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Richard L. Smith

April 23, 2019

Like the other handouts I have produced for STOR 556, this is intended to supplement the
corresponding mateiral in the course text [2], but also to introduce at least one complex example
of my own. The relevant part of [2] is Chapter 14.

1 Introduction

The idea is illustrated by Figure 1. The Old Faithful dataset is concerned with waiting times and
length of eruptions of the Old Faithful geyser in Yellowstone National Park: specifically, using the
length of an eruption as a predictor of the waiting time until the next eruptions (both measured in
minutes). The straight line regression (in red) at first seems a reasonable predictor, but closer look
at the data shows there are two distinct clusters of observations and a nonlinear fit, such as the one
in blue, could well be a better predictor. This chapter discusses various methods of constructing
such a nonlinear regression curve and the issues that go into such constructions.
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Figure 1: Scatterplot of Old Faithful data with linear and nonlinear regression lines
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2 Nadaraya-Watson Estimator

The basic idea is to smooth the data using a kernel by defining

fλ(x) =

∑n
i=1wiyi∑n
i=1wi

, wi =
1

λ
K

(
x− xi
λ

)
. (1)

Here K is known as the kernel function and could in principle be any non-negative function that
integrates to 1; a common choice is the standard normal density function; an alternative which for
both computational and statistical efficiency reasons is often thought better is the Epanechnikov
kernel defined by K(x) = 3

4(1−x2) for |x| < 1 and K(x) = 0 for |x| > 1. A more critical parameter
in practice is the bandwidth parameter λ, which is at the choice of the analyst: a small λ tends to
produce a very jagged plot with too many spurious changes of slope, but too large a λ will produce
an oversmoothed plot that does not pick up the nonlinear features of the data.

This method may be implemented with the R function ksmooth where the user defines the
bandwidth bw. An alternative is to choose the bandwidth automatically by cross-validation: one
way to implement this is through the function sm.regression in the Bowman-Azzalini package
sm.

3 Splines

Two forms considered:

3.1 Smoothing Splines

Basic idea: choose a function f to minimize a sum of squares criterion subject to a penalty function
designed to enforce smoothness. This leads to the criterion of choosing f to minimize:

1

n

∑
(yi − f(xi))

2 + λ

∫
(f ′′(x))2dx (2)

where λ plays the role of a smoothing parameter here (larger λ means a bigger penalty hence a
smoother estimated f̂).

It’s also possible to use alternatives to least squares, generalizing (2) to:

1

n

∑
ρ(yi − f(xi)) + λ

∫
(f ′′(x))2dx (3)

for some function ρ. For example, ρ(x) = |x| in (3) would be a more robust choice than (2).

It is known from mathematical theory that the solution f̂ of (2) is a piecewise polynomial in
which f̂ , f̂ ′, f̂ ′′ are all continuous functions. Given this, it’s possible to define f̂ in terms of its
coefficients and thereby to reduce (2) to a function of its polynomial coefficients, which is therefore
a finite-dimensional optimization problem. (To the best of my knowledge, there’s no equivalent
simplification of (3), but [2] doesn’t discuss any implementation of this method.)

The R function smooth.spline illustrates this for the Old Faithful data. However, the text
also illustrates and example (exb dataset) where the cross-validation smoother makes no sense.
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Moral of the story: Cross-validation is useful technique for suggesting a stable smoothing param-
eter and thereby avoiding the subjectivity of choosing λ only after looking at the plots. However,
it doesn’t always work and, in the end, it’s always up to the analyst to choose the smoothing
parameter she wants to use.

3.2 Regression Splines

Regression splines are also based on piecewise polynomial functions, but instead of putting a knot
(where the coefficients change) at every datapoint, it only uses a subset of knots at pre-selected
positions. The number of knots then controls the smoothness of the fit: fewer knots means a
smoother fit.

As an example, here is the R code by which I drew Figure 1.

library(faraway)

data(faithful)

par(mfrow=c(1,1),cex=1.1)

plot(waiting~eruptions,pch=20,ylab=’Waiting Time’,xlab=’Length of Eruption’,faithful)

# initial straight line fit

lines(faithful$eruptions,lm(waiting~eruptions,faithful)$fitted,lw=3,col=’red’)

# regression splines fit with 8 knots

library(splines)

erupspl=ns(faithful$eruptions,8)

lines(lm(waiting[order(eruptions)]~erupspl[order(eruptions),])$fitted~sort(eruptions),

faithful,lw=3,col=’blue’)

Note the rather complicated format of the last lines command: because the eruptions are not
sorted into increasing or decreasing numerical order, we must order them internally before plotting
the nonlinear curve. An alternative would be to sort eruptions into increasing or decreasing order
before drawing the plot: this is illustrated in the posted R code.

In this example I used the R function ns to define natural splines. An alternative is to use bs

which gives B-splines. Both functions are piecewise cubic polynomials and they tend to perform
rather similarly in practice, though most people think ns is more flexible in non-standard situa-
tions, for example if the x points are very unequally spaced or if the function behaves differently
near the endpoints. Note that you must load library(splines) before you can use bs or ns.
Faraway [2] also discusses piecewise linear splines which are easier to understand and to implement
mathematically, but they lead to rather jagged plots that don’t look so good. I recommend using
bs or ns which give good results in practice, though you still have to think about the number of
knots. (Note that if you dig down into the details, it’s also possible for the user to specify the
locations of the knots themselves, not just the number of knots, but most users in practice just
specify the number of knots.)

4 Local Polynomials Method

This is known as the locally weighted sum of squares method (abbreviated to lowess or loess),
originally proposed by Cleveland [1]. The basic idea is this: whereas (1) smoothes the data by
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calculating weighted averages with weights wi, loess performs a weighted regression of yi on xi
using the same weights wi. Since the weights are dependent on the point x for which the prediction
is desired, this local regression must be repeated for every x value. That is what loess does
conceptually: in practice, the whole algorithm runs very fast using efficient methods for solving the
regression equations. An illustration is as follows:

with(faithful,{

plot(waiting~eruptions,col=’green’,pch=20)

f=loess(waiting~eruptions,span=0.25)

i=order(eruptions)

lines(f$x[i],f$fitted[i],lw=3,col=’blue’)

})

Note two things here: (a) line 4 to sort the eruptions before plotting (the same as we did for
Figure 1), and (b) the span=0.25 specification within loess. This is another form of smoothing
parameter: span reflects the proportion of the data included in the regression at any point x. In
this case, I think span=0.25 undersmoothes the data, but you should try different values of span
to see how they work. The default value of span (in other words, what R uses if you omit this
parameter) is 0.75: however, this is a lot cruder rule than cross-validation, and I don’t recommend
it as an all-purpose choice. Faraway [2] suggested “the default choice is satisfactory” for the Old
Faithful data but he criticizes it as too large for one of his other examples.

5 Confidence Intervals

We would like to be able to supplement these plots with some indication of the uncertainty of the
estimated curve. Therefore, calculating and plotting 95% confidence intervals is a useful additional
technique. Note that there are two potential types of confidence intervals we could use: pointwise
confidence intervals are designed to have coverage probability 95% at each individual point x,
whereas simultaneous confidence intervals are designed to provide uniform coverage across all x
(in other words, so that the probability that the confidence band excludes the true function value
anywhere in the range of the plot should be no more than 0.05). You may have seen a method for
constructing simultaneous confidence banks for a simple y versus x regression line: however, the
examples discussed here are only for pointwise confidence bands.

The text describes two methods, one as a direct extension of the loess method and the other
using the mgcv package for splines. Here are implementations of both methods for the Old Faithful
data:

ggplot(faithful,aes(x=eruptions,y=waiting))+geom_point(alpha=0.25)+geom_smooth(

method=’loess’,span=0.5)

library(mgcv)

ggplot(faithful,aes(x=eruptions,y=waiting))+geom_point(alpha=0.25)+geom_smooth(

method=’gam’,formula=y~s(x))

Note: [2] discusses an additional k=20 parameter associated with the gam method of the second
example. I was able to reproduce Faraway’s plot for the exa dataset that he uses on page 308, but
varying the k parameter doesn’t seem to make any difference for the Old Faithful data. I do not
know the reason for this.
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5.1 Direct Calculation of Pointwise Confidence Limits

The automated methods just shown are very quick and easy to use when they can be used, but it’s
also useful to know how to calculate these confidence limits directly.

The model being fitted through a regression spline may be written in the form

yi = β0 +
k∑
j=1

βjsij + εi, εi ∼ N [0, σ2] (4)

where sij is the value of j’th spline basis function at xi, β0 is the intercept, and β1, ..., βk are the
regression coefficients associated with the k spline basis functions. In standard regression notation,
equation (4) may be written in the form Y ∼ N [Xβ, σ2In] where X is the matrix of covariates
(with ones in the leading column corresponding to the intercept term of the model), β is the vector
of regression coefficients and In is the n×n identity matrix. In this notation, it is well known that
the least squares estimates of β are β̂ = (XTX)−1XTY with covariance matrix (XTX)−1σ2, which
is standardly estimated by (XTX)−1σ̂2 where σ̂2 is the usual unbiased estimator of σ2.

In particular, this shows that the variance of β̂0 +
∑k
j=1 β̂jsij , which is the estimated value

of the regression response at x = xi, is σ2 multiplied by the i’th diagonal entry of the matrix
S(XTX)−1ST where S is the n× (k + 1) matrix

S =


1 s11 s12 . . . s1k
1 s21 s22 . . . s2k
...

...
...

. . .
...

1 sn1 sn2 . . . snk

 .
Therefore, the standard errors of the estimated regression responses, evaluated at the data points
x1, ..., xn, are the square roots of the diagonal entries of the matrix σ̂2S(XTX)−1ST .

This suggests the following procedure for adding pointwise 95% confidence intervals to Figure
1. Note that vcov(lm1) is the estimated covariance matrix of the parameters in the model lm1,
that is, σ̂2S(XTX)−1ST .

erupspl=ns(faithful$eruptions,8)

lm1=lm(waiting~erupspl,faithful)

# add ones to erupspl to allow for intercept term

erups2=cbind(rep(1,272),erupspl)

# compute pointwise standard deviations at all values of eruptions

sd_points=sqrt(diag(erups2 %*% vcov(lm1) %*% t(erups2)))

# t statistic for 95% confidence intervals (adjust confidence limit if desired)

ts=qt(0.975,df.residual(lm1))

# redraw plot with confidence lines

i=order(faithful$eruptions)

par(mfrow=c(1,1),cex=1.1)

with(faithful,{

plot(waiting~eruptions,pch=20,ylab=’Waiting Time’,xlab=’Length of Eruption’)

lines(eruptions[i],lm1$fitted[i],lw=5,col=’blue’)
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lines(eruptions[i],lm1$fitted[i]+ts*sd_points[i],lw=3,col=’green’)

lines(eruptions[i],lm1$fitted[i]-ts*sd_points[i],lw=3,col=’green’)

})
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Figure 2: Old Faithful data with regression splines and pointwise 95% confidence limits

Note the broadening of the confidence bands near the ends of the data. This is, to some extent,
a problem with all the methods we have discussed.

Note added after my April 23 class. As I was going through this in class, I realized there is a
much quicker way to do this example: simply use the predict command that can be applied to
any linear model object. So, replace the above code by

erupspl=ns(faithful$eruptions,8)

lm1=lm(waiting~erupspl,faithful)

pr1=predict(lm1,se.fit=T,interval=’confidence’)

i=order(faithful$eruptions)

par(mfrow=c(1,1),cex=1.1)

with(faithful,{

plot(waiting~eruptions,pch=20,ylab=’Waiting Time’,xlab=’Length of Eruption’)

lines(eruptions[i],pr1$fit[i,1],lw=5,col=’blue’)

lines(eruptions[i],pr1$fit[i,2],lw=3,col=’green’)

lines(eruptions[i],pr1$fit[i,3],lw=3,col=’green’)

})

and you get exactly the same picture.
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6 Combining Nonparametric Regression with Random Effects

This would be problematic for most of the nonparametric methods we have discussed, but for one,
it is entirely natural: the regression splines method. The reason is that, after deciding on the
number and possibly the locations of the knots, regression splines reduce to a standard multiple
regression, and are therefore amenable to the lmer routine.

6.1 Boston Marathon Example

Over a number of months, I assembled a dataset consisting of finish times, together with age and
gender, of runners in the Boston Marathon. The objective was to see how a “typical” runner’s time
varies with age and gender. Most studies of age and gender effects in running focus on world or
national record times, but a world or national record holder is hardly representative of most runners
who enter road races. I should point out that the Boston Marathon is not quite representative,
either, since the race requires qualifying times and many potential entrants might be unable to run
because they could not qualify. On the other hand, there is a core of runners who run the race
regularly, for whom it is therefore possible to track their variations of performance with age.

The dataset consists of 7,219 individual performances achieved by 806 different runners between
years 2001 and 2013. The criterion to be included in the study was six finishes for a male runner
and five for a female runner. However, since my method of searching the online results pages
was very far from complete, it is certain that there are many more runners who could have been
included under these criteria. Each row of the data consists of an identity number of the runner,
year of performance, sex (1 for female, 2 for male), age and finish time in minutes. One of the
included years was 2013, the year of the Boston bombings, when many runners were unable to
finish. However, a previous study [3] estimated the finish times of all those runners and I have
included those estimates in the analysis.

A plausible model for the performance of runner i in year j is

yij = αi + γj + s(aij ;β) + εij (5)

where αi is a zero-mean random effect for runner i; γj is a zero-mean random effect for year j; aij
is the age of runner i in year j; εij is a N [0, σ2] random error; and s(aij ;β) = β0 +

∑K
k=1 βksk(aij)

where sk(a) is the k’th regression spline basis function evaluated at age a and β0, ..., βK is the vector
of fixed-effect regression coefficients. Note that we included the intercept β0 as a fixed effect so that
the eventually fitted function s(aij ;β) would be correctly centered around some mean performance
time. The reason for including a random effect for year was that some years (notably, 2004 and
2012) were very hot and this has an overall effect of slowing down runners’ times. The model (5)
was fitted separately for men and women; a possible refinement would be to further separate the
runners into different ability groups to examine the extent to which s(aij ;β) varies between fast
and slow runners.

The results of this exercise are shown in Figure 3. The results look generally realistic but there
are some peculiarities. Note, in particular, the apparent crossover of male and female running times
beyond the age of 70; this is almost certainly an artifact of the fact that there are very few runners
of either gender in this age range.
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Figure 3: Nonparametric regression curves for men (red curve) and women (blue curve), together
with 95% pointwise confidence limits (dashed curves).
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