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1 Background: Two formulas for likelihood functions

We derive two formulas that are used later to calculate means and variances of exponential family
densities.

Suppose f(y; θ) is the density of a random variable Y depending on (scalar) parameter θ. Let
`(θ;Y ) be the log likelihood function based on a single observation Y . Assume ` is at least twice

differentiable with respect to θ, with first two derivatives `′ = d`
dθ and `′′ = d2`

dθ2
. Then:

E
{
`′(θ;Y )

}
= 0, (1)

E
[{
`′(θ;Y )

}2
]

= −E
{
`′′(θ;Y )

}
. (2)

Proof of (1). We have

1 =

∫
f(y; θ)dy,

0 =
d

dθ

∫
f(y; θ)dy

=

∫
d

dθ
f(y; θ)dy

=

∫
d

dθ
{log f(y; θ)} f(y; θ)dy (3)

= E
{
`′(θ;Y )

}
.

Proof of (2). Continuing the same argument by differentiating (3),

0 =
d

dθ

[∫
d

dθ
{log f(Y ; θ)} f(y; θ)dy

]
=

∫
d2

dθ2
{log f(y; θ)} f(y; θ)dy +

∫
d

dθ
{log f(y; θ)} d

dθ
f(y; θ)dy

=

∫
d2

dθ2
{log f(y; θ)} f(y; θ)dy +

∫ [
d

dθ
{log f(y; θ)}

]2

f(y; θ)dy

= E
{
`′′(θ;Y )

}
+ E

[{
`′(θ;Y )

}2
]
.

Remarks
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1. The above glosses over some technical details, in particular, justifying the interchange of
the differentiation and integration operators. This can be problematic under certain circum-
stances, in particular, when the range of integration is itself dependent on θ. This sort of
issue is not a problem in exponential families.

2. If Y is a discrete random variable (the two best-known examples are Binomial and Poisson),
the same proof holds but with the integrals replaced by sums over the possible values of y.
Note that we always assume f(y; θ) is continuous and at least twice differentiable in θ, but
differentiability with respect to y is not required.

3. For simplicity, the derivation here assumes θ is one-dimensional but the same result holds in
multidimensions. In particular, all the partial derivatives of the log likelihood function have
expectation zero, while the covariance matrix of all the first-order partial derivatives is minus
the expectation of the matrix of second-order derivatives. The latter quantity is known as
the Fisher Information Matrix.

2 Exponential Families

An exponential family is defined by the formula

f(y; θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
(4)

where:

• Y is a discrete or continuous random variable; if Y is discrete, then f(y; θ, φ) is the probability
mass function evaluated at a particular value y; if Y is continuous, f(y; θ, φ) is the probability
density function;

• θ is the main parameter of the exponential family; in all our examples, θ itself is a scalar
parameter, though in GLMs it typically depends on additional parameters through the link
function (defined later) and covariates;

• φ is an additional parameter usually known as the dispersion parameter ; a(φ) is an arbitrary
function of φ and c(y, φ) is also arbitrary but (the key point) it cannot depend on θ.

For an exponential famility density of the form (4), we have (note that dashes still refer to
differentiation with respect to θ, not φ),

`(y; θ, φ) =
yθ − b(θ)
a(φ)

+ c(y, φ),

`′(y; θ, φ) =
y − b′(θ)
a(φ)

,

`′′(y; θ, φ) = −b
′′(θ)

a(φ)
.
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Applying the formulas of Section 1, we deduce

E

{
Y − b′(θ)
a(φ)

}
= 0,

E

[{
Y − b′(θ)
a(φ)

}2
]

= −b
′′(θ)

a(φ)
,

and hence

E{Y } = b′(θ), (5)

Var{Y } = −b′′(θ)a(φ). (6)

Note that we often write µ for b′(θ), the mean of the random variable Y .

3 Examples of Exponential Families

3.1 Normal

For the normal or Gaussian density, we have

f(y;µ, σ2) = (2πσ2)−1/2 exp

{
−1

2

(
y − µ
σ

)2
}

= exp

{
yµ

σ2
− µ2

2σ2
− y2

2σ2
− 1

2
log(2πσ2)

}

This is of the form (4) if we define θ = µ, φ = σ2, b(θ) = θ2

2 , a(φ) = φ, c(y, φ) = − y2

2φ−
1
2 log(2πφ).

Here b′(θ) = θ, b′′(θ) = 1, so the mean is θ = µ and the variance is φ = σ2. This of course agrees
with well-known results for the normal distribution.

3.2 Poisson

This is an example of a discrete RV with

f(y;µ) =
µye−µ

y!
, y = 0, 1, 2, ....,

= exp {y logµ− µ− log(y!)} .

In this case we identify θ with logµ, we can set φ ≡ 1, and c(y, φ) = − log(y!). So b(θ) = b′(θ) =
b′′(θ) = eθ = µ, so the mean and variance are both µ.

3.3 Binomial

I have thought about how to do this in a consistent way but I think it makes most sense for the
GLM framework if we define y to the the proportion of successes (as Faraway does on p. 155, but
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not when he first introduces the Binomial model as an example of an exponential family on p. 152).
In this case,

f(y; p, n) =

(
n

ny

)
pny(1− p)n−ny, y = 0, 1/n, 2/n, ...., 1

= exp

{
ny log

(
p

1− p

)
+ n log(1− p) + log

(
n

ny

)}

We can define φ = n, a(φ) = 1
φ , θ = log

(
p

1−p

)
, p = eθ

1+eθ
, 1 − p = (1 + eθ)−1 and therefore

b(θ) = log(1 − p) = − log(1 + eθ), b′(θ) = eθ

1+eθ
= 1 − 1

1+eθ
= p, b′′(θ) = eθ

(1+eθ)2
= p(1 − p) so the

mean is b′(θ) = p and the variance is b′′(θ)a(φ) = p(1−p)
n in accordance with well-known formulas.

3.4 Gamma

The most usual way to write the Gamma density is βαyα−1e−βy

Γ(α) with mean α
β and variance α

β2 . Here

we write ν = α, µ = α
β so

f(y;µ, ν) =
1

Γ(ν)

(
ν

µ

)ν
yν−1e−yν/µ

= exp

{
−yν
µ
− ν logµ+ (ν − 1) log y + ν log ν − log Γ(ν)

}
and in this case the mean is µ and the variance is µ

ν .

I think the simplest way to handle this is to define θ = 1
µ , φ = 1

ν , a(φ) = −φ (nothing in the
preceding general theory said a(φ) had to be positive). In this case we write

f(y; θ, φ) = exp

{
yθ − log θ

a(φ)
+ c(y, φ)

}

so b(θ) = log θ, b′(θ) = 1
θ = µ, b′′(θ) = − 1

θ2
= −µ2 and the variance function is b′′(θ)a(φ) = µ2

ν
consistent with what we already knew about the gamma distribution.

3.5 Inverse Gaussian

The last of our basic catalog of exponential families is the Inverse Gaussian, for which

f(y;µ, λ) =

(
λ

2πy3

)1/2

exp

{
−λ(y − µ)2

2µ2y

}

= exp

{
− λy

2µ2
+
λ

µ
− λ

2y
+

1

2
log

(
λ

2πy3

)}
(7)

where y, µ, λ > 0. In this case we define φ = 1
λ , a(φ) = −φ, θ = (2µ2)−1, b(θ) = (2θ)1/2, c(y, φ) =

− λ
2y + 1

2 log
(

λ
2πy3

)
and rewrite (7) in the form (4). So b′(θ) = (2θ)−1/2 = µ, b′′(θ) = −(2θ)−3/2 =

−µ3 and the variance function is b′′(θ)a(φ) = µ3

λ .
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4 Consequences for GLMs

The Binomial is a bit of a special case because the main parameter p is restricted to [0,1] and the
transformation θ = log p

1−p is unique to that case. However the other four cases are defined by
specific forms of the variance function V (µ):

• V (µ) is constant: normal (Gaussian) case

• V (µ) = µ: Poisson

• V (µ) = µ2: Gamma

• V (µ) = µ3: Inverse Gaussian

These relationships may be valid regardless of the underlying models that they are derived
from: for example, V (µ) = µ is derived from the Poisson model but the underlying mean-variance
relationship may be valid without the assumption of a Poisson distribution, or even any discrete
distribution. Therefore, for any particular example, it is legitimate to explore different functions
V (µ) to find which one best fits the data.

5 The Delta Method for Variances

This is a totally different topic but it’s mentioned on p. 181 so I thought I should explain.

Suppose Y is a random variable with mean µ and variance σ2. Suppose, however, we are
interested in the mean and variance, not of Y itself, but some transformation g(Y ).

We may write

g(Y )− g(µ) ≈ (Y − µ)g′(µ). (8)

Based on the approximation (8), we deduce

E {g(Y )} = g(µ), (9)

Var {g(Y )} = {g′(µ)}2σ2. (10)

For example (the case used on p. 181 of the text), based on g(y) = ey, we deduce that the mean
and standard deviation of eY are approximately eµ and σeµ.

For a formal asymptotic derivation of this approximation, suppose Yn, n = 1, 2, ..., is a sequence

of random variables and µ and σ2 are limiting quantities such that
√
n(Yn − µ)

d→ N (0, σ2) where

N denotes the normal distribution and
d→ denotes convergence in distribution. We may write

g(Yn)− g(µ) = g′(µ̃n) where µ̃n lies between µ and Yn. Since Yn
p→ µ (convergence in probability)

and we assume g′ is continuous, we also deduce µ̃n
p→ µ and hence g′(µ̃n)

p→ g′(µ). Therefore
√
n{g(Yn)− g(µ)} = g′(µ̃n) ·

√
n(Yn − µ)

which is the product of two random variables, one of which converges in probability to g′(µ), and
the second of which converges in distribution to N (0, σ2). A result known as Slutsky’s Theorem
then shows that the product converges in distribution to the product of the limits, in other words,
N (0, {g′(µ)}2σ2). In practice, we often assume (9) and (10) hold as approximations without check-
ing the formal convergence.
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6 Derivation of the Formulas on Page 155

The derivation of these formulas was given on pp. 40–43 of McCullagh and Nelder [1], but this is
still not easy to follow, so I’m giving my own derivation here.

The objective is defined on the second last formula of page 154; we seek values of β =(
β1 . . . βp

)
, and hence ηi =

∑
j xijβj and µi = g−1(ηi), to solve the equations

sj =
∑
i

(yi − µi)
V (µi)

∂µi
∂βj

= 0, j = 1, ..., p.

Define s to be the vector with elements s1, ..., sp. To emphasize the dependence on β, we also write

this as s(β) =
(
s1(β) . . . sp(β)

)
.

We also let H(β) be the vector of partial derivatives of s(β), with entries hjk(β), 1 ≤ j ≤
p, 1 ≤ k ≤ p where

hjk(β) =
∂sj(β)

∂βk
.

The idea is this. Suppose our current guess (`’th iteration) for the solution β is β(`) and the true
solution is β0, for which s(β(0)) = 0. Then a first-order Taylor expansion gives

s(β(`)) = s(β(`))− s(β(0))

= H(β̄)(β(`) − β(0))

where β̄ is somewhere on the straight line joining β(`) and β(0). However, since β̄ is unknown, we
approximate it by substituting β(`). This suggests the next stage of the iteration

β(`+1) = β(`) −H(β(`))−1s(β(`)). (11)

So far, this is essentially the method of Newton-Raphson iteration, which is one of the best-
known algorithms for optimization. However, at this point, rather than perform an exact Newton-
Raphson method, we make several approximations and simplifications of the formula (11).

Step 1. Since ηi =
∑
j xijβj we can write xij = ∂ηi

∂βj
= dη

dµ ·
∂µi
∂βj

by the chain rule, so ∂µi
∂βj

=(
dηi
dµi

)−1
xij . We also have 0 = ∂2η

∂βj∂βk
=
(
dηi
dµi

)2 ∂2µ
∂βj∂βk

. Also, we ignore the partial derivatives of V

— in other words, we act as though V (µi) were known and constant through a small neighborhood of
the true µi. This is a critical step in the argument, which is difficult to explain beyond the intuition
that it simplifies the algorithm without sacrificing much in terms of convergence. McCullagh and
Nelder call this step Fisher scoring, citing a 1935 paper by R.A. Fisher, the great British statistician
who was responsible for many of the developments in statistical methodology during the first half
of the twentieth century. Fisher’s paper was itself written as a discussion of a paper by Bliss, whose
data on deaths in insects due to different concentrations of inseticide we have already seen in this
course.

So if we put these items together,

∂sj
∂βk

=
∑
i

[
− ∂µi
∂βk
· 1

V (µi)
· ∂µi
∂βj

+
yi − µi
V (µi)

∂2µi
∂βj∂βk

− yi − µi
V 2(µi)

∂µi
∂βj

∂Vi
∂βk

]

6



but we saw the second term is 0 and we are going to ignore the third term, so the (j, k) entry of H
is

hjk ≈ −
∑
i

1

V (µi)

(
dηi
dµi

)−2

xijxik

= −
∑
i

wixijxik

where the definition of the weight wi is as given in step 2 on page 155, i.e.

wi =
1

V (µi)

(
dηi
dµi

)−2∣∣∣∣
µi=µ̂

(`)
i

. (12)

Hence H = −XTWX where W is the diagonal matrix with entries w1, ..., wn.

Step 2. We can also write

sj =
∑
i

yi − µi
V (µi)

∣∣∣∣
µi=µ̂

(`)
i

(
dηi
dµi

)−1

xij

=
∑
i

wixij ·
(
dηi
dµi

)
(yi − µ̂(`)

i )

so s(β) is of form XTW t where t =
(
t1 . . . tn

)
and ti =

(
dηi
dµi

)
(yi − µ̂(`)

i ).

Step 3. The iteration now reduces to

β(`+1) = β(`) + (XTWX)−1XTW t

= (XTWX)−1
(
XTWXβ(`) +XTW t

)
= (XTWX)−1XTWz

where the vector z has entries zi defined by

zi = xTi β
(`) + ti = η

(`)
i +

(
dηi
dµi

)
(yi − µ̂(`)

i ) (13)

which is exactly the formula given on step 1 on page 155.

The conclusion is: define adjusted observations zi by (13), weights wi by (12); then the next
iteration of β is defined by solving the linear regression equation for observations zi with weights
wi.

Side note about notation: Since η = g(µ) with known link function g, we may also write
dη
dµ = g′(µ) which I find easier to comprehend, but to be consistent with Faraway’s notation (and

that of McCullagh and Nelder), I have kept that here. Where I have written dηi
dµi

, this is to be

understood the same as g′(µ̂
(`)
i ), in other words, the value of the partial derivative dη

dµ when η and
µ are both evaluated at the ith observation on the `’th iteration.
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