STOR 557: Fall 2023
Midterm Two: October 31, 2023

Open book in-class exam: time limit 75 minutes.

You are allowed to consult course notes and text (printed or e-read), homework assignments and
any personal notes you have made during the course. Other outside materials are not permitted.
Computers or ipads may be used only for the purpose of accessing pre-stored course notes; they are
not to be used for computations during the exam. A hand-held calculator is permitted. Answers
should preferably be written in a university examination book (“blue book”). You may consult the
instructor if the wording is unclear or if you think there might be an error, but the instructor will
not give hints how to solve the exam. The university Honor Code is in effect at all times.

The whole exam is worth 100 points (60 points for question 1, 40 for question 2). Statistical
tables are provided.

1. Alcohol consumption is widely believed to be a causative factor in oesophageal cancer. A
study of 975 hospital patients in France classified the patients according to whether or not
they had oesophageal cancer, their alcohol consumption (high or low), and their age group.
The raw data are as follows:

Cancer No Cancer
Age Group | High Alc | Low Alc | High Alc | Low Alc
25-34 1 0 9 106
3544 4 5 26 164
45-54 25 21 29 138
55—64 42 34 27 139
65-74 19 36 18 88
75+ 5 8 0 31
Total 96 104 109 666

Note that the last row of the data is derived by simply adding up the numbers in the first
six rows, and therefore represents the combined table of oesophageal cancer against alcohol
consumption without taking account of age.

(a)

Based on the last row of the table, the Pearson (continuity-corrected) chi-square statistic,
for the null hypothesis that alcohol consumption and incidence of oesophageal cancer
are independent, is 108.22. Is this a statistically significant result, and what do you
conclude? [7 points.]

The same calculation was repeated, separately, for each of the first six rows of the above
table, with the resulting chi-square statistics of 2.19, 4.18, 24.1, 37.0, 5.36 and 9.9. State
which of these values is statistically significant, and summarize your conclusion in words.
[7 points.]

Are the results in (a) and (b) an example of Simpson’s paradox? What are the advantages
and disadvantages of each approach? [6 points.]

The data in the above table were combined into a dataframe “OC” with a numerical
variable “Count” and factor variables “Cancer”, “Alcohol” and “Agegp”. The following
code was run:



ct3=xtabs(Count~Cancer+Alcohol+Agegp,0C)
apply(ct3,3,function(x) (x[1,11*x[2,2])/(x[1,2]*x[2,1]))
mantelhaen.test (ct3,exact=T)

The results were as follows:

1 2 3 4 5 6
Inf 5.046154 5.665025 6.359477 2.580247 Inf
Exact conditional test of independence in 2 x 2 x k tables
data: ct3

S = 666, p-value < 2.2e-16
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
3.572140 7.758317
sample estimates:
common odds ratio
5.250951

Explain what this code is doing and how you interpret the result. Why are two of the
numbers in the second row stated as “Inf’? How does the “common odds ratio” of
5.250951 relate to the six numbers (including the two labelled “Inf”) in the second row?
[15 points.]

(e) A series of Poisson regression models was fitted to the data, as follows:
gl=glm(Count~Alcohol+Cancer+Agegp,family=poisson,0C)
g2=glm(Count~Alcohol*Cancer+Agegp,family=poisson,0C)
g3=glm(Count~Alcohol*Agegp+Agegp*Cancer,family=poisson,0C)

gl4=glm(Count”~ (Alcohol+Cancer+Agegp) "2,family=poisson,0C)
gb=glm(Count~Alcohol*Cancer*Agegp,family=poisson,0C)

A summary of the results is given as follows:

Model | Residual Deviance | Residual DF
gl 224.2 16
g2 145.9 15
g3 90.56 6
g4 11.04 5
gb 0 0

Which do you conclude is the best of the five models? Give relevant calculations to
support your conclusion. [15 points.]

(f) State in words what you conclude about the relationships among age, alcohol consump-
tion and incidence of oesophageal cancer. [10 points.]

QUESTION TWO ON THE NEXT PAGE



2. Twelve hospital patients were given an experimental dietary regime. After each week, their
levels of plasma ascorbic acid were measured. The results are illustrated graphically in Figure
1. Each broken-line curve represents one patient. It can be seen that most patients demon-
strated a rise followed by a fall in their levels of ascorbic acid, but visually, there appears to
be significant variability among patients.
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Figure 1: Weekly Variations in Plasma Ascorbic Acid for 12 Patients.

The data was collected in a dataframe “Diet” with variables “Time” (factor), “Person”
(factor) and “Amount” (numeric). A simple analysis of variance through the R function

al=aov(Amount ~Time+Person,Diet)
produced the following output

> summary(al)

Df Sum Sq Mean Sq F value Pr(>F)
Time 6 6.165 1.0274 15.241 7.25e-11 **x
Person 11 3.682 0.3347 4.966 1.42e-05 *x*x*
Residuals 66 4.449 0.0674

Signif. codes: O ‘x**’ 0.001 ‘**’ 0.01 ‘x> 0.05 .7 0.1 ¢ * 1

Briefly interpret the results of this analysis. What is its main limitation? [8 points.]
For the next three parts, I want you to write brief R code for each of the following
operations:

Fit the same model as a mixed model with “Time” treated as a fixed effect and “Person”
as a random effect. [8 points.]

Within this model, write R code for two ways to test the significance of “Time”. [10
points.]



(d)
(e)

Within this model, write R code for one way to test the significance of the random effect
of “Person”. [8 points.]

When the test of part (d) is applied to the model that includes both “Time” as a fixed
effect and “Person” as a random effect, the p-value appears as “< 2.2e-16” (which is 0
for all practical purposes). However when the same test is applied to the model from
which “Time” has been omitted (so that the random effect due to “Person” is the only
non-constant term in the model), the p-value is about 0.017. How would you interpret
the discrepancy between these two results? [6 points.]



Sketch Solutions

Note: There is no single “right answer” to questions like these. Credit will be given for answers
that pick up key points in the analysis, that may not necessarily agree with those here.

1.

(a)

The distribution of the Pearson statistic, if the null hypothesis of no association is true,
is (asymptotically) x?, but the value 108.22 is way beyond the percentage points for that
distribution (you didn’t have the means to calculate this exactly in the exam, but you
can read from the table that the 0.001-upper tail point is 10.83, and the observed value
is far larger than that). Conclusion: there is evidence of an association between alcohol
consumption and oesophageal cancer. Credit for correct statement of null hypothesis,
correct discussion of x? statistic, and final conclusion.

The p-value for the same null hypothesis in the 25-34 age group is > 0.05, and that
for the 35-44 age group is between 0.01 and 0.05 (this is based on the relevant critical
values of x?, which are 3.84 and 6.63). Thus the result for 25-34 is not statistically
significant, and that for 35-44 is only mildly statistically significant. The other values
are all statistically significant with p-values < 0.001 except for the 75+ age group. The
conclusion is that there is strong evidence for an association in most age groups, though
not as strong as when all age groups are combined. Credit for correctly identifying which
age groups are significant and for correctly interpreting the X% statistics. However you
may also comment that the lack of statistical significance in the first two age groups is
likely because of the low number of cancer cases overall, while that in the 75+ age group
has far fewer individuals than some of the other groups. In other words, these may be
cases where acceptance of the null hypothesis arises because of insufficient data and not
because the null hypothsis is correct (you don’t have to say all that, but I expect to see
some reasoning along those lines).

This is not an example of Simpson’s paradox because in all cases there is a positive
association between the two variables so there is no reversal of the effect which is the
characteristic of Simpson’s paradox. Nevertheless you may note that both cancer rates
(certainly) and alcohol consumption (possibly) vary with age group, so the main message
of Simpson’s paradox — the need to consider the subgroups separately — is valid for
this example. You may also note that the fact that all the odds ratios are > 1 (see
answer to part (d)) shows that the association is positive in every case — an odds ratio
< 1 would imply a negative association.

This code is carrying out the Mantel-Haenszel test and the final conclusion (p-value
< 2.2e—16) shows that the result is very highly statistically significant — in other words,
we strongly reject the null hypothesis that there is no association between alcohol and
cancer across the whole table. The odds ratio 5.250951 is the estimated combined odds
ratio under the assumption that it is the same for all age groups. The six numbers in line
2 represent individual odds ratios that are specific to each group, and the two labelled
“Inf” arise because in each case one of the cell counts is 0, which is in the denominator
of the odds ratio calculation. Extra credit if you gave examples to show the odds ratios

themselves (e.g. for the 45-54 age group, OR = 2251XX12398 = 5.665025, as given).

gl and g2 don’t make sense because they imply that neither cancer nor alcohol is depen-
dent on age, which we know to be false at least so far as cancer is concerned. g3 does




allow for an age dependence but not for any association between alcohol and cancer,
but the high deviances imply that none of these models is supported by the data. g4 is
plausible because it does allow for all the two-way associations but not for a three-way
association. g5 allows for all the associations but it is not an attractive model because it
just reproduces the data and has has no explanatory or predictive value (there are other
ways you could express this, but the point is that there are reasons for not preferring this
model). As far as a formal test is concerned, g4 shows a deviance of 11.04 with 5 degrees
of freedom, and the 0.05 upper tail point for X% is 11.07. So the test is borderline, but
I would still find g4 the more attractive model (any answer advocating g4 or gh will be
accepted if you give appropriate arguments to support your choice).

There are different ways to express this and some of your answer may have appeared
under (e), but I would summarize the main point as follows: we need to take account
of different age groups because of the confounding effect of cancer and age, but both
within most of the age groups and when combined into one analysis, there is very strong
evidence that alcohol use is associated with oesophageal cancer. If you're careful about
how you express this, you could add that the statistical calculations don’t necessarily
imply that the association is causal.

Both the Time effect and the Person (or Patient) effect are clearly significant with p-
values well under 0.05. So the response does depend on time, and there are also clear
differences among the patients. As for limitations: there is no test for interactions here
(not possible with only one observation for each Time-Person combination); you could
also note that treating both effects as fixed is itself a limitation, since the patients are
clearly only a sample from a potentially much larger population, so a random effects
model is more logical.

Possible code to fit the mixed model is

library(lme4)
mi=1mer (Amount~Time+(1|Person) ,Diet)
summary (m1)

Equivalent code to fit the same model will be accepted.

The point of this question was to highlight that there are two ways of doing it: the
Kenward-Roger test (an approximate test, but not involving simulation) or the bootstrap
(which does use simulation). Again, I would accept any code that produces both these
tests, but something like:

library(pbkrtest)
m2=1mer (Amount~ (1|Person) ,Diet)
KRmodcomp (m1,m2)
PBmodcomp (m1,m2)

In this case we need a bootstrap procedure: again there are different ways to do it, but
one possible code is

library(RLRsim)
exactRLRT (m1)
exactRLRT (m2)



though note that only the test for m1 is needed to answer the question in the form it
was asked. (There are other ways of doing this, described on page 215 of the course text.
Credit will also be given for one of those methods so long as it is carefully described,
with explicit R code to implement.)

Both results are statistically significant so there’s no contradiction to resolve, but one way
to explain the difference is this: omitting the Time effect is equivalent to assuming the
response is constant across time points, and if we did assume that, then our estimate of
the residual variability would increase whereas the inter-person variability is presumably
about the same. However in that case, the residual variability could well be masking
the effect of inter-person variability. (In fact the estimated variances for Person and
Residual are 0.1954 and 0.2596 under ml, and 0.1636 and 0.3839 under m2, so the
Residual variance is substantially higher under m2.)



