STOR 556: ADV METH DATA ANAL
Instructor: Richard L. Smith

Class Notes #9:
February 7, 2019

—_ % THE UNIVERSITY

" " of NORTH CAROLINA
LI at CHAPEL HILL




Scheduling a Take-home Midterm/Final

e Midterm, posted noon Feb 24, email solutions no later than
6pm Feb 25

e Final, posted noon Apr 30, email solutions no later than 6pm
May 1

e Dates are confirmed but will I work with any individual stu-
dents who have difficulties with those dates



Review Sensitivity and Specificity

Assume we are testing for a disease or some specific health
outcome, and we use a diagnostic test to predict the outcome

Specificity: the probability that a person who does not have
the disease is correctly predicted to not have the disease

Sensitivity: the probability that a person who does have the
disease is correctly predicted to have the disease

After subtracting from 1, these are analogous to type I error
and type II error, respectively

Sensitivity is also the power of the test

As the threshold for detection rises, the specificity increases
but the sensitivity decreases

The plot of Sensitivity against 1-Specificity is called the Re-
ceiver Operating Characteristic or ROC curve
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CHAPTER 3: BINOMIAL
AND PROPORTION DATA



Model and Likelihood Function

o PriV;=vy;} = (Zi)p?{i(l —p)"iTYi, i =1,..,n, 0 <y; <m,.

o n; = log tE- = 31_ Bjwij

e Write ¢ for log likelihood,
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e Hence derive likelihood equations 86 =0 for k=0,.



Compare model Hg with fitted parameters A, ...
g+ 1) with alternative in which p;'s are unrestricted (DF = n)

Under Hy, estimate p; = 2L,

Deviance

fitted values same as y;

Under Hgp, assume estimates p; and fitted values y;

Therefore, the deviance statistic is
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Deviance and Pearson Residuals

See page 53. If Hp is correct, D is approximately X?%,—q—l'
— Assumes m; not too small. Maybe m; > 5 could be guideline.

An alternative formula (page 55) is

X2 = 3 (yiA_ miﬁz’}Q‘
— m;p;(1 — p;)

Pearson residuals are

P (Wi —mip;)
’ Vvvar y;

In R: residuals(1lmod,type=’pearson’)
X2 should be close to the deviance but not always (p. 55)

Discrepancy may suggest overdispersion



Example with orings data

Binomial model with temperature as covariate

1mod=glm(cbind (damage,6-damage) ~temp,family=binomial,orings)
Deviance is 16.9 but X2 = 28.1 with 21 DF

pchisq(28.1,21,1lower=F) gives 0.137 so no problem with good-
ness of fit — test statistic X2 is “not significant”

Nevertheless 253—11 = 1.34 implies some overdispersion

If we correct for this, the standard error of the temperature
term is increased



> 1mod=glm(cbind(damage,6-damage) "temp,family=binomial,orings)
> sumary (1lmod)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.662990 3.296263 3.5382 0.0004028

temp -0.216234 0.0563177 -4.0663 4.777e-05

> 1lmodod=glm(cbind(damage,6-damage) “temp,family=quasibinomial,
> orings)

>

> sumary (1lmodod)

Estimate Std. Error t value Pr(>|t])
(Intercept) 11.662990 3.810774 3.0605 0.005938
temp -0.216234 0.061477 -3.5173 0.002047

Dispersion parameter = 1.33654
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Binomial or quasibinomial?
e Both give same regression coefficients

e Quasibinomial allows for overdispersion (here 1.34) — more
“robust” but leads to higher standard errors for coefficients
(lower t statistics)

— Side issue — p-values for binomial are based on normal distribution
but p-values for quasibinomial are based on t distribution. I don't
know the reason for that.

e If we were confident the binomial model was correct, that
would be right thing to do

e However there are also reasons why overdispersion might be
a factor, e.g. other variations in experimental conditions
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