STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes \#17:

March 7, 2019

Homework 6

- Chapter 6, Problems 2 and 4 (pages 126-127). You can omit part (e) of question 2.
- Due date: Tuesday March 19

Uniform Association Model

- Model is then

$$
\begin{aligned}
\log \mathrm{E}\left(y_{i j k}\right)= & \log n+\log p_{i}+\log p_{j}+\log p_{k} \\
& +\log p_{i j}+\log p_{i k}+\log p_{j k}
\end{aligned}
$$

- No three-way association, not saturated
- Odds ratio the same for every group (but doesn't have to be 1)
- Odds ratio for k 'th group is

$$
\frac{\mathrm{E}\left(Y_{11 k}\right) \mathrm{E}\left(Y_{22 k}\right)}{\mathrm{E}\left(Y_{12 k}\right) \mathrm{E}\left(Y_{21 k}\right)}
$$

- This model does appear to fit the data - implies smokingdeath interaction within each age group

Comparison Between Conditional Independence and Uniform Association Models

- The text doesn't note that the C.I. model is nested inside the U.A. model - the latter has a model term smoker:death which is not present in the C.I. model
- Therefore, we can do an anova test of one against the other:

```
> anova(modc,modu,test='Chi')
Analysis of Deviance Table
Model 1: y ~ smoker * age + age * dead
Model 2: y ~ (smoker + age + dead)^2
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7 8.3269
2 6 2.3809 1 5.946 0.01475 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

- Conclude U.A. is a statistically significant better fit

Saturated Model

- Same as U.A. model plus three-way interactions
- Model is then

$$
\begin{aligned}
\log \mathrm{E}\left(y_{i j k}\right)= & \log n+\log p_{i}+\log p_{j}+\log p_{k} \\
& +\log p_{i j}+\log p_{i k}+\log p_{j k}+\log p_{i j k}
\end{aligned}
$$

- Allows different odds ratios in different groups
- Can drop three-way interaction - then reverts to U.A. model

Binomial Model

- Treat one variable as the response, e.g. "alive" or "dead"
- View as a binomial distribution within each smoker/age group
- Most general model allows for interaction between smoker and age
- We can drop interaction but still see marginal effects due to smoker and age
- This is actually equivalent to the U.A. model - reason isn't obvious, but it's confirmed by the deviance
- The text also discussed the "null model for Binomial GLM" but this doesn't fit the data

Conclusion for Smoking Dataset

- Smoking is associated with increased mortality after adjusting for age
- Three different tests lead to this conclusion:
- Mantel-Haenszel
- Uniform Association Model
- Binomial response model
- I think the conditional independence model is misleading the uniform association model is a better fit, and confirms the smoking-mortality interaction

Ordinal Data

- Sometimes, data are categorical in the sense that they do not correspond to numerical values, but there is still a natural ordering to the categories
- Ordinal data techniques take advantage of the ordering
- Linear association model of form

$$
\log E Y_{i j}=\log n+\alpha_{i}+\beta_{j}+\gamma u_{i} v_{j}
$$

where u_{i} and v_{j} are predetermined numerical ordering variables

- Test of $\gamma=0$ is a test of association between the ordered variables

Application to Voting Trends Dataset

- Educational level and party affiliation (two variables part of a much larger dataset)
- Each measured on a 7-point scale
- Analysis as a two-way table does not indicate dependence
- But, maybe we can get better information by exploiting the natural ordering of both variables

Recoding as a Mixed Factor-Numerical Dataset

- For marginal effects, keep both PID and educ as factor variables
- For the interaction term, recode both variables as numerical on a scale of 1-7 using unclass
- Reduces interaction to a single variable γ and this is significant

```
    Estimate Std. Error z value Pr(>|z|)
0.028744615 0.009061742 3.172084969 0.001513487
```

- Conclusion: Higher education level is associated with increased support for Republicans
- Some suggestion there's a pattern in the residuals (I'm not convinced of this)

Alternative Models

- Alternative numerical codings (not necessarily $1,2, \ldots, 7$) makes slight difference to numerical results, not to overall conclusion
- Mixed factor-numerical analysis (factor for education, numerical for political affiliation)
- Alternative: recode education level into two classes (below HS or HS grad - only for interaction term not marginal distribution)
- This model has the best deviance but may be due to "data snooping"

Conclusions

- If we use a numerical 1-7 scale for both variables and then look for interactions, there is a statistically significant effect - indicates higher-educated people are more likely to support Republicans
- Alternative numerical codings are possible but don't make much difference
- A mixed factor-numerical scale for the interactions doesn't improve on this (my interpretation)
- The analysis does not account for gender/race/age or geographic variables - possible Simpson bias here?

