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Scheduling a Take-home Midterm/Final

e Midterm, posted noon Feb 24, email solutions no later than
6pm Feb 25

e Final, posted noon Apr 30, email solutions no later than 6pm
May 1

e Dates are confirmed but will I work with any individual stu-
dents who have difficulties with those dates



Homework 4
e Chapter 3, Problems 1 and 3

e Hint for problem 1: you can test for interactions by including
terms like

glm(cbind(ncases,ncontrols)~agegp-+alcgp+tobgp+agegp*alcgp
+agegp*tobgp-+talcgp*tobgp,family=binomial,esoph)

The * terms denote interactions between factor variables.

Part (c) is open-ended: try to find some model that fits
better than the best model from (b)

e Problem 3: data(seeds)

e In both problems, also answer part (i): would the fit be
improved by using a quasi-binomial model?

e Due date: Tuesday, February 19.



CHAPTER 5.
REGRESSION FOR COUNT DATA

1. Poisson Regression



Pr{Yy =y} =

Basics of Poisson model

“y,;j!_“, y=0,1,2,...

Data: yq,...,yn PoOisson with mean u1, ..., un

Log link: log pu; = n; = 3 x5,

Log likelihood £(u1, ..., pin) = >(y; 109 p1; — p; — 109 y;!)

Unrestricted u;: maximized when u; = y;. Call this #1.

With log link and regressors:
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Maximum Likelihood Estimators

e \Write the likelihood equations as

LdC) = D ¥iTik — Tik €XP | Y %5, = 0
0Pk J

1

e If we write exp (Zj xijﬁj) = [i; we get
Z (yi — i)z = O
i
which leads to the normal equations
xty = x'g.

e Note however we must still use numerical approximation to
find L.



Alternatives to Poisson Regression

e \We can also try a standard linear regression, ignoring the
fact that y is a count. The text starts out this way with the
Species dataset
— Simple linear regression did not give a good fit — variance
increased with fitted value

— Box=Cox transformation suggested A = 0.3 but A = 0.5
was almost as good on the plot

— In fact taking A = 0.5 is a standard trick for count data
— the reason is given on the next slide

— This improves on the untransformed linear regression but
it still isn't perfect

— Another problem with the square root transformation is
difficulty of interpreting the resulting model — Poisson
regression with log link is much easier to understand
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Rationale for Square Root Transformation

Suppose Y is Poisson with mean p moderately large (say
p > 10)

The mean and variance of Y are both u

Write Y = u(1 4+ u1/2¢) where ¢ has mean 0 and variance 1

Then Y1/2 = ,1/2(1 4 4~ 1/26)1/2 & 1/2 (1 + %M—1/2€> .

Y1/2 has mean approximately ul/2 and variance approxi-
mately z — independent of y

Therefore, a regression with Y1/2 as the response should have
approximately constant variance (standard deviation =~ 0.5)

However in the Species example, the residual standard error
IS 2.77, so this doesn’'t seem to work well either

May indicate overdispersion



Deviance and Pearson X2

As for binary case, compare log likelihood for a saturated
model (u; unrestricted) with the linear model being fitted,

01 > (y;logy; — y; — log y;!)

lo > (yilog pi; — fi; — 10g y;!)

Deviance is

Yi _
D = 2(l1 —{p) = 2Z<y¢|09%—(yi—ui)>-
1

M

We can also calculate the Pearson X2 statistic

2 — Z(yit/ji)%
i Mg



Overdispersion

Sometimes a more reasonable model may be E(y;) = u;, Var(y;) =
ou; where ¢ is a constant known as the overdispersion (usu-

ally but not necessarily ¢ > 1

How to spot?

— Plots of squared residuals against fitted values as in Fig.
5.3 (right — note that the plot is on a log scale herel!)

— Formal test of fit based on deviance or Pearson residuals
(here leads to decisive rejection of the null hypothesis)

Remedy — use family=quasipoisson
For the species example we get a huge value ¢ = 31.7

There are still some observations with large Cook statistic
but not nearly so bad as with the regular Poisson model
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