STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes #6: January 29, 2019

1

1

Homework 2: Due Tuesday, January 29

Questions 2 and 5 of the problems on page 24 ("rock" and "prostate" datasets)

- Submit through sakai "Assignments" tab
- Only submit once!
- Deadline 11:55 pm, Tuesday January 29
- pdf file file is preferred to html, but if you can't figure that out, hand in the html.
- Please edit your output: don't hand in all your raw code and output, only what's relevant to your final conclusion

Scheduling a Take-home Midterm/Final

- Midterm, posted noon Feb 24, email solutions no later than 6pm Feb 25
- Final, posted noon Apr 30, email solutions no later than 6pm May 1
- I'll wait one more class before making these arrangements definite, but I think we're close to convergence

LOGISTIC REGRESSION

- y_i is 0 or 1, covariates x_{ij} , $0 \le j \le p$, $1 \le i \le n$.
- Define $p_i = \Pr\{y_i = 1 \mid x_{i0}, ..., x_{ip}\}$.
- $p_i = \sum_{j=0}^p x_{ij}\beta_j$ makes no sense
- Instead, define $logit(p) = log\left(\frac{p}{1-p}\right)$.

• logit
$$(p_i) = \sum_{j=0}^p x_{ij}\beta_j$$
 or $p_i = \frac{\exp(\sum_{j=0}^p x_{ij}\beta_j)}{1 + \exp(\sum_{j=0}^p x_{ij}\beta_j)}$.

 Fit in R by a command of form glmod=glm(y~x1+x2,family=binomial) with any number of covariates in the sum.

METHOD OF MAXIMUM LIKELIHOOD

- $Y_1, ..., Y_n$ are observations.
- Density of Y_i is $f_i(\cdot; \theta)$ where θ is a vector of parameters
 - Density may refer to discrete case (probability mass function), continuous case (pdf) or a mixture of discrete and continuous (e.g. thresholded or censored data)
- Likelihood function $L(\theta) = \prod_{i=1}^{n} f_i(Y_i; \theta)$.
- Maximum likelihood estimator (MLE) chooses $\hat{\theta}$ to maximize $L(\theta)$ or equivalently to minimize $\ell(\theta) = -\sum_{i=1}^{n} \log f_i(Y_i; \theta)$.

Variances, Covariances, Standard Errors

- Notation: $\frac{\partial \ell}{\partial \theta \partial \theta^T}$ matrix of second-order derivatives ((*i*, *j*) entry is $\frac{\partial \ell}{\partial \theta_i \partial \theta_j}$).
- Let $H(\theta)$ be $\frac{\partial \ell}{\partial \theta \partial \theta^T}$, evaluated at θ (Hessian matrix)
- Let $I(\theta)$ be the expected value of $H(\theta)$ (Fisher Information Matrix)
- Usually, $H(\theta)$ is evaluated at the MLE $\hat{\theta}$ and $I(\theta)$ is evaluated at the true value, say θ^* .
- Either of the inverses, I^{-1} or H^{-1} is a good approximation to the variance-covariance matrix of $\hat{\theta}$ but H^{-1} is easier to compute
- The square roots of the diagonal entries of H^{-1} are the (estimated) standard errors of the parameter estimates
- Aside: No connection with the hat matrix

Model Selection: Nested Case

- Suppose we want to compare two models ω and Ω , where ω is a subset of Ω , $p_{\omega} < p_{\Omega}$ parameters
- Let $\hat{\theta}_{\omega}, \hat{\theta}_{\Omega}$ be the parameter estimates under both models
- $D = 2\{\ell(\theta_{\omega}) \ell(\theta_{\Omega})\} > 0$ is called the *deviance*
- If H_0 : ω is true then the distribution of D is approximately $\chi^2_{p_\Omega p_\omega}$ analogous to the F-test for ANOVA.
- This is the *likelihood ratio test* (LRT). The text (Appendix A2, page 378) discusses two other tests, the *Wald test* and the *score test*, but the LRT is the one most used.

Model Selection: Comparing Many Models

- In practice, not all models are nested, and even if they were, doing many hypothesis tests is not usually a good idea (multiple testing or "data snooping" problem)
- Alternatives use automated selection criteria. Example are:
 - AIC: minimize $2\ell(\hat{\theta}) + 2p$
 - BIC: minimize $2\ell(\hat{\theta}) + p \log n$
 - DIC: minimize $D(\overline{\theta}) + 2p_D$ where D is deviance, $p_D = \overline{D(\theta)} D(\overline{\theta})$ and $\overline{\cdot}$ denotes the mean
- Note: Faraway uses ℓ to denote the log likelihood, whereas I have used it for the negative log likelihood.

Example 1: Linear Regression with known σ^2

- $f(y_i;\beta) \propto \exp\left\{-\frac{1}{2\sigma^2}(y_i \sum_j x_{ij}\beta_j)^2\right\}$
- Ignoring constants, $\ell(\beta) = \frac{1}{2\sigma^2} \sum_i (y_i \sum_j x_{ij}\beta_j)^2$

•
$$\frac{\partial \ell}{\partial \beta_k} = \frac{1}{\sigma^2} \sum_i x_{ik} (y_i - \sum_j x_{ij} \beta_j)$$

- $\frac{\partial^2 \ell}{\partial \beta_k \partial \beta_m} = \frac{1}{\sigma^2} \sum_i x_{ik} x_{im}$
- Setting $\frac{\partial \ell}{\partial \beta_k} = 0$ for all k gives the standard normal equations
- $H(\beta)$ or $I(\beta)$ are both $\frac{1}{\sigma^2}X^TX$ so they lead to the standard formula $\sigma^2 (X^TX)^{-1}$ for the variance-covariance matrix of $\hat{\beta}$.

Example 2:

Logistic Regression With One Covariate

•
$$f_i(y_i ; \theta) = \frac{\exp\{y_i(\beta_0 + \beta_1 x_i)\}}{1 + \exp(\beta_0 + \beta_1 x_i)}, \ \theta = (\beta_0, \beta_1)$$

• $\ell = \sum_i \log\{1 + \exp(\beta_0 + \beta_1 x_i)\} - \sum_i y_i(\beta_0 + \beta_1 x_i)$

•
$$\frac{\partial \ell}{\partial \beta_0} = \sum_i \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} - \sum_i y_i$$

•
$$\frac{\partial \ell}{\partial \beta_1} = \sum_i \frac{x_i \exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} - \sum_i x_i y_i$$

- Set $\frac{\partial \ell}{\partial \beta_0} = \frac{\partial \ell}{\partial \beta_1} = 0$, solve for β_0 , β_1
- Intuition: $\sum_i (y_i p_i) = 0$, $\sum_i x_i (y_i p_i) = 0$
- Even so, the equations are nonlinear solve numerically for $\widehat{\beta}_0, \ \widehat{\beta}_1$

• Rewrite
$$\frac{\partial \ell}{\partial \beta_0} = \sum_i \left(1 - \frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right) - \sum_i y_i$$
,
 $\frac{\partial \ell}{\partial \beta_1} = \sum_i x_i \left(1 - \frac{1}{1 + \exp(\beta_0 + \beta_1 x_i)} \right) - \sum_i x_i y_i$

•
$$\frac{\partial^2 \ell}{\partial \beta_0^2} = \sum_i \{1 + \exp(\beta_0 + \beta_1 x_i)\}^{-2} \cdot \exp(\beta_0 + \beta_1 x_i) > 0$$

• Also write as
$$\sum_i p_i(1-p_i)$$

•
$$\frac{\partial^2 \ell}{\partial \beta_1^2} = \sum_i x_i^2 \{1 + \exp(\beta_0 + \beta_1 x_i)\}^{-2} \cdot x_i^2 \exp(\beta_0 + \beta_1 x_i) > 0$$

•
$$\frac{\partial^2 \ell}{\partial \beta_0 \partial \beta_1} = \sum_i x_i \{1 + \exp(\beta_0 + \beta_1 x_i)\}^{-2} \cdot x_i \exp(\beta_0 + \beta_1 x_i)$$

•
$$H = \begin{bmatrix} \sum_{i} \widehat{p}_{i}(1 - \widehat{p}_{i}) & \sum_{i} x_{i} \widehat{p}_{i}(1 - \widehat{p}_{i}) \\ \sum_{i} x_{i} \widehat{p}_{i}(1 - \widehat{p}_{i}) & \sum_{i} x_{i}^{2} \widehat{p}_{i}(1 - \widehat{p}_{i}) \end{bmatrix}$$

• The determinant of H is > 0 unless all the x_i are the same — this proves that $(\hat{\beta}_0, \hat{\beta}_1)$ is a local minimum of ℓ and H^{-1} is a good approximation to the variance-covariance matrix of $(\hat{\beta}_0, \hat{\beta}_1)$

Interpretation as Ratio of Odds

- Example: For the smoking-CHD example in the text, $\hat{\beta}_2 = 0.02313$. How should this be interpreted?
- One answer: for a person who smokes 20 cigarettes a day, $\log \frac{p}{1-p}$ is $20 \times 0.02313 = 0.4626$ larger than for a person who smokes none (p: probability of CHD)
- Alternatively: for a person who smokes 20 cigarettes a day, $\frac{p}{1-p}$ is multiplied by $e^{0.4626}=1.59$
- In common probability terminology, $\frac{p}{1-p}$ is the odds.
 - Example: One bookmaker gives odds of 37:20 that the Patriots will win the Superbowl.
 - Equivalent to: probability of winning is $\frac{37}{37+20} = 0.65$.
- For a 20-a-day smoker, odds of CHD are increased by 59%.
- Almost the same as: the risk of CHD is increased by 59%.

Deviance Residuals

• Define the *deviance* as

$$D = 2\ell(\hat{\theta})$$

= $2\sum_{i} \left[\log\{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x_i)\} - y_i(\hat{\beta}_0 + \hat{\beta}_1 x_i) \right]$
= $\sum_{i} r_i^2$

where

$$r_i^2 = 2\left[\log\{1 + \exp(\widehat{\beta}_0 + \widehat{\beta}_1 x_i)\} - y_i(\widehat{\beta}_0 + \widehat{\beta}_1 x_i)\right]$$

Ensure correct sign by defining

$$r_i$$
 = sign $(y_i - \widehat{p}_i) \sqrt{r_i^2}$.

We call r_i the *i*'th *deviance residual* (text, page 36). In R: residuals(lmod)

Side Comment

• We defined

 $r_i^2 = 2\left[\log\{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x_i)\} - y_i(\hat{\beta}_0 + \hat{\beta}_1 x_i)\right]$ Do we know this is > 0?

- Claim: $\log(1 + e^z) yz > 0$ when $-\infty < z < \infty$, y = 0 or 1
- y = 0: $\log(1 + e^z) > \log(1) > 0$
- y = 1: $\log(1 + e^z) z > \log(e^z) z = 0$
- So OK either way.