STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes \#2:
January 15, 2019

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

BASICS OF LINEAR REGRESSION

$$
y_{i}=x_{i 0} \beta_{0}+x_{i 1} \beta_{1}+\ldots+x_{i p} \beta_{p}+\epsilon_{i}, i=1, \ldots, n
$$

where y_{i} is i th value of the observation of interest, $x_{i 0}, \ldots, x_{i p}$ are the associated covariates, and $\epsilon_{1}, \ldots, \epsilon_{n}$ are random errors. Here $\beta_{0}, \ldots, \beta_{p}$ are the unknown parameters, or regression coefficients. Usually we assume $x_{i 0}=1$ and in that case we call β_{0} the intercept. Matrix form:

$$
y=X \beta+\epsilon
$$

Principle of least squares: Find $\beta_{0}, \ldots, \beta_{p}$ to minimize

$$
L=\sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right)^{2}
$$

Solve by calculus.

$$
\begin{aligned}
\frac{\partial L}{\partial \beta_{0}} & =-2 \sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right) x_{i 0} \\
\frac{\partial L}{\partial \beta_{1}} & =-2 \sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right) x_{i 1} \\
& \cdots \\
\frac{\partial L}{\partial \beta_{p}} & =-2 \sum_{i}\left(y_{i}-\sum_{j} x_{i j} \beta_{j}\right) x_{i p}
\end{aligned}
$$

We find the minimizing $\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{p}$ by setting all the partial derivatives to 0, hence

$$
\sum_{i}\left(y_{i}-\sum_{j} x_{i j} \widehat{\beta}_{j}\right) x_{i k}=0, k=0, \ldots, p
$$

Matrix notation:

$$
X^{T} y-X^{T} X \widehat{\beta}=0
$$

The Normal Equations

Predicted values, R^{2} and R_{a}^{2}

$$
\widehat{y}_{i}=\sum_{k} x_{i k} \widehat{\beta}_{k}
$$

or in matrix notation

$$
\widehat{y}=X \widehat{\beta}=X\left(X^{T} X\right)^{-1} X^{T} y
$$

We define (in case $x_{i 0} \equiv 1$)

$$
\begin{aligned}
R S S & =\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2} \\
T S S & =\sum_{i}\left(y_{i}-\bar{y}\right)^{2} \\
R^{2} & =1-\frac{R S S}{T S S}
\end{aligned}
$$

An alternative is the adjusted R^{2} given by

$$
R_{a}^{2}=1-\frac{R S S /(n-p)}{T S S /(n-1)}
$$

Summary Tables in R

The summary command in R produces a table of values that includes information about

1. The residuals - values $r_{i}=y_{i}-\widehat{y}_{i}$,
2. The standard errors, t -statistics and p -values of each of the parameter estimates.

For a parameter estimate $\widehat{\beta}_{k}, \mathrm{R}$ will give us a standard error s_{k}, then

$$
t_{k}=\frac{\widehat{\beta}_{k}}{s_{k}}
$$

is called the k th t statistic, so called because it has a t_{n-p} distribution under the null hypothesis that $\beta_{k}=0$.

Confidence Interval for a Single Parameter

The confidence interval for $\widehat{\beta}_{k}$ at (two-sided) significance level α is

$$
\widehat{\beta}_{k} \pm t_{n-p}^{\alpha / 2} s_{k}
$$

where $t_{n-p}^{\alpha / 2}$ is the value exceeded with probability $\alpha / 2$ by the t_{n-p} distribution (in R: qt (1-alpha/2,n-p)).

Confidence Interval for a Single Parameter

The confidence interval for $\widehat{\beta}_{k}$ at (two-sided) significance level α is

$$
\widehat{\beta}_{k} \pm t_{n-p}^{\alpha / 2} s_{k}
$$

where $t_{n-p}^{\alpha / 2}$ is the value exceeded with probability $\alpha / 2$ by the t_{n-p} distribution (in R: qt (1-alpha/2,n-p)).

F Tests

Useful for testing whether a whole group of parameters is 0.

Suppose we have two models lm1 and lm2 where lm1 is nested within lm2 (in other words, every parameter that is in lm2 is also in lm1, but not the other way round).

In the text, the two models are denoted by ω (lm1) and Ω (lm2). Suppose they have respectively q and p parameters, with $q<p$.

If model ω is true, then we have

$$
F=\frac{\left(R S S_{\omega}-R S S_{\Omega}\right) /(p-q)}{R S S_{\Omega} /(n-p)} \sim F_{p-q, n-p}
$$

In R: anova(lm1,lm2).

