STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes \#10:

February 12, 2019

THE UNIVERSITY
of NORTH CAROLINA.
at CHAPEL HILL

Scheduling a Take-home Midterm/Final

- Midterm, posted noon Feb 24, email solutions no later than 6pm Feb 25
- Final, posted noon Apr 30, email solutions no later than 6pm May 1
- Dates are confirmed but will I work with any individual students who have difficulties with those dates

Homework 4

- Chapter 3, Problems 1 and 3
- Hint for problem 1: you can test for interactions by including terms like
glm(cbind(ncases, ncontrols)~agegp+alcgp+tobgp+agegp*alcgp
+agegp*tobgp+alcgp*tobgp,family=binomial,esoph)
The * terms denote interactions between factor variables.
Part (c) is open-ended: try to find some model that fits better than the best model from (b)
- Problem 3: data(seeds)
- In both problems, also answer part (i): would the fit be improved by using a quasi-binomial model?
- Due date: Tuesday, February 19.

Summary of Last Class

- Data structure: response is a two-column matrix representing y_{i} and $m_{i}-y_{i}$ in a $\operatorname{Binomial}\left(m_{i}, p_{i}\right)$ experiment
- $\mathrm{E}\left\{y_{i}\right\}=m_{i} p_{i}, \operatorname{Var}\left\{y_{i}\right\}=m_{i} p_{i}\left(1-p_{i}\right)$
- Logit link: $\eta_{i}=\log \frac{p_{i}}{1-p_{i}}=\sum_{j=0}^{q} x_{i j} \beta_{j}$
- Fit with glm command with family=binomial, same as Ch. 2
- Extension: sometimes better to write $\operatorname{Var}\left\{y_{i}\right\}=\phi m_{i} p_{i}\left(1-p_{i}\right)$ where ϕ is called the overdispersion parameter (typically, but not necessarily, $\phi>1$)
- This may be fitted using family=quasibinomial

Data on Proportions

- Sometimes data consist of proportions without any information about sample sizes
- Here "quasibinomial" is again an option, but we may find overdispersion is <1
- Alternative: beta model (Section 3.6)

Estimating Using the Beta Distribution

- Density $f(y ; a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} y^{a-1}(1-y)^{b-1}, 0<y<1$.
- Mean μ, variance $\frac{\mu(1-\mu)}{(1+\phi)}, \mu=\frac{a}{a+b}, \phi=a+b$.
- $\eta=\log \frac{\mu}{1-\mu}$ is link function
- $\eta_{i}=\sum_{j=0}^{q} \beta_{j} x_{i j}$
- Implement with gam(...,family=betar()) function in package mgcv.

