1672 0.0133 1.0452 -0.0194
19 | | | 0.000 -0.0651 0.0266 1.0602 -0.0108
20 | | | 0.001 0.3301 0.0250 1.0550 0.0529
21 | | | 0.000 -0.0398 0.0221 1.0554 -0.0060
22 | | | 0.000 -0.1837 0.0186 1.0505 -0.0253
23 | |* | 0.001 0.5885 0.0148 1.0361 0.0720
24 | | | 0.000 -0.1865 0.0221 1.0543 -0.0281
25 | **| | 0.018 -1.3817 0.0366 1.0088 -0.2692
26 | *| | 0.002 -0.6891 0.0182 1.0355 -0.0938
27 | *| | 0.001 -0.7086 0.0097 1.0257 -0.0700
28 | |*** | 0.011 1.7778 0.0136 0.9476 0.2085
29 | |***** | 0.046 3.0988 0.0201 0.7852 0.4438
30 | |* | 0.002 0.5691 0.0281 1.0511 0.0968
31 | |** | 0.009 1.1981 0.0255 1.0123 0.1939
32 | |*** | 0.039 1.7228 0.0504 0.9902 0.3968
33 | |* | 0.003 0.8047 0.0175 1.0292 0.1073
34 | |* | 0.005 0.8382 0.0279 1.0384 0.1421
35 | | | 0.001 0.3147 0.0390 1.0706 0.0634
36 | | | 0.000 0.1692 0.0348 1.0684 0.0321
37 | | | 0.000 0.1937 0.0102 1.0415 0.0197
38 | | | 0.000 -0.0926 0.0224 1.0555 -0.0140
39 | | | 0.000 0.1945 0.0173 1.0490 0.0258
40 | |** | 0.009 1.1876 0.0241 1.0116 0.1868
41 | | | 0.000 -0.1808 0.0382 1.0720 -0.0360
42 | *| | 0.001 -0.5750 0.0137 1.0355 -0.0677
43 | **| | 0.006 -1.3967 0.0132 0.9836 -0.1615
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44 | ***| | 0.006 -1.5562 0.0096 0.9657 -0.1535
45 | *| | 0.003 -0.5528 0.0403 1.0651 -0.1132
46 | *| | 0.002 -0.7724 0.0153 1.0285 -0.0961
47 | |* | 0.002 0.8497 0.0135 1.0226 0.0993
48 | |** | 0.018 1.0781 0.0571 1.0551 0.2652
49 | **| | 0.007 -1.1764 0.0202 1.0083 -0.1687
50 | | | 0.000 -0.1792 0.0139 1.0456 -0.0213
51 | | | 0.000 0.2569 0.0129 1.0434 0.0293
52 | *| | 0.001 -0.5623 0.0124 1.0347 -0.0630
53 | **| | 0.006 -1.2637 0.0146 0.9959 -0.1536
54 | **| | 0.016 -1.3264 0.0352 1.0120 -0.2532
55 | ***| | 0.013 -1.5922 0.0206 0.9731 -0.2308
56 | *| | 0.003 -0.8567 0.0167 1.0255 -0.1116
57 | | | 0.000 0.0277 0.0179 1.0509 0.0037
58 | ***| | 0.009 -1.9389 0.0096 0.9265 -0.1906
59 | ****| | 0.012 -2.1463 0.0105 0.9035 -0.2210
60 | ****| | 0.047 -2.4874 0.0309 0.8792 -0.4443
61 | ***| | 0.010 -1.5725 0.0166 0.9710 -0.2041
62 | *****| | 0.029 -2.7304 0.0161 0.8335 -0.3495
63 | **| | 0.013 -1.2281 0.0335 1.0183 -0.2287
64 | | | 0.000 -0.0543 0.0565 1.0939 -0.0133
65 | | | 0.000 -0.0504 0.0208 1.0539 -0.0073
66 | |* | 0.007 0.9151 0.0319 1.0383 0.1662
67 | *| | 0.002 -0.5465 0.0204 1.0437 -0.0790
68 | **| | 0.014 -1.3119 0.0307 1.0085 -0.2333
69 | | | 0.000 -0.3093 0.0127 1.0423 -0.0351
70 | | | 0.000 0.0231 0.0384 1.0733 0.0046
71 | | | 0.001 0.2667 0.0273 1.0587 0.0447
72 | |* | 0.003 0.7668 0.0182 1.0318 0.1043
73 | **| | 0.005 -1.0046 0.0191 1.0192 -0.1403
74 | | | 0.000 -0.3086 0.0094 1.0388 -0.0301
75 | | | 0.000 0.1001 0.0222 1.0552 0.0151
76 | | | 0.000 -0.0851 0.0215 1.0545 -0.0126
77 | |* | 0.002 0.7543 0.0138 1.0279 0.0892
78 | *| | 0.001 -0.5723 0.0142 1.0362 -0.0687
79 | | | 0.000 0.1905 0.0297 1.0625 0.0333
80 | **| | 0.011 -1.0731 0.0383 1.0348 -0.2140
81 | | | 0.000 0.1765 0.0201 1.0522 0.0252
82 | |* | 0.003 0.7832 0.0185 1.0314 0.1076
83 | | | 0.000 -0.1957 0.0195 1.0514 -0.0276
84 | *| | 0.002 -0.8960 0.0122 1.0187 -0.0996
85 | |* | 0.003 0.7660 0.0191 1.0329 0.1069
86 | | | 0.000 -0.0476 0.0224 1.0557 -0.0072
87 | | | 0.002 0.4779 0.0343 1.0611 0.0901
88 | | | 0.000 0.1368 0.0437 1.0787 0.0292
89 | |** | 0.015 1.1913 0.0418 1.0299 0.2487
90 | |** | 0.011 1.3182 0.0241 1.0013 0.2073
91 | |* | 0.005 0.7396 0.0321 1.0480 0.1347
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92 | |**** | 0.013 2.3610 0.0095 0.8764 0.2318
93 | |* | 0.003 0.7224 0.0246 1.0408 0.1147
94 | |** | 0.005 1.0112 0.0185 1.0181 0.1387
95 | |***** | 0.016 2.6537 0.0095 0.8383 0.2593
96 | |** | 0.010 1.2818 0.0244 1.0045 0.2029
97 | | | 0.003 -0.4254 0.0546 1.0855 -0.1022
98 | | | 0.002 0.3802 0.0487 1.0800 0.0860
99 | | | 0.001 -0.4008 0.0166 1.0442 -0.0521
100 | |* | 0.007 0.7432 0.0506 1.0683 0.1716
101 | **| | 0.005 -1.1555 0.0147 1.0043 -0.1413
102 | | | 0.001 -0.3489 0.0376 1.0683 -0.0689
103 | |* | 0.011 0.8827 0.0519 1.0621 0.2066
104 | |** | 0.013 1.1659 0.0369 1.0266 0.2282
105 | | | 0.000 0.0261 0.0252 1.0588 0.0042
106 | *| | 0.008 -0.9019 0.0391 1.0469 -0.1820
107 | **| | 0.006 -1.0852 0.0216 1.0164 -0.1612
108 | |* | 0.015 0.8953 0.0701 1.0822 0.2459
109 | |** | 0.020 1.3889 0.0398 1.0115 0.2827
110 | | | 0.000 -0.0495 0.0394 1.0744 -0.0100
111 | |* | 0.002 0.6601 0.0189 1.0376 0.0916
112 | |* | 0.019 0.9954 0.0698 1.0753 0.2726
113 | |** | 0.006 1.2073 0.0160 1.0018 0.1541
114 | |* | 0.004 0.7354 0.0292 1.0451 0.1274
115 | ***| | 0.018 -1.5154 0.0313 0.9912 -0.2722
116 | | | 0.001 -0.4296 0.0306 1.0585 -0.0763
117 | |* | 0.003 0.9503 0.0115 1.0147 0.1023
118 | | | 0.002 -0.3570 0.0450 1.0764 -0.0775
119 | *| | 0.023 -0.9661 0.0905 1.1018 -0.3048
120 | |* | 0.023 0.5678 0.2234 1.3155 0.3046
121 | | | 0.000 0.1070 0.0316 1.0654 0.0193
122 | | | 0.002 -0.4197 0.0393 1.0684 -0.0849
123 | |*** | 0.016 1.5185 0.0275 0.9870 0.2553
124 | |*** | 0.014 1.5993 0.0214 0.9732 0.2363
125 | *| | 0.003 -0.5842 0.0365 1.0597 -0.1138
126 | *| | 0.002 -0.5104 0.0345 1.0602 -0.0964
127 | **| | 0.009 -1.0133 0.0334 1.0337 -0.1884
128 | | | 0.006 0.4364 0.1176 1.1626 0.1593
129 | *| | 0.007 -0.6250 0.0627 1.0876 -0.1616
130 | |** | 0.010 1.3357 0.0227 0.9983 0.2036
131 | | | 0.002 0.2924 0.0718 1.1089 0.0813
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Appendix C: Principal Components Regression for Tree Ring Data
(R-Squared analysis for each model order followed by
regression for modelwith all 15 principal components)

Number in
Model R-Square Variables in Model
1 0.1417 sco4
2 0.2454 sco2 sco4
3 0.3249 sco2 sco4 sco8
4 0.3647 sco2 sco4 sco5 sco8
5 0.3928 sco2 sco4 sco5 sco8 sco15
6 0.4156 sco2 sco4 sco5 sco7 sco8 sco15
7 0.4262 sco2 sco3 sco4 sco5 sco7 sco8 sco15
8 0.4364 sco2 sco3 sco4 sco5 sco7 sco8 sco10 sco15
9 0.4418 sco1 sco2 sco3 sco4 sco5 sco7 sco8 sco10 sco15

10 0.4464 sco1 sco2 sco3 sco4 sco5 sco7 sco8 sco10 sco13 sco15
11 0.4506 sco1 sco2 sco3 sco4 sco5 sco7 sco8 sco10 sco12 sco13 sco15
12 0.4544 sco1 sco2 sco3 sco4 sco5 sco7 sco8 sco9 sco10 sco12 sco13 sco15
13 0.4559 sco1 sco2 sco3 sco4 sco5 sco7 sco8 sco9 sco10 sco11 sco12 sco13 sco15
14 0.4571 sco1 sco2 sco3 sco4 sco5 sco6 sco7 sco8 sco9 sco10 sco11 sco12 sco13 sco15
15 0.4577 sco1 sco2 sco3 sco4 sco5 sco6 sco7 sco8 sco9 sco10 sco11 sco12 sco13 sco14 sco15

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 15 1.67276 0.11152 6.47 <.0001
Error 115 1.98226 0.01724
Corrected Total 130 3.65501

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -0.26125 0.01147 -22.78 <.0001
sco1 1 -0.01024 0.00958 -1.07 0.2876
sco2 1 0.06228 0.01329 4.69 <.0001
sco3 1 -0.02057 0.01371 -1.50 0.1362
sco4 1 0.08645 0.01577 5.48 <.0001
sco5 1 0.04768 0.01642 2.90 0.0044
sco6 1 -0.01110 0.02170 -0.51 0.6099
sco7 1 -0.04896 0.02226 -2.20 0.0299
sco8 1 -0.09723 0.02368 -4.11 <.0001
sco9 1 0.02212 0.02464 0.90 0.3711
sco10 1 -0.03914 0.02661 -1.47 0.1441
sco11 1 -0.01582 0.02842 -0.56 0.5789
sco12 1 0.02931 0.03087 0.95 0.3443
sco13 1 0.03113 0.03150 0.99 0.3251
sco14 1 -0.01100 0.03298 -0.33 0.7394
sco15 1 0.08497 0.03482 2.44 0.0162
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SOLUTIONS

1. We find X, XT X and (XT X)−1 as

X =




1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 −1 −1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 −1 −1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
1 0 0 0 0 −1 −1




, XT X =




9 0 0 0 0 0 0
0 2 1 0 0 0 0
0 1 2 0 0 0 0
0 0 0 2 1 0 0
0 0 0 1 2 0 0
0 0 0 0 0 2 1
0 0 0 0 0 1 2




,

(XT X)−1 =




1
9 0 0 0 0 0 0
0 2

3 −1
3 0 0 0 0

0 −1
3

2
3 0 0 0 0

0 0 0 2
3 −1

3 0 0
0 0 0 −1

3
2
3 0 0

0 0 0 0 0 2
3 −1

3
0 0 0 0 0 −1

3
2
3




.

Writing the normal equations in the form XT Xβ̂ −XT Y , we deduce β̂1 = (y1 + ... + y9)/9,
2β̂2+β̂3 = y1−y3, β̂2+2β̂3 = y2−y3, 2β̂4+β̂5 = y4−y6, β̂4+2β̂5 = y5−y6, 2β̂6+β̂7 = y7−y9,
β̂6 + 2β̂7 = y8 − y9, from which the complete set of estimates are easily deduced.

Var(β̂1) = σ2

9 while the variances of β̂2, ..., β̂9 are each 2σ2

3 .

We have Var(θ̂1)=Var(β̂1)+Var(β̂2) = σ2
(

1
9 + 2

3

)
= 7

9σ2; Var(θ̂2) = 7
9σ2 by the same calcu-

lation; and Var(θ̂3)=Var(β̂1)+Var(β̂2)+Var(β̂3) +2 Cov(β̂2, β̂3) = σ2
(

1
9 + 2

3 + 2
3 − 2× 1

3

)
=

7
9σ2. The corresponding results for θ̂4, ..., θ̂9 follow by exactly the same arguments.

2. (a) The matrices X and XT X are respectively



1 1 1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1 −1 1
1 1 1 1 −1 1 −1 −1 1 −1
1 1 1 1 −1 −1 1 −1 1 1
1 1 1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 1 −1 1 −1 1
1 1 1 1 1 −1 −1 1 1 −1
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
1 4 0 0 0 0 0 −2 0 0
1 4 0 0 0 0 0 2 0 0
1 0 4 0 0 0 0 0 −2 0
1 0 4 0 0 0 0 0 2 0
1 0 0 4 0 0 0 0 0 −2
1 0 0 4 0 0 0 0 0 2




,




15 16 16 16 0 0 0 0 0 0
16 40 8 8 0 0 0 0 0 0
16 8 40 8 0 0 0 0 0 0
16 8 8 40 0 0 0 0 0 0
0 0 0 0 8 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0
0 0 0 0 0 0 8 0 0 0
0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 16




.
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(b) Write M = (XT X)−1 with entries {mi,j}. We don’t need to evaluate M , but we do note
(i) by symmetry of cols. 2–4 of X, the values m2,2,m3,3,m4,4 are all the same, (ii) each
of m5,5,m6,6,m7,7 is 1

8 and each of m8,8,m9,9, m10,10 is 1
16 . Therefore

β̂5 =
y1 − y2 + y3 − y4 − y5 + y6 − y7 + y8

8
= 2.201,

β̂9 =
−y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8 − 2y14 + 2y15

16
= −0.9756.

The standard errors of β̂4, β̂5, β̂6 are each s√
8

= 2.7849 (since s = 7.877); the standard

errors of β̂7, β̂8, β̂9 are each s√
16

= 1.9692. Therefore the full table (as accurately as it
can be filled) is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 80.4333 6.9468 11.579 8.43e-05 ***
FRFR -1.8129 2.3667 -0.766 0.50
APAP -3.5354 2.3667 -1.494 0.1955
PTPT -6.3429 2.3667 -2.680 0.05
FRAP 1.1337 2.7849 0.4071 0.70
FRPT 2.201 2.7849 0.790 0.45
APPT -0.3588 2.7849 -0.1288 0.90
FR -1.9394 1.9692 -0.9849 0.35
AP 2.5656 1.9692 1.3029 0.25
PT -0.9756 1.9692 -0.4954 0.65

(c) The stationary point of the surface

E{y} = β0 + β1FR2 + β2AP2 + β3PT2 + β4FRAP + β5FRPT + β6APPT + β7FR + β8AP + β9PT

is given by

2β1FR + β4AP + β5PT + β7 = 0,

β4FR + 2β2AP + β6PT + β8 = 0,

β5FR + β6AP + 2β3PT + β9 = 0.

The sample solution x =




FR
AP
PT


 is therefore given by solving Ax = b, where

A =




2β̂1 β̂4 β̂5

β̂4 2β̂2 β̂6

β̂5 β̂6 2β̂3


 , b =



−β̂7

−β̂8

−β̂9


 .

Note 1: In R there is actually a function solve(A,b), which would solve exactly this
equation.
Note 2: This solution does not address the question of whether the resulting solution is
in fact a maximum of the response surface. A number of students noted that β̂1, β̂2, β̂3

are all < 0, which is certainly relevant to that point, but the actual condition that
is required is that A be negative definite, equivalent to a statement that each of the
eigenvalues of A be < 0. This statement is true but you were not expected to verify that
as part of our answer.
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(d) The desired null hypothesis is

2β1r + β4s + β5t + β7 = 0,
β4r + 2β2s + β6t + β8 = 0,
β5r + β6s + 2β3t + β9 = 0.

This is of the form Cβ = h, where C =




0 2 0 0 1 1 0 1 0 0
0 0 2 0 1 0 1 0 1 0
0 0 0 2 0 1 1 0 0 1


, h =




0
0
0


.

The required test follows by Theorem 3.3 of the course text (note that n = 15, p =
10, q = 3 so the distribution of the F statistic, when H0 is true, is F3,5).

(e) Suppose we want a 100(1 − α)% confidence region. For each possible (r, s, t), test the
hypothesis of part (d) at significance level α. The required confidence region consists of
all triples FR=r, AP=s, PT=t for which the test in (d) results in acceptance of the null
hypothesis.

3. (a) The logical approach is to test the best model with k trees against the best model with
k + 1 trees, using an F test, for each of k = 1, ..., 5. For cases where the two models are
not nested, I am arbitrarily choosing two models which are.

k = 1 against k = 2: Test R2 = .3134 (tree 2) against .4010 (trees 2 and 6). The
null hypothesis H0 will be that the k = 1 model is true, H1 will be k = 2. Then
SSE0 = (1 − .3134) × SSTO, SSE1 = (1 − .4010) × SSTO, so SSE0/SSE1 = 1.146.
The F statistic is (SSE0−SSE1)/(SSE1/128) = 128× 0.146 = 18.7 which is obviously
significant (as an F1,128 variable, the p-value is 3 × 10−5.) Note that n = 131, since
this is the total number of observations, which p = 3, the total number of parameters
(including the intercept) under H1.

k = 2 against k = 3: SSE0/SSE1 = (1− .3957)/(1− .4248) = 1.0506, F = 127× .0506 =
6.43, significant.

k = 3 against k = 4: SSE0/SSE1 = (1− .4248)/(1− .4344) = 1.0170, F = 126× .0170 =
2.14, not significant.

k = 4 against k = 5: SSE0/SSE1 = (1− .4344)/(1− .4408) = 1.0114, F = 125× .0114 =
1.43, not significant.

k = 5 against k = 6: SSE0/SSE1 = (1− .4408)/(1− .4470) = 1.0112, F = 124× .0112 =
1.39, not significant.

Therefore the best model has k = 3: variables tree1, tree5, tree6.

Note: Each of the F statistics may be compared with 3.84=1.962, which would be the
5% rejection point in the limiting case that the degrees of freedom in the denominator
tend to ∞.

(b) Each of the three variables is statistically significant with a p-value of .0125 or smaller.
The variance inflation factors are all < 2, so it looks as though there is no problem with
multicollinearity.

Leverage: with p = 4, n = 131, 2p/n = .061; observations 108, 112, 119, 120 (especially),
128, 129, 131 appear to have high leverage.
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Outliers: Based on RStudent, observations 29, 59, 60, 62, 92, 95 have four or five stars
and therefore seem to be outliers. We may also note that residuals appear clustered,
with runs of positive or negative residuals, which might indicate serial correlation.

DFFITS: 2
√

p/n = .349, exceeded in observations 16, 29, 32, 62; on the other hand, in
none of these is DFFITS especially large so there does not seem to be too much of a
problem with influential values.

COVRATIO: 1 ± 3p/n are .908 and 1.092; the worst cases are observations 29, 62, 95,
120. Note that each of these has previously been identified as an outlier or a point of
high leverage.

Overall: the presence of high leverage points and outliers casts some doubt on the
appropriateness of the model (which may reflect inconsistencies in the tree ring record
over time). Also, we probably should apply some correction for serial correlation.

(c) Without completely repeating the F tests of part (a), but based on the observation that
an increase in R2 of .01 is not statistically significant, whereas an increase of .02 is,
we may deduce that the increases in R2 are significant until about k = 6, which shows
principal components 2, 4, 5, 7, 8, 15 as the most significant. These six PCs are also the
most significant in the final model with k = 15. On the other hand, the R2 obtained
with 6 PCs in this model (.4156) is lower than the R2 with 3 trees (.4248) in the model
of part (b). Based on this, it looks as though directly selecting the most significant trees
is better than doing the PC analysis.
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