STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes \#14:
February 26, 2019

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Homework 5

- Chapter 5, Problems 2 and 5 (pages 99-101)
- Due date: Tuesday March 5
- I have posted the TA's solutions to HW1-4. Please treat these as for personal use only and do not pass on to anyone outside the class!

Poisson Model for 2×2 Table

- Counts $y_{i j}$: assume for convenience i, j are each 0 or 1
- $\mathrm{E}\left(y_{i j}\right)=\lambda_{i j}$, write in form

$$
\log \lambda_{i j}=\mu+\alpha i+\beta j+\gamma i j
$$

- Poisson log likelihood

$$
\begin{equation*}
\ell=\sum_{i} \sum_{j}\left(y_{i j} \log \lambda_{i j}-\lambda_{i j}-\log y_{i j}!\right) \tag{1}
\end{equation*}
$$

- Saturated model: assume all of $\mu, \alpha, \beta, \gamma$, number of parameters equals number of observations, solve exactly, $\widehat{\lambda}_{i j}=y_{i j}$ and

$$
\begin{equation*}
\ell=\sum_{i} \sum_{j}\left(y_{i j} \log y_{i j}-y_{i j}-\log y_{i j}!\right) \tag{2}
\end{equation*}
$$

Poisson Model With No Interaction

- $\log \lambda_{i j}=\mu+\alpha i+\beta j$.
- $\ell=\sum_{i} \sum_{j}\left(y_{i j}(\mu+\alpha i+\beta j)-e^{\mu+\alpha i+\beta j}-\log y_{i j}!\right)$.
- Claim: The MLE is achieved when $\lambda_{i j}=\frac{y_{i+} y_{+j}}{y_{++}}$where the + signs in the suffices denote summation over the relevant indices.
- Comparing formulas (1) and (2), we have

$$
\text { Deviance }=2 \sum_{i} \sum_{j} y_{i j} \log \frac{y_{i j}}{\hat{\lambda}_{i j}}
$$

- We also have the Pearson Chi-Square statistic

$$
X^{2}=\sum_{i} \sum_{j} \frac{\left(y_{i j}-\widehat{\lambda}_{i j}\right)^{2}}{\widehat{\lambda}_{i j}}
$$

- Both are asymptotically χ_{1}^{2}.

Multinomial Model

- Assume total sample size n is fixed, divided into four boxes with probabilities $\left\{p_{i j}\right\}$. The probability of a particular allocation $\left\{y_{i j}\right\}$ is then

$$
\frac{n!}{\prod_{i} \Pi_{j} y_{i j}!} \prod_{i} \prod_{j} p_{i j}^{y_{i j}}
$$

- Ignoring constants, the log likelihood is of the form

$$
\ell=\sum_{i} \sum_{j} y_{i j} \log p_{i j}
$$

essentially same as Poisson model

Binomial Model

- Assume either the row totals or the column totals are fixed
- Then, e.g. given n_{0}, n_{1} totals in rows 0,1 , assume

$$
y_{i j}=\operatorname{Bin}\left(n_{i}, p_{i j}\right)
$$

with formulas for $p_{i j}$ similar to the multinomial model

- The interpretations of the $p_{i j}$'s are different however - they are conditional probabilities (given the row totals), not marginal probabilities
- A similar model is possible fixing column totals
- All these models lead to very similar math

Hypergeometric Distribution

- Population of N items, k of which are "success"
- Sample of size n, drawn randomly without replacement
- Probability exactly x elements in the sample are successes:

$$
\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}
$$

valid for any x for which the numerator is >0.

- This may also be written as

$$
\frac{k!(N-k)!n!(N-n)!}{x!(k-x)!(n-x)!(N-k-n+x)!N!}
$$

which (when applied to a 2×2 table) is equivalent to the formula on page 108 of the text.

- Leads to Fisher's Exact Test (fisher.test in R.)

