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The notes have been produced for the course STOR 556 and are intended to supplement the
course text [2].

1 Random Effects Analysis of Variance

A classical fixed effects analysis of variance could be based on either of the formulas

yij = µ+ τi + νj + εij , 1 ≤ i ≤ I, 1 ≤ j ≤ J, (1)

or

yijk = µ+ τi + νj + εijk, 1 ≤ i ≤ I, 1 ≤ j ≤ J 1 ≤ k ≤ K, (2)

where µ, τi, νj represent an overall mean, a treatment effect and a block effect, and εij or εijk
represent a random error term which is typically, though not necessarily, assumed to be independent
N(0, σ2ε ) for some common variance σ2ε . Both models (1) and (2) may be fitted using the lm

command where the different levels of treatment i and block j are defined to be factor variables;
the advantage of (2) with K > 1 is that it also allows us to test interactions or cross-products
between the treatment and block variables.

The idea of “random effects” is that we may find it more appropriate to treat either the τi’s
or the νj ’s as random variables from some common distribution, for example τi ∼ N [0, σ2τ ] or
νj ∼ N [0, σ2ν ] where σ2τ or σ2ν are additional variance terms. Very often, we make some of the terms
fixed effects and some of them random effects, in which case it is called a mixed effects model.

2 Estimation

Consider the simplest possible model of this form, represented by

yij = µ+ αi + εij , 1 ≤ i ≤ a, 1 ≤ j ≤ n, (3)

with αi ∼ N [0, σ2α], εij ∼ N [0, σ2ε ], all mutually independent. In this case,

E(yij) = µ,

Var(yij) = E{(αi + εij)
2}

= σ2α + σ2ε ,
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and for given i, j, j′ with j 6= j′,

Cov(yij , yij′) = E{(αi + εij)(αi + εij′)}
= σ2α.

So

ρ =
σ2α

σ2α + σ2ε

is the correlation between yij and yij′ . This is known as the intraclass correlation coefficient (ICC).
The question is how we can estimate the quantities σ2α, σ

2
ε and ρ.

For notational purposes, we use dots to denote averages over the variable with a dot in place
of the index, for example yi· =

1
n

∑n
j=1 yij , y·· =

1
an

∑a
i=1

∑n
j=1 yij .

One possible way is to start with the analysis of variance decomposition:

a∑
i=1

n∑
j=1

(yij − y..)2 =
a∑
i=1

n∑
j=1

(yij − yi. + yi. − y..)2

=
a∑
i=1

n∑
j=1

(yij − yi.)2 + 2
a∑
i=1

n∑
j=1

(yij − yi.)(yi. − y..) +
a∑
i=1

n∑
j=1

(yi. − y..)2

=
a∑
i=1

n∑
j=1

(yij − yi.)2 + n
a∑
i=1

(yi. − y..)2

where the middle term vanishes because
∑n
j=1(yij−yi.) = 0 for any i. We can write this expression

in the form

SST = SSE + SSA

where SST is known as the total sum of squares, SSE is the residual sum of squares, and SSA is
often called the treatment sum of squares.

Let’s now figure out the expectations of each of these terms. Based on the model (3) we have

E{SST} = E


a∑
i=1

n∑
j=1

(αi − α. + εij − ε..)2


= E


a∑
i=1

n(αi − α.)2 +
a∑
i=1

n∑
j=1

(εij − ε..)2


= n(a− 1)σ2α + (na− 1)σ2ε .

Similarly,

E {SSE} = E


a∑
i=1

n∑
j=1

(εij − εi.)2


= a(n− 1)σ2ε .
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Hence

E{SSA} = n(a− 1)σ2α + (na− 1)σ2ε − a(n− 1)σ2ε

= (a− 1)(nσ2ε + σ2a).

These formulas suggest we define

MSE =
SSE

a(n− 1)
, MSA =

SSA

a− 1

and hence define unbiased estimators

σ̂2ε = MSE, (4)

nσ̂2α + σ̂2ε = MSA,

which simplifies to

σ̂2α =
MSA−MSE

n
. (5)

It should be emphasized that the formulas (4) and (5) were the standard way of estimating these
models until about twenty years ago, when the introduction of the nmle R package (now updated
to lme4) made it possible to use the maximum likelihood approach, which we are going to describe.
However, there are some disadvantages to these formulas:

1. For more complicated models than (3), the algebra gets very messy;

2. For more complicated models than (3), the solution may not be unique;

3. There is no guarantee that MSA > MSE. If it is not, σ̂2α could be negative!

There are various ad hoc fixes to these issues, but the problem is that each model requires its
own set of estimators and there isn’t a unified theory.

This approach is sometimes called the method of moments (MOM), since it amounts to esti-
mating σ2α and σ2ε by equating the means (first-order moments) of MSE and MSA.

3 Likelihood-Based Methods

The alternative approach that has now become much more popular begins by rewriting the linear
model in the form

y = Xβ + Zγ + ε (6)

where some of the elements are standard: y is a vector of n observations, X is a n × p matrix of
covariates, β is a vector of p (fixed effect) parameters and ε is a vector of errors, typically assumed
to be normal with mean 0 and some common variance σ2. The new contribution is the term Zγ,
where:
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• Z is a matrix of covariates (in the case of a simple model like (2) or (3), this will be a matrix
of zeros and ones);

• γ is a vector of random effects, typically assumed to have a normal distribution of the form
γ ∼ N [0, Dσ2] with D a diagonal matrix, and to be independent of ε. For example, if γ is the
same as α in (3), D will be an a×a matrix with off-diagonal entries all 0, diagonal entries all
some constant d where d = σ2α/σ

2
ε in the notation of our previous example (3). The problem

is then to estimate d.

In the model (6), the covariance matrix of y is now

E
{

(y −Xβ)(y −Xβ)T
}

= E
{

(Zγ + ε)(Zγ + ε)T
}

= E
{

(ZγγTZT + ZγεT + εγTZT + εεT
}

= (ZDZT + I)σ2

where the middle two terms have expectation zero because γ and ε are uncorrelated (one of the
assumptions of the model).

Therefore, we write the new model in matrix notation as

y ∼ N [Xβ, σ2(I + ZDZT )] (7)

(see equation on bottom line, page 197 of text) where X is the matrix of fixed-effect covariates, Z
is the matrix of random-effect covariates, β is the vector of fixed effects and D are the diagonal
entries that define the variances of the random effects. The problems are:

(a) Estimate β and σ2 given the values of D,

(b) Estimate D.

To solve problem (a), the standard method is called generalized least squares, which you may have
seen in STOR 455. To be specific, if we have a model of the form y ∼ N [Xβ, V σ2] where β and σ2

are unknown but V is a known matrix (the covariance matrix of y, up to a constant σ2) then the
standard estimates are

β̂ = (XTV −1X)−1XTV −1y, (8)

σ̂2 =
(y −Xβ̂)TV −1(y −Xβ̂)

n− p
. (9)

To solve problem (b), the best-known general method is the method of maximum likelihood which
we have already discussed extensively in the GLM part of the course. For model (7), the joint
density of all the observations is

(2πσ2)−n/2|V |−1/2 exp

{
−(y −Xβ)TV −1(y −Xβ)

2σ2

}
(10)

where |V | denotes the determinant of the matrix V = I + ZDZT . so the log likelihood is

` = −n
2

log 2π − n

2
log σ2 − 1

2
log |V | − (y −Xβ)TV −1(y −Xβ)

2σ2
. (11)

We maximize (11) in stages:
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(a) Minimize (y −Xβ)TV −1(y −Xβ) with respect to β. By calculus or a geometric argument,
this leads us back to (8).

(b) Minimize (n log σ2)/2 + (y −Xβ̂)TV −1(y −Xβ̂)/(2σ2) with respect to σ2. This leads us to

σ̂2 =
(y −Xβ̂)TV −1(y −Xβ̂)

n
(12)

(c) Substitute β̂ and σ̂2 back into (11) which leads us to try to minimize (ignoring constants)

n

2
log σ̂2 +

1

2
log |V | (13)

and then we choose D (which determines both V and σ̂2) to minimize (13). Although there
is no possibility of a closed-form solution in this case, the function (13) is fairly easily pro-
grammed into a numerical optimization routine and this is used to determine the estimator
D̂.

There is one catch, however: estimator (12) for σ2 is not the same as estimator (9). In fact, you
probably know already that estimator (12) is biased, and the correction of dividing by n− p rather
than n is there to make the estimator unbiased. This is true even in the simpler case where V is
the identity matrix and this is a known disadvantage of the method of maximum likelihood for the
general linear model.

The solution is that, instead of using maximum likelihood, we adopt a variant known as restricted
maximum likelihood estimation (sometimes also called the reduced maximum likelihood method, but
either way generally abbreviated to REML). This is described on p. 198 of Faraway, but here is a
different and more explicit (but equivalent) formulation.

Replace (11) by

`R = −n− p
2

log 2π − n− p
2

log σ2 − 1

2
log |V | − 1

2
log |XTV −1X| − (y −Xβ)TV −1(y −Xβ)

2σ2
.

(14)

We now choose successively β, σ2 and V to maximize `R. The estimator (8) for β̂ is the same, and
the estimator for σ2 now turns out to be (9), with the correct divisor n− p. Finally, we substitute
β̂ and σ̂2 into (14) and choose D to minimize

n− p
2

log σ̂2 +
1

2
log |V |+ 1

2
log |XTV −1X|. (15)

One point to note is that the estimator (9) is no longer an exactly unbiased estimator when V is
estimated. However, both theoretical and numerical studies have generally confirmed that both
D̂ (the values of D that minimize (15)) and σ̂2 are more accurate under the REML method than
direct maximum likelihood.
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4 Fitting in R

The package to fit these models is called lme4 and the main function within that package is called
lmer. A typical syntax of the command (see text) is

mmod=lmer(bright~1+(1|operator),pulp)

Here we have a dataframe called pulp; the response is bright and there is one factor variable
called operator. The first 1+ is just fitting a constant (intercept) as the sole fixed effect; it would
be possible to introduce additional fixed effects (or regression coefficients) here by specifying the
appropriate x variables. The second term (1|operator) (always within parentheses) tells us that
the observations are to be grouped according to the variable operator, and the 1| part specifies
that the random effect is constant within each group. The default is REML estimation but you
can also get maximum likelihood by including the option REML=F. As we go on, we will see more
complicated formulas for specifying the structure of random effects models we want.

5 Testing

This section considers testing for the significance of a random effects term. In the notation of (3):
test H0 : σ2α = 0 versus HA : σ2α > 0. One possible method is just to use the same F test as
you would in a fixed effects ANOVA — see the example at the top of p. 199 of the course text,
where we found MSA = 0.447, MSE = 0.106, and the F test (for the null hypothesis that the
operator effect is 0) has a p-value of 0.023. There is actually nothing wrong with this approach
for the random effects model as well (if the null hypothesis is that there’s no treatment effect at
all, it really doesn’t matter whether it’s a fixed or random effect....) but the difficulty is that the
ANOVA table itself becomes increasingly difficult to calculate (or, in some cases, even to define)
as the model becomes complicated and unbalanced.

As an alternative to this approach, we consider likelihood ratio tests as a general all-purpose
method of comparing two nested hypotheses. The likelihood ratio test (LRT) statistic is defined
by

W = 2
{
`(β̂1, σ̂1, D̂1|y)− `(β̂0, σ̂0, D̂0|y)

}
where β̂0, σ̂0, D̂0 are MLEs under H0 and β̂1, σ̂1, D̂1 are MLEs under H1.

Caution: To calculate a LRT you must use the actual MLEs, not the REML estimators (use
REML=F when you fit the model in R). The reason is the REML estimators for H0 and H1 are
optimizing in different spaces and therefore not comparable.

Some notes on the use of LRT tests:

• The obvious starting point is to assume W ∼ χ2
ν where ν is the number of additional pa-

rameters in H1 compared with H0 (in the simple case we’ve been discussing so far, ν = 1).
However, further caution, this may not be a good approximation to the true distribution
of W . The reason is that although the MLE cannot give a negative value for a parameter
like σ2α, it can give a zero value, in which case W = 0. This is inconsistent with a chi-squared
distribution for W . To see that this is something that actually happens, see the example at
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the top of page 205, where it is calculated by simulation that Pr{W < 0.00001} ≈ 0.7 for the
particular dataset discussed there.

• As an alternative, we can use the bootstrap method, which uses simulated datasets where
H0 is assumed correct to approximate the sampling distribution of W . In the example on pp.
204–205, the sharply reduces the calculated p-value (from 0.109 by the χ2 approximation to
about 0.019) and changes the conclusion from accepting H0 to rejecting it.

• A third method uses the RLRsim package (p. 205), whose point (I think) is to use a more
efficient method of programming the simulation method to speed up the analysis (I suspect
what they have done is to code the simulation part of the program in C++, which would be
much faster than writing a loop in R).

The conclusion: LRTs are a flexible general method for testing these models, but don’t rely on
the χ2 approximation to the distribution; better to use a bootstrap or a package such as RLRsim

which computes what are in principle exact tests.

6 Estimating Random Effects

So far, the discussion has been about how to estimate the variance of the random effects and
test the statistical significance of that variance, but we have not talked about estimating the
effects themselves (unlike fixed effects, which show themselves as just coefficients of the regression
equation). The text (Section 10.3) discusses this, but I think it’s a little misleading the way they
talk about Bayesian calculations — the method is Bayesian in the sense of calculaing a conditional
distribution, but it doesn’t rely on having prior distributions for the unknown parameters, which
most statisticians would consider the central idea of Bayesian statistics.

The essence of the problem is this: the model is defined by two sets of random quantities γ
and y, where y is observed but γ is not. What we are trying to do it to predict the unobserved γ
as a function of the observed y. This is an exercise in conditional probabilities, but it has nothing
directly to do with Bayesian statistics.

Although we haven’t formally studied the “multivariate normal distribution,” there have been
places where we have used it, for example, equation (10) gives the probability density function for
a multivariate normal random variable y with mean Xβ and covariance matrix σ2V . We won’t
need that formula for what follows, but the key concept is that we can define something called the
multivariate normal distribution where the mean vector and the covariance matrix are given.

Now we extend this concept to that of a partitioned multivariate normal distribution. Suppose

the vector y is partitioned into two vectors

(
y1
y2

)
and we correspondingly partition the means

and covariance matrices as

(
µ1
µ2

)
and

(
V11 V12
V21 V22

)
.

In other words, y1 is a vector with mean µ1 and covariance matrix V11; y2 is similar with µ2
and V22, while V12 = V T

21 is the matrix of cross-covariances between y1 and y2. In this context, we
note the following:
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Very useful fact. The conditional distribution of y1 given y2 is also multivariate normal, with
mean µ1 + V12V

−1
22 (y2 − µ2) and covariance matrix V11 − V12V −122 V21.

I won’t try to give the proof — this is standard in books that cover the multivariate normal
distribution and it can in fact be derived directly from the formula (10) (though this is tedious).

Now let’s apply this to our model (6). We identify y1 and y2 with γ and y respectively, The means
are µ1 = 0 and µ2 = Xβ and the covariance matrices are V11 = Dσ2 and V22 = (I + ZDZT )σ2.
Also, the matrix of cross-covariances is

V21 = V T
12 = E

{
(Y −Xβ)γT

}
= E

{
(Zγ + ε)γT

}
= ZDσ2

since the cross-covariances of γ and ε are 0.

Therefore, the conditional mean of γ given y is

V12V
−1
22 (y −Xβ) = DZT (I + ZDZT )−1(y −Xβ)

and the conditional covariance matrix is

V11 − V12V −122 V21 =
{
D −DZT (I + ZDZT )−1ZD

}
σ2.

The first expression is exactly that for α̂, p. 207. The second formula does not appear anywhere in
the text (I don’t think), but it presumably underlies the calculation of condVar and the confidence
interval plots on p. 208.

6.1 Implementation in R

Let’s suppose a random effects model has been previously fitted in the R object mmod. The command

r1=ranef(mmod)

creates a vector of estimated values for the random effects. If this is modified to

r1=ranef(mmod,condVar=T)

then this also includes conditional variances, though it does not seem so easy to extract the nu-
merical values of these. The best method I have been able to figure out uses

str(r1)

which includes this information along with other stuff that you may not want.

A graphical display of the result (see p. 208) is possible through

library(lattice)

dotplot(r1)
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7 Testing Hypotheses for Fixed or for Random Effects

The Kenward-Roger test is a test for the presence of certain fixed effects in a model that also has
random effects. The format is typically something like

library(pbkrtest)

KRmodcomp(m1,m2)

where m1 is the fitted model under the alternative hypothesis and m2 is the fitted model under
the null hypothesis. I think there is a small error in the text at the bottom of page 213: the
Kenward-Roger test is designed to be used with a REML procedure for the random effect, not
the MLE. (The MLE would be needed if we were using a bootstrap, as occurred in at least one
of your homework examples, but K-R is not a bootstrap procedure; it’s based on an asymptotic
approximation to improve the properties of a likelihood ratio test).

In the above example, m2 is the null model containing at least one random effect and possible also
some fixed effects. m1 is the alternative model which contains everything in m2 and some additional
fixed effect(s). The result is a p-value for the significance of the additional fixed effect(s).

A second kind of testing problem is for the significance of a random effect, typically in the
presence of other random effects. In this case, there may or may not be fixed effects. One method
for this is the “parametric bootstrap” method of sampling the likelihood ratio statistic from the
null model and then comparing the observed LRT statistic with the bootstrap distribution. A
command of the form PBmodcomp(m1,m2) can be performed within the pbkrtest package. Note
that this often produces a large number of warning measures due to singularities in the fit (this
typically happens when one of the estimated variances is zero). An alternative is the exactRLRT

method within the RLRsim package. The syntax of this is a little unintuitive but see Section 9 for
a worked example.

More the about Kenward-Roger test. Recall that the random effects model leads to a
joint distribution of the form (6), where the covariance matrix is of the form σ2V, V = I +ZTDZ,
where the diagonal entries of the diagonal matrix D depend on the variances of the random effects.
When V is known, unbiased estimates of β and σ2 are given by (7) and (8), and though we didn’t
state it here, for testing linear hypotheses about the regression coefficients β, it’s possible to develop
an exact test based on the F distribution, just like the standard linear model where V = I.

However, neither the unbiasedness of β̂ and σ̂2 nor the exactness of the resulting F test holds
if D and hence V is estimated. The idea of the Kenward-Roger test is to develop a correction
for that. Specifically, for testing a hypothesis of the form H0 : Cβ = 0 against the alternative
H0 : Cβ 6= 0, where we assume β is p-dimensional and C is a q × p matrix for some q < p, the
Kenward-Roger procedure calculates a p-value by applying asymptotic corrections to the standard
F test. We don’t need to go into details about the algebraic formulas involved.

Kenward-Roger or bootstrap? The bootstrap test can also be run for two models which
have the same random effects and which differ only in their fixed effects, with one model nested
inside the other. Which one is best in this case?

As noted above, the Kenward-Roger test is based on an asymptotic approximation, which
means that it won’t be an exact result for small sample sizes. The form of bootstrap test we
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have used is known as the parametric bootstrap because it relies on generating simulations from
the null model, as opposed to the nonparametric bootstrap which relies on resampling the data
(however, the nonparametric bootstrap would be hard to apply in a complicated model with many
covariates). The parametric bootstrap does not rely on asymptotic calculations but only on Monte
Carlo simulation, and in that sense, could be a more accurate way to calculate p-values. However,
there are two caveats: it could take a very large number of Monte Carlo simulations to produce
a result that is more accurate than Kenward-Roger, and the parametric bootstrap is still not an
exact test, in the sense that even the null model usually contains unknown parameters are these
are estimated prior to drawing the samples.

It seems to me that Kenward-Roger is usually a pretty accurate procedure and therefore should
be preferred in practice to the bootstrap method. However, the bootstrap method is always available
as a backup, and if a situation arose where the two methods were giving substantially different
results, I would tend to prefer the bootstrap method.

8 Split Plot Design: Irrigation Example (Section 10.7)

• Two crop varieties, four methods of irrigation, eight fields

• Each field can use only one method of irrigation

• However, we can and do split each field into two — one for each variety

• Variety, irrigation and the variety × irrigation interaction are fixed effects; field effect is
random; we could in principle also have a field × interaction random effect

• yijk is yield for irrigation method i with variety j in field k

Most general model:

yijk = µ+ ii + vj + (iv)ij + fk + (vf)jk + εijk

Fitted with:

m1=lmer(yield~irrigation+variety+irrigation:variety+(1|field)+(1|field:variety),irrigation)

This doesn’t work — cannot separate field × variety effect from field effect. See:

Error: number of levels of each grouping factor must be < number of observations

So we drop the field × irrigation interaction.

m2=lmer(yield~irrigation+variety+irrigation:variety+(1|field),irrigation)

m3=lmer(yield~irrigation+variety+(1|field),irrigation)

m4=lmer(yield~variety+(1|field),irrigation)

m5=lmer(yield~irrigation+(1|field),irrigation)

m6=lmer(yield~1+(1|field),irrigation)

Each of these commands fits the data but successive summary(mx) commands cast doubt on the
sgnificance of any of the fixed effect parameters.

We can formally test this using the Kenward-Roger test:
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library(pbkrtest)

KRmodcomp(m2,m3)

KRmodcomp(m3,m4)

KRmodcomp(m3,m5)

KRmodcomp(m4,m6)

KRmodcomp(m5,m6)

None of these gives a statistically significant result (all the p-values are well above 0.05). Therefore,
we conclude that neither variety nor irrigation is significant as a field effect.

We can test whether the random effect term in m6 is significant by the bootstrap method:

library(RLRsim)

exactRLRT(m6)

The p-value is around 0.0002, highly signiicant.

We can also get confidence intervals for the standard deviations of the random effects (first row
for field random effect, second term for residuals).

> confint(m6)

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 1.9795357 5.926239

.sigma 0.8112183 2.219072

(Intercept) 37.6047703 42.845229

We can also do diagnostics:

par(mfrow=c(1,2),cex=1.2)

plot(fitted(m6),residuals(m6),xlab=’Fitted’,ylab=’Residuals’,pch=20)

qqnorm(residuals(m6),main=’’,pch=20)

This is similar to Figure 10.6 of the text, though not identical because it’s a slightly different model.

Conclusions: None of the fixed effects due to variety or irrigation (or their interaction) is
significant. However, there is a clearly significant random effect due to field.

9 Nested Effects: Eggs Example (Section 10.8)

• 48 samples of egg powder, variable of interest is Fat

• Six labs, labelled I, II, III, IV, V, VI

• Two technicians in each lab, labelled one and two — but they are different people in each lab
— technician is nested within lab

• Two Samples of egg powder, labelled G and H (but they are really the same; purpose was to
test lab consistency)
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• Two measurements for each combination of lab, technician and sample

• yijk` is fat level for labroatory i, technician j, Sample k, measurement `

Initial data loading and graphical display:

data(eggs)

library(ggplot2)

ggplot(eggs,aes(y=Fat,x=Lab,color=Technician,shape=Sample))+

geom_point(position=position_jitter(width=0.1,height=0.0))+scale_color_grey()

Except for a bit of random jitter, this is the same as Figure 10.7 of the text.

All the effects except the overall mean should be treated as random effects because both Tech-
nician and Sample are nested within Lab. Therefore, the appropriate model is

yijk` = µ+ Li + Tij + Sijk + εijk`.

We can try this model, and also the model omitting the Sijk term:

m1=lmer(Fat~1+(1|Lab)+(1|Lab:Technician)+(1|Lab:Technician:Sample),data=eggs)

m2=lmer(Fat~1+(1|Lab)+(1|Lab:Technician),data=eggs)

We can do summary with both m1 and m2 — the point the text makes here is that the estimated
standard deviations are quite similar under both models — casts doubt on significance of the extra
term.

More formal test based on bootstrap:

m3=lmer(Fat~1+(1|Lab:Technician:Sample),data=eggs)

library(RLRsim)

exactRLRT(m3,m1,m2)

Note the format of the exactRLRT command. The models being tested are m1 (alternative hypoth-
esis) and m2 (null hypothesis). However, in order to run exactRLRT it is necessary first to fit a
model containing only the random effect being set to zero under the null hypothesis — this explains
model m3. The result is a p-value of about 0.1 — not significant.

We could have also performed the above test with

library(pbkrtest)

PBmodcomp(m1,m2)

though this seems less precise in this example; see Section 7 for further discussion.

We therefore eliminate the Sample effect but retain a test for the Technician effect. This can
be done via

m4=lmer(Fat~1+(1|Lab),data=eggs)

m5=lmer(Fat~1+(1|Lab:Technician),data=eggs)

exactRLRT(m5,m2,m4)
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In this case the p-value is about 0.002 — clearly, the Technician effect is significant.

The text also illustrates confidence intervals —

> confint(m1)

Computing profile confidence intervals ...

2.5 % 97.5 %

.sig01 0.00000000 0.1151956

.sig02 0.00000000 0.1745313

.sig03 0.00000000 0.1794302

.sigma 0.06550185 0.1158823

(Intercept) 0.29651556 0.4784844

This unlines the point that we cold drop any of the three random effect terms and there is no
clear-cut guidance which.

Side Comment. It’s not obvious to me that you couldn’t treat Sample as a fixed effect. If
Samples G and H were really products from two different manufacturers, this would seem the way
to go. So an alternative procedure would be to fit a mixed model with Sample as a fixed effect,
and then the Kenward-Roger test for the significance of Sample:

m6=lmer(Fat~1+Sample+(1|Lab)+(1|Lab:Technician),data=eggs)

KRmodcomp(m6,m2)

The p-value is about 0.076 — not significant, but maybe not so far off.

10 Crossed Effects: Abrasion Example (Section 10.9)

This is an example of a latin square design. There are four materials A, B, C, D and our ultimate
interest is in comparing them for the response “wear”. However the position in the test specimen
(1, 2, 3, 4) is also important and we cannot compare all possible combinations of material and
position (a “complete factorial” design would require 16 runs but we have only four). So we try
to balance them by using each combination of material and position exactly once, as shown by the
following:

data(abrasion)

matrix(abrasion$material,4,4)

[,1] [,2] [,3] [,4]

[1,] "C" "A" "D" "B"

[2,] "D" "B" "C" "A"

[3,] "B" "D" "A" "C"

[4,] "A" "C" "B" "D"

A fixed effects model could be fitted by:

m1=aov(wear~material+run+position,abrasion)

summary(m1)
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This makes it pretty clear that the material effect is significant (p-value 0.00085) but the run and
position effects look significant as well. However, the latter two effects are less easy to interpret
given that they are not really fixed effects.

Therefore, we do the equivalent random effects model:

m2=lmer(wear~material+(1|run)+(1|position),abrasion)

summary(m2)

We can test for the fixed effect using Kenward-Roger:

m3=lmer(wear~1+(1|run)+(1|position),abrasion)

library(pbkrtest)

KRmodcomp(m2,m3)

This again produces a p-value about 0.00085.

We can also use the RLRsim package to test the random effects:

m4=lmer(wear~material+(1|run),abrasion)

m5=lmer(wear~material+(1|position),abrasion)

library(RLRsim)

exactRLRT(m4,m2,m5)

exactRLRT(m5,m2,m4)

In both cases the result is statistically significant.

The result in this example is that all three variable (material, position and run) are statistically
significant, but treating the latter two as random effects seems more informative for generalization
to future tests. (I could also imagine a case for treating position as a fixed effect — it depends
what this variable really means — but I doubt that one would obtain different results by formally
testing that.)

11 Multilevel Models: School Testing Example (Section 10.10)

This example is considerably more complicated than the preceding ones, but it contains no funda-
mentally new concepts: the key ideas are to fit various combinations of fixed and random effects,
using both formal tests of fit and comparisons based on AIC or BIC to reduce the number of models
compared.

Following the introductory code in the text we begin with

data(jsp)

# drop everything outside year 2

jspr=jsp[jsp$year==2,]

library(ggplot2)

ggplot(jspr,aes(x=raven,y=math))+xlab(’Raven Score’)+ylab(’Math Score’)+

geom_point(position=position_jitter(),alpha=0.3)

ggplot(jspr,aes(x=social,y=math))+xlab(’Social Class’)+ylab(’Math Score’)+

geom_boxplot()
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Key points of the subsequent analysis:

• Initial analysis using lm: gender can be dropped, raven and social both significant, but it’s
not necessarily correct analysis because ignores grouping into schools and classes (not really
independent observations)

• Using random effects models by school and class allows for grouped effects

• After several tests we decide to remove all gender effects

• Use centered raven scores to better interpret interactions

• Use model to calculate adjusted scores for each school — different interpretation from raw
scores, adjusts for different entering raven scores

• Test for significance of random effects — class effect marginal but school effect is clear

• Compositional effect — is mean raven score per school significant? — probably not.

12 Random Effects Models for Nonnormal Responses (Chapter
13)

Recall the definition of an exponential family:

f(yi | θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(y, φ)

}
. (16)

In a GLM, there is some function ψ so that θi = ψ(xTi β) where xi is a set of covariates associated
with observation i and β is a vector of regression coefficients. (In the case of a canonical link
function, ψ(xTi β) is just xTi β and the text makes that assumption, but it seems to me we might
want to consider non-canonical link so I’ve used this slightly more general notation.)

The basic idea of a random effects GLMM, similar to that of a random effects linear model, is
to extend the regression function to

θi = ψ(xTi β + zTi γ) (17)

where γ is a vector of random effects assuming γ ∼ N [0, Dσ2] for some matrix D. It is not actually
necessary that D be diagonal, and in some of our examples, it will not be.

Hence the likelihood function may be written

L(β, φ,D | y) =

∫ n∏
i=1

f(yi | β, φ, γ)h(γ | D)dγ. (18)

[I think this is the right way round: integral and then product sign. Very often several obser-
vations y depend on a single element of γ, for example, any time we have repeated measurements
on the same individual. The observations are conditionally independent given the random effects,
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but the resulting joint likelihood must be integrated out with respect to the random effects. This
is different from the way it is written on page 275 of the text.]

The model defined by (18) is complicated because of the integral sign: we could evaluate∏n
i=1 f(yi | β, φ, γ)h(γ | D) and then plug it into a numerical optimization routine (in effect, this is

what the glm function does, though it uses a rather particular optimization algorithm). However,
without an analytic form for the integral, there’s no direct way to evaluate (18). The normal linear
model with random effects does not suffer from this difficulty because the integral is evaluated
analytically to give formula (10).

The text describes five ways of dealing with this issue:

• Penalized quasi-likelihood (PQL — Section 12.2)

• Integrated likelihood method (Section 12.3)

• Bayes method (Section 12.4)

• INLA method (Section 12.5)

• Generalized estimating equations (Section 12.6)

First we describe the data we’re going to use to evaluate all these methods. I’m skipping over
Section 13.3 of the text and going straight to the epilepsy example in Section 13.4.

12.1 Epilepsy data

The data consist of 59 epileptic patients, each observed over five time period (one initial-eight-week
period called the baseline, then four two-week periods called the experiment. Each patient is given
a placebo during the baseline period. During the experimental period, 28 patient are kept on the
placebo and the other 31 are given a drug which is supposed to reduce epileptic seizures. The
primary variables of interest are seizures (number of seizures in each period of observation), id
(patient id, 1–59), treat (0 for the placebo, 1 for treatment), expind (0 during the baseline period,
1 for experiment), timeadj (length of the period, either 2 weeks or 8) and age (this doesn’t seem
to get used anywhere). The first few lines of code create some additional variables (mainly for
labelling purposes), draws some figures (Fig. 13.5 on page 287), and computes the following table:

Drug
phase placebo treatment

baseline 3.848 3.956
experiment 4.304 3.984

Variable tabulated is rate of seizures in number per week: this suggests the rate rises in both the
placebo and treatment group from the baseline to the experiment period, but possibly rises more
for the placebo patients. If true, this would confirm the effectiveness of the drug, though in the
rather negative sense that the seizure rate of the treatment patients didn’t rise as much as that of
the placebo patients dring the experimental period.

Note that one outcome of this initial analysis is to exclude patient number 49. As the text
acknowledges, it’s not clear whether this action is either necessary or appropriate.
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An initial GLM fit shows significant negative interaction between expind and treat. The
interpretation of this is that te treatment group does significantly better (lower rate of seizures)
during the experimental part of the trial. However, this analysis does not account for the grouping
effect that there are multiple observations per patient:

modglm=glm(seizures~offset(log(timeadj))+expind+treat+I(expind*treat),family=poisson,epilo)

sumary(modglm)

We therefore look for ways to incorporate the patient random effect.

12.2 PQL method

The PQL method extends the quasi-likelihood approach for GLMs which (recall Chapter 8) breaks
up the calculation into a series of iterated steps each of which is a weighted ordinary linear regres-
sion. The PQL method essentially replaced the linear regression step with a random effects linear
regression. The code is this:

library(MASS)

modpql=glmmPQL(seizures~offset(log(timeadj))+expind+treat+I(expind*treat),

random=~1|id,family=poisson,epilo)

summary(modpql)

The result shows an almost identical point estimate for the I(expind*treat) interaction, but the
standard error is larger, reflecting the grouping effect. It is still statistically significant with a
p-value of about 0.008.

12.3 Integrated likelihood method

This is handled by the function glmer within the package lme4. It is therefore a direct generalization
of the earlier lmer function. The integral in (18) is handled by a numerical approximation —
either the Laplace method (essentially based on the function value at its maximum and its second
derivative) or Gauss-Hermite quadrature (used a weighted sum of up to 25 points). Gauss-Hermite
is slower but more accurate and is reflected by the nAGQ parameter which indicated the number of
points at which the likelihood function is evaluated (nAGQ=1 reduces to the Laplace method). Here
is the code used in this example:

library(lme4)

modgh=glmer(seizures~offset(log(timeadj))+expind+treat+I(expind*treat)+(1|id),

nAGQ=25,family=poisson,epilo)

summary(modgh)

Compared with PQL, we again get an almost identical value of the point estimate of the experiment
× treatment interaction, but the standard error is smaller — in fact, we get an almost identical
p-value as the glm fit (1.4 × 10−5). However, the treat estimate is quite different, so the glmer

and glm models are not the same.
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12.4 Bayes method

I am only going to describe this briefly since there is a whole chapter on Bayesian methods which
we have skipped over (Chapter 12 of [2]). The core of a Bayesian method replaces the likelihood
function (18) by a formula of form

f(γ, β, φ,D | y1, ..., yn) =
{
∏n
i=1 f(yi | β, φ, γ)} h(γ | D) π(β, φ,D)∫ ∫ ∫ ∫

{
∏n
i=1 f(yi | β, φ, γ)} h(γ | D) π(β, φ,D)dγdβdφdD

. (19)

Here, the quantity π(β, φ,D) is known as the prior density of the unknown parameters β, φ, D.
It has no prescribed form but is usually taken to be a very diffuse density function. The function
(19) is known as a posterior density function and represents the joint density of all the unknowns,
β, φ, D and γ, conditional upon the observations y1, ..., yn. The computational difficulty with
(19) arises from the quadruple integral integral in the denominator (for our model, a triple integral
because there is no parameter φ) but this is resolved by an algorithm called Markov chain Monte
Carlo (MCMC for short) which in effect creates simulated samples from the full joint distribution
(19). Although it is possible (with some training) to write your own code for MCMC, here we use
a package called STAN, named after Stanislav Ulam, a mid-twentieth-century mathematician and
physicist who was a pioneer of Monte Carlo methods. The result of the analysis is a file of Monte
Carlo simulations which may be used to draw posterior density plots such as Figure 13.6 of the
text, or the table in the middle of page 290. The results are quite consistent with the glmer results.

Pointers to the implementation: it’s necessary to create some basic STAN code which I have put
online as the file glmmpois.stan. You will have to download this file into your own home directory
in order to run the code. The rest is the same as the R code on pages 289–290. My results are the
same as the text’s modulo some inevitable discrepancies due to the Monte Carlo sampling.

12.5 INLA method

INLA is an abreviation for integrated nested Laplace approximation and extends the one-dimensional
Laplace approximation to compute multiple intergals of the form of (18). It is an alternative to
STAN which is faster to run though less accurate. The results are similar to those generated by
STAN but I won’t say any more about this method.

12.6 GEE method

The integrated likelihood, Bayesian and INLA approaches each rely on the full density function f in
(18). They are therefore contrary to the spirit of the quasi-likelihood approach to GLMs which relies
only on the specification of the mean and variance (see Chapter 8 of the text or my own “GLM”
handout). Is there a version of quasi-likelihood that similarly relies only on means and variances and
not the full likelihood specification? The answer is the generalized estimating equations approach,
usually abbreviated to GEE. This approach relies on the means and variances of the observations,
and the correlation structure within each group. The variable id indicates which variable is used
for grouping. The possible correlation structures are corstr=’independence’ (ignore intra-group
correlation); corstr=’exchangeable’ (all correlations within each group the same; effectively the
same as the ICC — see page 2 of this note); corstr=’ar1’ (time series dependence; assumes
observations are arranged in time order); corstr=’unstructured’ and corstr=’user-defined’.
For the epilepsy data, the text suggests the code
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library(geepack)

modgeep=geeglm(seizures~offset(log(timeadj))+expind+treat+I(expind*treat),id=id,

family=poisson,corstr=’ar1’,data=epilepsy,subset=(id!=49))

summary(modgeep)

which again confirms the significance of the treatment × expind interaction, but with a much less
statistically significant result (p-value 0.022).

12.7 Other possible analyses

Just to illustrate that non-canonical link functions are possible with glmer, here’s one example:

library(lme4)

modgh1=glmer(seizures~offset(log(timeadj))+expind+treat+I(expind*treat)+(1|id),

family=poisson(link=’sqrt’),epilo)

summary(modgh1)

I don’t recommend this; just wanted to show it was possible.

It’s possible to try other correlation structures within geeglm, for example

modgeep=geeglm(seizures~offset(log(timeadj))+expind+treat+I(expind*treat),id=id,

family=poisson,corstr=’exchangeable’,data=epilepsy,subset=(id!=49))

summary(modgeep)

#

modgeep=geeglm(seizures~offset(log(timeadj))+expind+treat+I(expind*treat),id=id,

family=poisson,corstr=’unstructured’,data=epilepsy,subset=(id!=49))

summary(modgeep)

The first of these shows a non-significant expind*treat interaction term (p=0.077) but the second
again shows a significant effect (p=0.039), though the p-value is much larger than in the earlier
Poisson analyses.

It’s also possible to add terms to the integrated likelihood analysis. Note that when there’s
more than one random effect, the Gauss-Hermite method in glmer cannot be applied; the only
possible option is nAGQ=1 which is equivalent to the Laplace method (default).

modgh4=glmer(seizures~offset(log(timeadj))+expind+treat+I(expind*treat)+(1+expind|id),

family=poisson,epilo)

summary(modgh4)

This model was suggested by Diggle et al. [1]. It leads to a larger standard error for the
expind*treat interaction though it is still significant (p=0.019).

We could go beyond this and add further random effect terms, for instance

modgh5=glmer(seizures~offset(log(timeadj))+expind+treat+I(expind*treat)+

(1+expind+period|id),family=poisson,epilo)

summary(modgh5)
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which appears significantly better than modgh4 as judged by an anova test, but the statistical
significance of the expind*treat is not much changed (p=0.021).

Finally we look at residual plots, see for example Figure 1. It is noticeable that the residuals
from modgh5 are considerably smaller overall than those from modgh, which suggests a better fit.

Overall, I’m a little suspicious of the integrated likelihood and Bayesian methods because they
don’t make any check on the fit of the Poisson distribution (unlike regular GLMs, there’s no
automatic “quasi” option to check for overdispersion). In this sense, the PQL and GEE methods
are more robust. However, putting in additional random effects terms is an alternative method and
in some respects more interpretable than overdispersion, and it is reassuring that the final results
are quite similar in both methods. On the other hand, the initial results leading to a p-value of the
order of 10−5 seem to be oversimplified because they ignore the individual-level effects entirely.
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Figure 1: Residual plots from two random effect models
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