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INTRODUCING LEVERAGE, INFLUENCE

AND COOK’S D STATISTIC

Confidence and Prediction Intervals
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Consider a simple x-y plot with one “outlier” in the x direction.

Consider the consequence of moving the corresponding y value

up or down.

The effect is much greater than if we took some arbitrary x in

the middle of the plot.

The difference is measured by leverage.
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THEORY

ŷ = Xβ̂

= X(XTX)−1Xy

= Hy

where H = X(XTX)−1X is known as the hat matrix.

H is an n×n matrix whose trace (sum of diagonal entries) is p+1,

the number of unknown parameters (including the intercept).

The diagonal entries hi, i = 1, ..., n are called the hatvalues. “On

average,” the leverages are about p+1
n . Any point substantially

larger than that is called a point of high leverage.

If you have previously fit a linear model to create an object “lmod”, then
hatvalues(lmod)
will create the hat values.
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MY EXAMPLE

X =


1 1
1 2
... ...
1 10
1 20

 , X
TX =

(
11 75
75 785

)
,

(XTX)−1 =
1

3010

(
785 −75
−75 11

)
,

hi = 0.21, 0.18, 0.14, 0.12, 0.10, 0.09,

0.09, 0.10, 0.11, 0.13, 0.73

Observation 11 has about eight times the leverage of observation

6.
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R code for this example

X=matrix(c(rep(1,11),1:10,20),ncol=2)

# display X^T X

t(X) %*% X

library(’MASS’)

# display inverse of X^T X

ginv(t(X) %*% X)

# diagonal entries of the hat matrix, rounded to 2 decimal places

round(diag(X %*% (ginv(t(X) %*% X) %*% t(X))),2)
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Confidence and Prediction Intervals, 1

Properties of H:

1. H is symmetric

Proof: HT = {X(XTX)−1XT}T = (XT )T (XTX)−1XT = H.

2. H is idempotent (H2 = H)

Proof: H2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT .

3. HX = X

Proof: {X(XTX)−1XT}X = XI = X.
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Confidence and Prediction Intervals, 2

Properties of ŷ:

1. ŷ = Hy = H(Xβ + ε) = Xβ +Hε. Mean is Xβ.

2. The covariance matrix of ŷ is

E
{

(ŷ −Xβ)(ŷ −Xβ)T
}

= E
{
Hε(Hε)T

}
= H · E

{
εεT

}
·HT

= H · σ2I ·HT

= σ2H.

3. In particular, V ar(ŷi) = hiσ
2.

4. For the standard linear model setup, σ is estimated by the

residual standard deviation s, for which s2

σ2 ∼
χ2
n−p
n−p indepen-

dently of β̂. Here n is the number of observations and p the
number of covariates (including the intercept).
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Confidence and Prediction Intervals, 3

Suppose we want a 100(1− α)% confidence interval for xTi β, xi
the i’th column of X. We have that ŷi is an unbiased estimaor

with variance hiσ
2. Therefore:

ŷi − xTi β√
hiσ

∼ N [0,1],

ŷi − xTi β√
his

∼ tn−p

where n is the number of observations and p the number of pa-

rameters (including intercept). Therefore the desired confidence

interval is

ŷi ± tn−p,1−α/2 ·
√
hi · s.

where tn−p,1−α/2 is the 1 − α/2 probability point of the tn−p
distribution (In R: qt(1-alpha/2,n-p)).
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Confidence and Prediction Intervals, 4

Suppose, however, what we are really interested in is a new
observation at xi, say y∗ = xiβ + ε∗ where ε∗ ∼ N [0, σ2] to mimic
the errors in the regression already fitted. In that case,

y∗ − ŷi ∼ N [0, σ2(hi + 1)]

were the +1 in the variance term reflects the variance of ε∗.

So the prediction standard error is s
√

1 + hi and not s
√
hi. The

100(1− α)% prediction interval for y∗ is

y∗ ± tn−p,1−α/2 ·
√

1 + hi · s. (1)

In R, you can do this one of two ways: either explicitly evaluate
formula (1) using summary(lmod)$sigma for s and hatvalues(lmod)

for the vector of hi, or use
predict(lmod,interval=’prediction’,level=1-alpha).
The latter is usually easier to remember and use!
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Relevance to the Missing Votes Problem

1. To estimate the PNR in Bladen or Robeson county, we abso-
lutely must take into account the natural varability of PNR,
as well as the regression component.

2. The se.fit option with the predict command computes the
confidence interval SE, not the prediction interval SE.

3. Therefore, we must either multiply the vector of confidence
interval SEs by sqrt((1+hatvalues(lmod))/hatvalues(lmod)) or
(simpler) use the interval=’prediction’ option to compute
prediction intervals directly.

4. This comment applies both to the original formulation of
the question (estimate the probability of the observed value
in Bladen and Robeson county) and the revised formulation
(esitmate number of lost votes), but the latter is simpler
(and more meaningful) because it works with the prediction
intervals directly.
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COOK’S D STATISTIC

The most influential observations are those that have both large
residuals and high leverage.

Cook’s D statistic combines them both into a single measure.

Define p as the number of regressors (including intercept), ŷ
the vector of predicted values, ŷ(i) the vector of predicted val-
ues when the i’th observation is omitted, and σ̂2 the estimated
residual variance.

Di, the influence of observation i, is defined equivalently by

Di =
(ŷ − ŷ(i))T (ŷ − ŷ(i))

pσ̂2
=

1

p
· r2
i ·

hi
1− hi

.

Usually a Di close to 1 is considered meaningful — in other words,
we should investigate whether that observation really does need
to be corrected (or omitted).
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Comments on the rest of Chapter 1

(page 17 onwards)

1. Robust Regression (fit through the R package MASS) —
this method became very popular for a while in the 1980s,
but is less widely used now. You should be aware of it, but
no need to study in depth.

2. Weighted Least Squares. Another method of accounting for
heteroscedasticity is to weight each observation proportional
to the sample size for that observation (in our example, the
AbsBal variable). Faraway recommends against this option
because the variances don’t follow a simple scaling formula in
practice. I suspect the same caveat applies with our example.

3. Transformations of y. Also called Box-Cox transformation.
Could consider replacing PNR by logarithm or square root of
PNR. One test: does this improve R2?
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4. Transformations of x variables. This could be a good idea if
it improves the overall R2 (or, equivalently, reduces the RSS).
Faraway gives several examples. (Another variant would be
to include interactions, e.g. cross-products of existing x vari-
ables. I know some of you tried that with our voting example.
The criterion is whether the new variables improve the fit to
a statistically significant extent.)

5. Variable selection methods. Several possibilities, e.g.
(a) Maximize adjusted R2 (simplest but not necessarily best)
(b) Minimize AIC (or BIC, DIC,....)
(c) Forward, backward or stepwise regression (numerous vari-

ants)
(d) Newer “machine learning” methods, e.g. lasso

None of these methods is universally “best” — choice is
partly a matter of personal preference (and the size of the
dataset)
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Homework 2: Due Tuesday, January 29

Questions 2 and 5 of the problems on page 24

(“rock” and “prostate” datasets)
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