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Scheduling a Take-home Midterm/Final

• Midterm, posted noon Feb 24, email solutions no later than

6pm Feb 25

• Final, posted noon Apr 30, email solutions no later than 6pm

May 1

• Dates are confirmed but will I work with any individual stu-

dents who have difficulties with those dates
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Review Sensitivity and Specificity

• Assume we are testing for a disease or some specific health
outcome, and we use a diagnostic test to predict the outcome

• Specificity: the probability that a person who does not have
the disease is correctly predicted to not have the disease

• Sensitivity: the probability that a person who does have the
disease is correctly predicted to have the disease

• After subtracting from 1, these are analogous to type I error
and type II error, respectively

• Sensitivity is also the power of the test

• As the threshold for detection rises, the specificity increases
but the sensitivity decreases

• The plot of Sensitivity against 1-Specificity is called the Re-
ceiver Operating Characteristic or ROC curve
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Heffernan and Tawn (2004)
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CHAPTER 3: BINOMIAL

AND PROPORTION DATA
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Model and Likelihood Function

• Pr {Yi = yi} =
(
mi
yi

)
p
yi
i (1− pi)mi−yi, i = 1, ..., n, 0 ≤ yi ≤ mi.

• ηi = log pi
1−pi =

∑q
j=0 βjxij

• Write ` for log likelihood,

` =
∑{

yi log pi + (mi − yi) log(1− pi) + log
(mi

yi

)}

=
∑{

yi log
pi

1− pi
+mi log(1− pi) + log

(mi

yi

)}

=
∑{

yiηi −mi log(1 + eηi) + log
(mi

yi

)}
.

• Hence derive likelihood equations ∂`
∂βk

= 0 for k = 0, ..., q.
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Deviance

• Compare model H0 with fitted parameters β0, ..., βq (DF =

q+1) with alternative in which pi’s are unrestricted (DF = n)

• Under H1, estimate pi = yi
mi

, fitted values same as yi

• Under H0, assume estimates p̂i and fitted values ŷi

• Therefore, the deviance statistic is

D = 2
∑
i

{
yi log

yi
mi

+ (mi − yi) log
mi − yi
mi

+ log
(mi

yi

)}

−2
∑
i

{
yi log

ŷi
mi

+ (mi − yi) log
mi − ŷi
mi

+ log
(mi

yi

)}

= 2
∑
i

{
yi log

yi
ŷi

+ (mi − yi) log
(mi − yi)
(mi − ŷi)

}

7



Deviance and Pearson Residuals

• See page 53. If H0 is correct, D is approximately χ2
n−q−1.

– Assumes mi not too small. Maybe mi ≥ 5 could be guideline.

• An alternative formula (page 55) is

X2 =
∑
i

(yi −mip̂i)
2

mip̂i(1− p̂i)
.

• Pearson residuals are

rPi =
(yi −mip̂i)√

var ŷi

• In R: residuals(lmod,type=’pearson’)

• X2 should be close to the deviance but not always (p. 55)

• Discrepancy may suggest overdispersion
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Example with orings data

• Binomial model with temperature as covariate

lmod=glm(cbind(damage,6-damage)∼temp,family=binomial,orings)

• Deviance is 16.9 but X2 = 28.1 with 21 DF

• pchisq(28.1,21,lower=F) gives 0.137 so no problem with good-

ness of fit — test statistic X2 is “not significant”

• Nevertheless 28.1
21 = 1.34 implies some overdispersion

• If we correct for this, the standard error of the temperature

term is increased
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> lmod=glm(cbind(damage,6-damage)~temp,family=binomial,orings)

> sumary(lmod)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.662990 3.296263 3.5382 0.0004028

temp -0.216234 0.053177 -4.0663 4.777e-05

.

.

> lmodod=glm(cbind(damage,6-damage)~temp,family=quasibinomial,

> orings)

>

> sumary(lmodod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.662990 3.810774 3.0605 0.005938

temp -0.216234 0.061477 -3.5173 0.002047

Dispersion parameter = 1.33654
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Binomial or quasibinomial?

• Both give same regression coefficients

• Quasibinomial allows for overdispersion (here 1.34) — more

“robust” but leads to higher standard errors for coefficients

(lower t statistics)

– Side issue — p-values for binomial are based on normal distribution

but p-values for quasibinomial are based on t distribution. I don’t

know the reason for that.

• If we were confident the binomial model was correct, that

would be right thing to do

• However there are also reasons why overdispersion might be

a factor, e.g. other variations in experimental conditions
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