STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes #12: February 19, 2019

1

1

Scheduling a Take-home Midterm/Final

- Midterm, posted noon Feb 24, email solutions no later than 6pm Feb 25
- Final, posted noon Apr 30, email solutions no later than 6pm May 1
- Dates are confirmed but will I work with any individual students who have difficulties with those dates

Homework 4

- Chapter 3, Problems 1 and 3
- Hint for problem 1: you can test for interactions by including terms like

glm(cbind(ncases,ncontrols)~agegp+alcgp+tobgp+agegp*alcgp +agegp*tobgp+alcgp*tobgp,family=binomial,esoph)

The * terms denote interactions between factor variables.

Part (c) is open-ended: try to find some model that fits better than the best model from (b)

- Problem 3: data(seeds)
- In both problems, also answer part (i): would the fit be improved by using a quasi-binomial model?
- Due date: Tuesday, February 19.

Homework 5

- Chapter 5, Problems 2 and 5 (pages 99–101)
- Due date: To be changed

Rate Models

- Example: count cancer cases in Raleigh, Durham and Chapel Hill
- Expect cases(Raleigh) > cases(Durham) > cases(Chapel Hill)
- However that just reflects differences in population a more reasonable hypothesis would be that the *rate* of cancer is the same in each of the three cities
- Model as

Number of cases \approx Population of city \times Rate

- $E(\log y_i) \approx \log N_i + \sum_{j=1}^q x_{ij}\beta_j$ where N_i is population of *i*th city
- Like a GLM with one parameter constrained to be 1
- Can fit that using an offset

Use of Offset in R

"dicentric" example

rmod=glm(ca~offset(log(cells))+log(doserate)*dosef,
family=poisson,dicentric)

Negative Binomial Model

• Number of Bernoulli trials needed to get k'th success

•
$$\Pr\{Z=z\} = {\binom{z-1}{k-1}}p^k(1-p)^{z-k}.$$

- Alternative: Y = Z k, $p = \frac{1}{1+\alpha}$ so $\Pr\{Y = y\} = {\binom{y+k-1}{k-1}} \frac{\alpha^y}{(1+\alpha)^{y+k}}$.
- $E(Y) = \mu = k\alpha$ and $Var(Y) = k\alpha + k\alpha^2 = \mu + \frac{\mu^2}{k}$.
- Log likelihood is

$$\ell = \sum_{i=1}^{n} \left(y_i \log \frac{\alpha}{1+\alpha} - k \log(1+\alpha) + \sum_{j=0}^{y_i-1} \log(j+k) - \log(y_i!) \right).$$

• $\eta = \sum_{j=0}^{p} x_{ij} \beta_j = \log \frac{\alpha}{1+\alpha} = \log \frac{\mu}{\mu+k}$

Fitting in R

Venables-Ripley method with k fixed:

library(MASS) modn=glm(skips .,negative.binomial(k),solder)

Alternative: determine k by maximum likelihood

```
modn=glm.nb(skips .,solder)
```

Zero-inflated counts models

- First load package "pscl"
- Hurdle model:

$$P(Y = 0) = f_1(0),$$

$$P(Y = j) = \frac{1 - f_1(0)}{1 - f_2(0)} f_2(j), \quad j > 0,$$

where (by default) f_2 is Poisson. Fit in R: hurdle(y \sim .,data=dataframe)

• ZIP model:

$$P(Y = 0) = \phi + (1 - \phi)f(0),$$

$$P(Y = j) = (1 - \phi)f(j), \ j > 0.$$

Fit in R: $zeroinfl(y \sim ., data = ...)$

Possibility of using different covariates for the two components, e.g. zerolinf(y~x1+x2+x3|x4+x5,data=...)