STOR 556: ADV METH DATA ANAL Instructor: Richard L. Smith

Class Notes \#9:
February 7, 2019

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Scheduling a Take-home Midterm/Final

- Midterm, posted noon Feb 24, email solutions no later than 6pm Feb 25
- Final, posted noon Apr 30, email solutions no later than 6pm May 1
- Dates are confirmed but will I work with any individual students who have difficulties with those dates

Review Sensitivity and Specificity

- Assume we are testing for a disease or some specific health outcome, and we use a diagnostic test to predict the outcome
- Specificity: the probability that a person who does not have the disease is correctly predicted to not have the disease
- Sensitivity: the probability that a person who does have the disease is correctly predicted to have the disease
- After subtracting from 1, these are analogous to type I error and type II error, respectively
- Sensitivity is also the power of the test
- As the threshold for detection rises, the specificity increases but the sensitivity decreases
- The plot of Sensitivity against 1-Specificity is called the Receiver Operating Characteristic or ROC curve

CHAPTER 3: BINOMIAL AND PROPORTION DATA

Model and Likelihood Function

- $\operatorname{Pr}\left\{Y_{i}=y_{i}\right\}=\binom{m_{i}}{y_{i}} p_{i}^{y_{i}}\left(1-p_{i}\right)^{m_{i}-y_{i}}, i=1, \ldots, n, 0 \leq y_{i} \leq m_{i}$.
- $\eta_{i}=\log \frac{p_{i}}{1-p_{i}}=\sum_{j=0}^{q} \beta_{j} x_{i j}$
- Write ℓ for log likelihood,

$$
\begin{aligned}
\ell & =\sum\left\{y_{i} \log p_{i}+\left(m_{i}-y_{i}\right) \log \left(1-p_{i}\right)+\log \binom{m_{i}}{y_{i}}\right\} \\
& =\sum\left\{y_{i} \log \frac{p_{i}}{1-p_{i}}+m_{i} \log \left(1-p_{i}\right)+\log \binom{m_{i}}{y_{i}}\right\} \\
& =\sum\left\{y_{i} \eta_{i}-m_{i} \log \left(1+e^{\eta_{i}}\right)+\log \binom{m_{i}}{y_{i}}\right\}
\end{aligned}
$$

- Hence derive likelihood equations $\frac{\partial \ell}{\partial \beta_{k}}=0$ for $k=0, \ldots, q$.

Deviance

- Compare model H_{0} with fitted parameters $\beta_{0}, \ldots, \beta_{q}$ ($D F=$ $q+1$) with alternative in which p_{i} 's are unrestricted ($D F=n$)
- Under H_{1}, estimate $p_{i}=\frac{y_{i}}{m_{i}}$, fitted values same as y_{i}
- Under H_{0}, assume estimates \hat{p}_{i} and fitted values \widehat{y}_{i}
- Therefore, the deviance statistic is

$$
\begin{aligned}
D= & 2 \sum_{i}\left\{y_{i} \log \frac{y_{i}}{m_{i}}+\left(m_{i}-y_{i}\right) \log \frac{m_{i}-y_{i}}{m_{i}}+\log \binom{m_{i}}{y_{i}}\right\} \\
& -2 \sum_{i}\left\{y_{i} \log \frac{\hat{y}_{i}}{m_{i}}+\left(m_{i}-y_{i}\right) \log \frac{m_{i}-\widehat{y}_{i}}{m_{i}}+\log \binom{m_{i}}{y_{i}}\right\} \\
= & 2 \sum_{i}\left\{y_{i} \log \frac{y_{i}}{\widehat{y}_{i}}+\left(m_{i}-y_{i}\right) \log \frac{\left(m_{i}-y_{i}\right)}{\left(m_{i}-\widehat{y}_{i}\right)}\right\}
\end{aligned}
$$

Deviance and Pearson Residuals

- See page 53. If H_{0} is correct, D is approximately χ_{n-q-1}^{2}.
- Assumes m_{i} not too small. Maybe $m_{i} \geq 5$ could be guideline.
- An alternative formula (page 55) is

$$
X^{2}=\sum_{i} \frac{\left(y_{i}-m_{i} \widehat{p}_{i}\right)^{2}}{m_{i} \hat{p}_{i}\left(1-\widehat{p}_{i}\right)} .
$$

- Pearson residuals are

$$
r_{i}^{P}=\frac{\left(y_{i}-m_{i} \hat{p}_{i}\right)}{\sqrt{\operatorname{var} \hat{y}_{i}}}
$$

- In R: residuals(lmod,type='pearson')
- X^{2} should be close to the deviance but not always (p. 55)
- Discrepancy may suggest overdispersion

Example with orings data

- Binomial model with temperature as covariate lmod=glm(cbind (damage, 6-damage) ~temp,family=binomial,orings)
- Deviance is 16.9 but $X^{2}=28.1$ with 21 DF
- pchisq(28.1,21,lower=F) gives 0.137 so no problem with goodness of fit - test statistic X^{2} is "not significant"
- Nevertheless $\frac{28.1}{21}=1.34$ implies some overdispersion
- If we correct for this, the standard error of the temperature term is increased
> lmod=glm(cbind(damage,6-damage) ~temp,family=binomial,orings)
> sumary(lmod)

	Estimate	Std. Error z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	11.662990	3.296263	3.5382	0.0004028
temp	-0.216234	0.053177	-4.0663	$4.777 \mathrm{e}-05$

> lmodod=glm(cbind(damage,6-damage) ~ temp,family=quasibinomial,
> orings)
$>$
> sumary(lmodod)
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $11.6629903 .810774 \quad 3.06050 .005938$
$\begin{array}{llllll}\text { temp } & -0.216234 & 0.061477 & -3.5173 & 0.002047\end{array}$
Dispersion parameter $=1.33654$

Binomial or quasibinomial?

- Both give same regression coefficients
- Quasibinomial allows for overdispersion (here 1.34) - more "robust" but leads to higher standard errors for coefficients (lower t statistics)
- Side issue - p-values for binomial are based on normal distribution but p-values for quasibinomial are based on t distribution. I don't know the reason for that.
- If we were confident the binomial model was correct, that would be right thing to do
- However there are also reasons why overdispersion might be a factor, e.g. other variations in experimental conditions

