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Motivating discussion

A newspaper story discussed the possible increase of skin cancer

in marathon runners, based on a paper Malignant melanoma

in marathon runners, by Ambros-Rudolph et al. (a group of

researchers at the Medical University of Graz, Austria).

The initial research was prompted by a group of 8 ultramarathon-

ers with malignant melanoma (Table 1).
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To study this in more detail, the researchers recruited 210 marathon

runners (166 male, 44 female), all white. They also formed a

control group of 210 white non-runners, matched by age and sex

to the marathon running group. Each participant was given a

questionnaire to identify risk factors (skin type etc.), then a full

dermatological examination and skin cancer screening.

In the marathon group, 24 had potentially cancerous moles or

lesions that were referred for further treatment; in the control

group, only 14 did.

Is this a statistically significant difference?

Detailed results are in Table 2 of the paper.
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“Significant” results in the table are marked by P =.04, .03, .02,

.01 or .001. It is worth pointing out that although a number

of results in that table are flagged as statistically significant,

the result about 24 v. 14 referrals for treatment is not flagged

as statistically significant. However, among the “high training”

group (more than 70km. per week), 6 out of 31 runners had to

be referred and that is statistically significant, according to the

table.
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My conclusion was that both the newspaper report and the ti-

tle of the article itself exaggerated what the study had actually

proved. The study made a number of comparisons between the

treatment and control groups, but most of them were not sta-

tistically significant, and some of them showed that it was the

control group that was at greater risk.

However, this is also a small study. Despite the increase in skin

cancer in recent years, it’s still a relatively rare disease — well

under 1% of the total population. In 420 subjects in the study,

the researchers may well not have seen enough cases to make a

meaningful comparison.

In this chapter, we discuss some general principles related to

statistical significance and P-values that often come out in this

sort of study.
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Steps to performing a significance test

The melanoma example is actually a little different from the

examples discussed in this chapter because it is about the com-

parison of two proportions — whether the proportion of a certain

skin problem among marathon runners is higher than among the

control group (in a situation where both proportions are un-

known in the population at large). This is actually the subject

of Chapter 10. For the purposes of Chapter 9, let’s pretend

that the control group was actually much larger, and that the

14/210 in the control group who had to be referred for treatment

was actually representative of the whole population — 6.7% or

p = 0.067. The question that then arises is whether either the

proportion that had to be refereed for treatment among the

marathon runner sample (24/210 or 11.43%), or the proportion

among the “heavy trainers” (6/31 or 19.35%), are statistically

different from the general population.
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In the text they use an example related to astrology — an as-

trologer is given three possible personality profiles corresponding

to a particular individual, and he/she has to guess which one is

correct based on the individual’s birth date. If there is no astro-

logical effect, the proportion of correct guesses will be p = 1
3. If

there is an effect, presumably the astrologer will guess correctly

greater than one-third of the time. As with the skin cancer

example, the question is whether the observed proportion of a

particular outcome in an experiment is significantly different from

the proportion we would expect to see by chance if there was no

effect.
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Five steps to performing a significance test:

(1) Specify the assumptions. For example, many (if not most)

studies require randomization.

(2) Define the hypotheses of interest. Typically, this kind of

problem is formulated as a choice between the null hypothesis

and the alternative hypothesis. The null hypothesis means

there is no effect, e.g. the proportion of skin problems among

marathon runners is no different from that of the general

population, or the astrologer guesses correctly only one-third

of the time. The alternative hypothesis is when the null

hypothesis is not correct. The null hypothesis and alternative

hypothesis are often written H0 and Ha. So in the skin cancer

example we may say that if p is the proportion of marathon

runners referred for treatment,

H0 : p = 0.067, Ha : p > 0.067.
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(3) Test statistic: Calculate some summary of the data that

may be used to discriminate between the null and alternative

hypotheses.

(4) P-value: Calculate the probability that a result, equal to or

more extreme than the one actually observed, would occur

if H0 was correct. This is called the P-value (not to be

confused with small p which represented the proportion we

were trying to test).

(5) Report the conclusions. If the P-value is sufficiently small,

we conclude that the null hypothesis is very unlikely to be

correct and therefore conclude that the alternative hypothesis

is correct.
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Consider the skin cancer example applied to the “heavy training”

group (6 out of 31 runners referred for treatment). In that case,

these steps work out as follows:

(1) Assume that X, the number of marathon runners referred

for treatment, has a binomial distribution with n = 31 and

unknown p.

(2) The natural null and alternative hypotheses are H0 : p =

0.067 and Ha : p > 0.067.

(3) The test statistic is the sample proportion p̂ = 6
31 = 0.1935.

If H0 is correct, the standard error of p̂ is

√
p(1−p)

n =
√

0.067×0.933
31 =

.0449. Therefore, the z statistic is

z =
0.1935− 0.067

0.0449
= 2.82.
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(4) Referring to the normal distribution table, the probability

that a standard normal random variable is greater than 2.82

is .0024. Therefore, the P-value is .0024 in this case.

(5) The value .0024 is rather small — well under a 1% probability

that this result could have occurred by chance. Therefore,

we’d be justified in concluding that p is not 0.067 — in

other words, the marathon runners really did have a higher

incidence of this particular skin problem.
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One comment here is that we used the normal approximation

to the binomial distribution when one of the conditions for that

to be value, that np ≥ 15, is violated. In fact, if n = 31 and

p = .067, then np = 2.08 so this is definitely wrong. In the

present case, we could use the exact binomial distribution — if

X has a binomial distribution with n = 31 and p = 0.067, then

Pr{X ≥ 6} = 0.0156. This is a bit bigger than .0024, but the

conclusion (that it’s too small a probability to be attributed to

chance) is still valid. In any case, most of the examples we will

see do follow the normal distribution so we won’t worry about

that distinction.

16



General procedure for testing a proportion

Suppose the data are a sample proportion p̂ from the sample

of size n where the true population proportion is an unknown

quantity p. In the problems described in this chapter, the null

hypothesis is always of the form

H0 : p = p0

where p0 is some given proportion. In the melanoma example, p0

is 0.067, representing the proportion of people needing treatment

in a control population (which in the actual example was only 210

people but, for the purpose of this discussion, we are assuming

to represent the entire population). In the astrology example, p0

is 1
3, because if the astrologer had no special powers this would

be her probability of guessing correctly in a single trial.
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Defining the alternative hypothesis

The alternative hypothesis is almost always one of

Ha : p > p0, or (1)

Ha : p < p0, or (2)

Ha : p 6= p0. (3)

The choice among these depends on which alternative is more

interesting in the context of the test.
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In the astrology example, the clearest way to prove that the

astrologer had real powers would be if the proportion of correct

guesses was better than could be achieved by chance — in other

words, if p0 >
1
3. The alternative p0 <

1
3 would not seem to make

much sense. Therefore, in this case (1) would seem to be the

natural choice.
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Skin cancer example: it seems logical to argue the runners would

be at an increased risk of skin cancer because they spend more

time out of doors. Therefore the natural alternative hypothesis

would seem to be (1) again.

However, it’s not actually so clear-cut, because we have seen

there are some risk factors for which the non-runners are at

higher risk than the runners. There are various plausible expla-

nations for this. So in fact, the researchers always took (3) as

the alternative (for all the tests they did).

20



Test statistic

After defining the null and hypothesis, we calculate the test

statistic, typically

z =
p̂− p0√
p0(1−p0)

n

. (4)

Rationale: if H0 is true, then p̂0 has mean µ = p and standard

deviation (or standard error) σ =

√
p0(1−p0)

n , so (4) is just the

formula z = x−µ
σ (with x = p̂) in this context. If H0 is true, then

z has a standard normal distribution with mean 0 and standard

deviation 1.
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Computing the P-value

It matters which of the three alternatives (1)—(3) is being used.

For (1), compute right-tail probability: Pr{Z > z} where Z is a

standard normal random variable and z is the number computed

in (4). In the skin cancer example, z was 2.82 and the corre-

sponding right-tail probability was 0.0024.

For the alternative (2), this is usually of interest only if z < 0

but then the probability to be calculated is Pr{Z < z}, the mirror

image of (1).

However if the alternative is (3), in this case we do something

different. We need to consider extreme events on both sizes,

which means Z > |z| or Z < |z|. In most cases this simply means

doubling the one-sided P-value.
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So for example, in the skin cancer example, the two-sided prob-

ability would be Pr{Z > 2.82} + Pr{Z < −2.82}. However, by

the symmetry of the normal distribution, Pr{Z > 2.82} and

Pr{Z < −2.82} are the same and equal to .0024, so Pr{Z >

2.82}+ Pr{Z < −2.82} = 2× .0024 = .0048. This is the correct

P-value in this instance.
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Interpreting the P-value

The general principle is: the smaller the P-value, the less likely

it is that the null hypothesis is true. However that begs the

question of “how small is small?”

We don’t normally consider a result “significant” unless P< 0.05.

There is no specific reason why the cut-off is this — we could

equally have taken the rule as P< 0.1 or P< 0.03 or something

else — but 0.05 has become generally accepted as the standard.

However, it’s also true that P=0.05 is not particularly strong

evidence against H0 — if this were our universal rule, we would

still end up rejecting H0 5% of the time when H0 is true. If we

knew that P was much smaller than 0.05, that would strengthen

our belief that Ha is really correct.
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Many researchers do the following:

1. If P> 0.05, simply report that the result is not significant and

leave it at that.

2. If P≤ 0.05, report the exact value of P so that the reader

can judge for him/herself just how significant a result it is.

This is what the researchers in the skin cancer paper did. In

their Table 2, all cases where P> 0.05 were left unlabelled as not

statistically significant. However, when P< 0.05, they marked it

according to P=0.04, 0.03, 0.02, 0.01 or 0.001, whichever was

closest to the actual value of P.
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