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Homework 3: Due Tuesday, February 5

Questions 2 and 3 of the problems on pages 47/48

• Submit through sakai “Assignments” tab

• Repeated submissions are permitted but not encouraged

• Deadline will be 11:55 pm, Tuesday February 5

• pdf file preferred

• I suggest you name the file something similar to

“Richard Smith HW3.pdf” (substituting your own name of

course). This will help the grader keep track of the submis-

sions.
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Scheduling a Take-home Midterm/Final

• Midterm, posted noon Feb 24, email solutions no later than

6pm Feb 25

• Final, posted noon Apr 30, email solutions no later than 6pm

May 1

• I’d now like to make these dates definite but will work with

any individual students who have difficulties with those dates
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LOGISTIC REGRESSION

• yi is 0 or 1, covariates xij, 0 ≤ j ≤ p, 1 ≤ i ≤ n.

• Define pi = Pr
{
yi = 1 | xi0, ..., xip

}
.

• pi =
∑p
j=0 xijβj makes no sense

• Instead, define logit(p) = log
(

p
1−p

)
.

• logit(pi) =
∑p
j=0 xijβj or pi =

exp(
∑p
j=0 xijβj)

1+exp(
∑p
j=0 xijβj)

.

• Fit in R by a command of form

glmod=glm(y∼x1+x2,family=binomial)
with any number of covariates in the sum.
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METHOD OF MAXIMUM LIKELIHOOD

• Y1, ..., Yn are observations, independent.

• Density of Yi is fi(· ; θ) where θ is a vector of parameters

– Density may refer to discrete case (probability mass func-

tion), continuous case (pdf) or a mixture of discrete and

continuous (e.g. thresholded or censored data)

• Likelihood function L(θ) =
∏n
i=1 fi(Yi ; θ). (assumes inde-

pendent — otherwise, joint density fo the observations)

• Maximum likelihood estimator (MLE) chooses θ̂ to maximize

L(θ) or equivalently to minimize `(θ) = −
∑n
i=1 log fi(Yi ; θ).
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Variances, Covariances, Standard Errors

• Notation: ∂2`
∂θ∂θT

matrix of second-order derivatives ((i, j) en-

try is ∂2`
∂θi∂θj

).

• Let H(θ) be ∂2`
∂θ∂θT

(Hessian matrix) and let I(θ) be the ex-
pected value of H(θ)

• Usually, H(θ) is evaluated at the MLE θ̂ and I(θ) is evaluated
at the true value, say θ∗. Then I is the Fisher Information
Matrix and H is the Observed Information Matrix

• Either of the inverses, I−1 or H−1 is a good approximation
to the variance-covariance matrix of θ̂ but H−1 is easier to
compute

• The square roots of the diagonal entries of H−1 are the
(estimated) standard errors of the parameter estimates

• Aside: No connection with the hat matrix
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Model Selection: Nested Case

• Suppose we want to compare two models ω and Ω, where ω

is a subset of Ω, pω < pΩ parameters

• Let θ̂ω, θ̂Ω be the parameter estimates under both models

• D = 2{`(θω)− `(θΩ)} > 0 is called the deviance

• If H0 : ω is true then the distribution of D is approximately

χ2
pΩ−pω — analogous to the F-test for ANOVA.

• This is the likelihood ratio test (LRT). The text (Appendix

A2, page 378) discusses two other tests, the Wald test and

the score test, but the LRT is the one most used.
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Model Selection: Comparing Many Models

• In practice, not all models are nested, and even if they were,

doing many hypothesis tests is not usually a good idea (mul-

tiple testing or “data snooping” problem)

• Alternatives use automated selection criteria. Example are:

– AIC: minimize 2`(θ̂) + 2p

– BIC: minimize 2`(θ̂) + p logn

– DIC: minimize D(θ̄) + 2pD where D is deviance, pD =

D(θ)−D(θ) and · denotes the mean

• Note: Faraway uses ` to denote the log likelihood, whereas I have used
it for the negative log likelihood.
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Example 1: Linear Regression with known σ2

• f(yi;β) ∝ exp
{
− 1

2σ2(yi −
∑
j xijβj)

2
}

• Ignoring constants, `(β) = 1
2σ2

∑
i(yi −

∑
j xijβj)

2

• ∂`
∂βk

= 1
σ2

∑
i xik(yi −

∑
j xijβj)

• ∂2`
∂βk∂βm

= 1
σ2

∑
i xikxim

• Setting ∂`
∂βk

= 0 for all k gives the standard normal equations

• H(β) or I(β) are both 1
σ2X

TX so they lead to the standard

formula σ2
(
XTX

)−1
for the variance-covariance matrix of β̂.
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Example 2:

Logistic Regression With One Covariate

• fi(yi ; θ) = exp{yi(β0+β1xi)}
1+exp(β0+β1xi)

, θ = (β0, β1)

• ` =
∑
i log{1 + exp(β0 + β1xi)} −

∑
i yi(β0 + β1xi)

• ∂`
∂β0

=
∑
i

exp(β0+β1xi)
1+exp(β0+β1xi)

−
∑
i yi

• ∂`
∂β1

=
∑
i
xi exp(β0+β1xi)
1+exp(β0+β1xi)

−
∑
i xiyi

• Set ∂`
∂β0

= ∂`
∂β1

= 0, solve for β0, β1

• Intuition:
∑
i(yi − pi) = 0,

∑
i xi(yi − pi) = 0

• Even so, the equations are nonlinear — solve numerically for

β̂0, β̂1
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• Rewrite ∂`
∂β0

=
∑
i

(
1− 1

1+exp(β0+β1xi)

)
−
∑
i yi,

∂`
∂β1

=
∑
i xi

(
1− 1

1+exp(β0+β1xi)

)
−
∑
i xiyi

• ∂2`
∂β2

0
=

∑
i{1 + exp(β0 + β1xi)}−2 · exp(β0 + β1xi) > 0

• Also write as
∑
i pi(1− pi)

• ∂2`
∂β2

1
=

∑
i x

2
i {1 + exp(β0 + β1xi)}−2 · x2

i exp(β0 + β1xi) > 0

• ∂2`
∂β0∂β1

=
∑
i xi{1 + exp(β0 + β1xi)}−2 · xi exp(β0 + β1xi)

• H =

[ ∑
i p̂i(1− p̂i)

∑
i xip̂i(1− p̂i)∑

i xip̂i(1− p̂i)
∑
i x

2
i p̂i(1− p̂i)

]

• The determinant of H is > 0 unless all the xi are the same
— this proves that (β̂0, β̂1) is a local minimum of ` and H−1

is a good approximation to the variance-covariance matrix of
(β̂0, β̂1)
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Interpretation as Ratio of Odds

• Example: For the smoking-CHD example in the text, β̂2 =
0.02313. How should this be interpreted?

• One answer: for a person who smokes 20 cigarettes a day,
log p

1−p is 20×0.02313 = 0.4626 larger than for a person who
smokes none (p: probability of CHD)

• Alternatively: for a person who smokes 20 cigarettes a day,
p

1−p is multiplied by e0.4626 = 1.59

• In common probability terminology, p
1−p is the odds.

– Example: One bookmaker gives odds of 37:20 that the Patriots will
win the Superbowl.

– Equivalent to: probability of winning is 37
37+20

= 0.65.

• For a 20-a-day smoker, odds of CHD are increased by 59%.

• Almost the same as: the risk of CHD is increased by 59%.
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Deviance Residuals

• Define the deviance as

D = 2`(θ̂)

= 2
∑
i

[
log{1 + exp(β̂0 + β̂1xi)} − yi(β̂0 + β̂1xi)

]
=

∑
i

r2
i

where

r2
i = 2

[
log{1 + exp(β̂0 + β̂1xi)} − yi(β̂0 + β̂1xi)

]
Ensure correct sign by defining

ri = sign(yi − p̂i)
√
r2
i .

We call ri the i’th deviance residual (text, page 36).

In R: residuals(lmod)
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Side Comment

• We defined

r2
i = 2

[
log{1 + exp(β̂0 + β̂1xi)} − yi(β̂0 + β̂1xi)

]
Do we know this is > 0?

• Claim: log(1 + ez)− yz > 0 when −∞ < z <∞, y = 0 or 1

• y = 0 : log(1 + ez) > log(1) > 0

• y = 1 : log(1 + ez)− z > log(ez)− z = 0

• So OK either way.
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Profile Likelihood

• Sometimes we’re primarily interested in one parameter — all

the rest are “nuisance parameters”

• Say θ1 is interest parameter, θ2, ..., θp are nuisance

• Define

`P (θ∗1) = min {`(θ1, ..., θp) : θ1 = θ∗1}

• This is called the profile (log) likelihood of θ1

• Can test a specific value for θ∗1 by using LRT with χ2
1 distri-

bution
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Example: Box-Cox Transformation

• Produced in R via library(MASS) followed by 
boxcox(lmod) where lmod is fitted model

• Plots profile likelihood of the Box-Cox
transformation parameter λ

• The dotted line is 3.84 below the maximum.

• 3.84 is the 95th percentile of the chi-square
distribution with 1 DF

• Interpretation: every λ whose profile 
likelihood is above the dotted line is accepted
by the hypothesis test at significance level 
0.05. In other words, this defines the 95% 
confidence interval.

• Same idea is used for the “confint” 
command for a glm

Heffernan and Tawn (2004)
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