Simple Linear Regression

Used to characterize the relationship between two variables, usually called the independent variable (x) and the dependent variable (y)

Linear Regression Example

- Women's winning times in the New York Marathon, 1978-2019

Parameter	Estimate (Est.)	Std. Error (SE)	t value (=Est./SE)	P-Value
b_{0}	379	49.78	7.613	$3.13 \mathrm{E}-09$
$\mathrm{~b}_{1}$	-0.1165	0.02491	-4.674	$3.48 \mathrm{E}-05$

- The P-Values are: $=0.000000000313$ and 0.00000348
- Overwhelming evidence of a downward trend

From Diez et al, Open Intro Statistics

Linear Regression

R2 ("R-squared")

is a common measure of how close the regression is to a straight line

From Diez et al, Open Intro Statistics

Linear Regression

NYC Marathon $R^{2}=0.36$

NBA Players $\mathrm{R}^{2}=0.999$

Tobacco Road Marathon (2024)

Linear fit: R-squared $=0.9994$

Residuals from Linear Fit

Quadratic fit: R-squared $=0.99998$

