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ABSTRACT

MICHELE A. TROVERO: Effects of Aggregation on Estimators of Long-Range
Dependence.

(Under the direction of Richard L. Smith)

Modern technologies have made available huge amount of data from phenomena that exhibit

long-range dependence (LRD). For example, network traffic data can be sampled at intervals as

small as one nanosecond. The analysis of such a big amount of data can pose practical challenges.

Temporal aggregation has been employed to cope with the limitations in the storage capacity and

analysis tools.

One question that arises immediately is whether the aggregated process has the same long-range

dependence characteristics of the underlying process. Under mild local assumptions on the spectral

density of the LRD process, we show that the fractional order d of the processes is invariant under

temporal aggregation.

A second related question is whether and how the estimators of long-range dependence are

affected by aggregation. We focus our attention on the log-periodogram regression estimator of

Geweke and Porter-Hudak (GPH) and on the local Whittle (LW) estimator. For such estimators,

a trimming parameter m needs to chosen by the user so as to balance the trade-off between bias

and variance. One optimal choice of m is the value that minimizes the asymptotic mean squared

error (MSE) of the estimator. We derive the asymptotic MSE of the GPH estimator for the model

in consideration. We show how the MSE-optimal choice of m varies under aggregation for both the

GPH and LW estimators.

We consider also the case when the sum of the LRD process and a white noise process is

iii



observed. This model emerges from long-memory stochastic volatility models (LMSV). We derive

an expression for the asymptotic MSE of LW estimator. A LW-type estimator (ELW) which

accounts for the presence of noise is also considered. We derive a representation of the Hessian

matrix of the ELW estimator as functionals of incomplete beta functions. We evaluate numerically

the effect of aggregation on the LW and ELW estimators when the observed process is composed

by a LRD process plus noise.

We perform an empirical analysis of the effects of aggregation on the UNC network data.

iv



Contents

List of Figures viii

1 Introduction 1

1.1 Notation and Definitions of Long-Range Dependence . . . . . . . . . . . . . . . . . . 7

1.2 Probabilistic Models of Long-Range Dependence . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Self-Similar Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 FARIMA and FEXP Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Empirical Findings of Long-Range Dependence . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Uniformity Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 The Hurst Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Critical Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Aggregated Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Detection and Estimation of Long-Range Dependence . . . . . . . . . . . . . . . . . 22

1.4.1 Time-Domain Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Frequency-Domain Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.3 Wavelet Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Theoretical Results 46

2.1 Aggregation and Long-Range Dependent Processes . . . . . . . . . . . . . . . . . . . 48

v



2.2 Aggregation and Estimators of Long-Range Dependence . . . . . . . . . . . . . . . . 53

2.2.1 Aggregation and the GPH Estimator . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.2 Aggregation and the Local Whittle Estimator . . . . . . . . . . . . . . . . . . 56

2.3 Long Memory with Added Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.1 The GPH Estimator with Added Noise . . . . . . . . . . . . . . . . . . . . . 61

2.3.2 The Extended LW Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.3 The LW estimator with of Added Noise . . . . . . . . . . . . . . . . . . . . . 63

3 Numerical Analysis of Local Whittle Estimators in Presence of Noise 65

3.1 The LW Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 MSEs Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.2 Effects of Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 The Extended LW Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2.1 MSEs Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.2 Effects of Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 UNC Internet Data Analysis 125

4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1.1 UNC Internet Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1.2 Lab Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.1 UNC Internet Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.2 Simulated Data and Lab Data . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vi



4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Conclusions 157

A Appendix A 162

A.1 The Bias of the LW Estimator with Added Noise . . . . . . . . . . . . . . . . . . . . 163

A.2 The Extended Local Whittle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3 The Mean Squared Error of the Geweke-Porter Hudak Estimator . . . . . . . . . . . 172

B Appendix B 177

Bibliography 180

vii



List of Figures

3.1 Step of m, N=219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 MSEs, d = 0.1, ns = 0, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 MSEs, d = 0.1, ns = 0.1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 MSEs, d = 0.1, ns = 0.5, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 MSEs, d = 0.1, ns = 1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 MSEs, d = 0.1, ns = 1.5, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 MSEs, d = 0.1, ns = 0, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 MSEs, d = 0.1, ns = 0.1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 MSEs, d = 0.1, ns = 0.5, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 MSEs, d = 0.1, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.11 MSEs, d = 0.1, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.12 MSEs, d = 0.4, ns = 0, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.13 MSEs, d = 0.4, ns = 0.1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.14 MSEs, d = 0.4, ns = 0.5, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 MSEs, d = 0.4, ns = 1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.16 MSEs, d = 0.4, ns = 1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.17 MSEs, d = 0.4, ns = 0, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.18 MSEs, d = 0.4, ns = 0.1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.19 MSEs, d = 0.4, ns = 0.5, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.20 MSEs, d = 0.4, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii



3.21 MSEs, d = 0.4, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.22 MSEs, d = 0.1, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.23 MSEs, d = 0.1, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.24 MSEs, d = 0.1, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.25 MSEs, d = 0.1, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.26 MSEs, d = 0.1, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.27 MSEs, d = 0.2, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.28 MSEs, d = 0.1, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.29 MSEs, d = 0.2, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.30 MSEs, d = 0.2, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.31 MSEs, d = 0.2, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.32 MSEs, d = 0.3, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.33 MSEs, d = 0.3, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.34 MSEs, d = 0.3, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.35 MSEs, d = 0.3, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.36 MSEs, d = 0.3, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.37 MSEs, d = 0.4, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.38 MSEs, d = 0.4, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.39 MSEs, d = 0.4, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.40 MSEs, d = 0.4, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.41 MSEs, d = 0.4, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.42 MSEs, d = 0.1, ns = 0, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.43 MSEs, d = 0.1, ns = 0.1, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



3.44 MSEs, d = 0.1, ns = 0.5, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.45 MSEs, d = 0.1, ns = 1, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.46 MSEs, d = 0.1, ns = 1.5, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.47 MSEs, d = 0.1, ns = 0, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.48 MSEs, d = 0.1, ns = 0.1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.49 MSEs, d = 0.1, ns = 0.5, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.50 MSEs, d = 0.1, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.51 MSEs, d = 0.1, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.52 MSEs, d = 0.4, ns = 0, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.53 MSEs, d = 0.4, ns = 0.1, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.54 MSEs, d = 0.4, ns = 0.5, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.55 MSEs, d = 0.4, ns = 1, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.56 MSEs, d = 0.4, ns = 1, N = 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.57 MSEs, d = 0.4, ns = 0, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.58 MSEs, d = 0.4, ns = 0.1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.59 MSEs, d = 0.4, ns = 0.5, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.60 MSEs, d = 0.4, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.61 MSEs, d = 0.4, ns = 1, N = 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.62 MSEs, d = 0.1, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.63 MSEs, d = 0.1, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.64 MSEs, d = 0.1, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.65 MSEs, d = 0.1, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.66 MSEs, d = 0.1, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



3.67 MSEs, d = 0.2, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.68 MSEs, d = 0.1, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.69 MSEs, d = 0.2, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.70 MSEs, d = 0.2, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.71 MSEs, d = 0.2, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.72 MSEs, d = 0.3, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.73 MSEs, d = 0.3, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.74 MSEs, d = 0.3, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.75 MSEs, d = 0.3, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.76 MSEs, d = 0.3, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.77 MSEs, d = 0.4, ns = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.78 MSEs, d = 0.4, ns = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.79 MSEs, d = 0.4, ns = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.80 MSEs, d = 0.4, ns = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.81 MSEs, d = 0.4, ns = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1 Apr 10 21:30, 1ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2 Apr 10 21:30, 1/100-th Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Apr 10 21:30, 1/10-th Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Apr 10 21:30, 1 Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Apr 10 21:30, 1ms Detrended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.6 Apr 10 21:30, 1/100-th Sec Detrended . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.7 Apr 10 21:30, 1/10-th Sec Detrended . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Apr 10 21:30, 1 Sec Detrended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xi



4.9 Estimates vs Aggregation, Apr 10 21:30 . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Estimates vs Aggregation, Apr 10 21:30 . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.11 FGN Pipiras, 1ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.12 FGN Pipiras, 1/100-th Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.13 FGN Pipiras, 1/10-th Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.14 FGN Pipiras, 1 Sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.15 Estimates vs Aggregation, FGN Pipiras . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.16 Estimates vs Aggregation, FGN Pipiras . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.17 FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5, 1ms . . . . . . . . . . . . . . . . . . . . . . . . 151

4.18 FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5, 1/100-th Sec . . . . . . . . . . . . . . . . . . . 152

4.19 FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5, 1/10-th Sec . . . . . . . . . . . . . . . . . . . 153

4.20 FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5, 1 Sec . . . . . . . . . . . . . . . . . . . . . . . 154

4.21 Estimates vs Aggregation, FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5 . . . . . . . . . . . 155

4.22 Estimates vs Aggregation, FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5 . . . . . . . . . . . 156

5.1 Optimal LW MSE vs. ns, d = 0.1, N = 219 . . . . . . . . . . . . . . . . . . . . . . . 159

xii



Chapter 1

Introduction

Ireneo began by enumerating, in Latin and Spanish, the cases of prodigious memory
cited in the Historia Naturalis: Cyrus, king of the Persians, who could call every soldier
in his armies by name; Mithridates Eupator, who administered justice in the twenty-
two languages of his empire; Simonides, inventory of mnemotechny; Metrodorus, who
practised the art of repeating faithfully what he heard once. With evident good faith,
Funes marveled that such things should be considered marvelous.

J.L. Borges, Funes el Memorioso, 1944.

One of the assumptions of classical time series analysis is that the correlations decay expo-

nentially over time. Or, similarly, if one looks at the spectral representation of the series, the

assumption is the spectral density is bounded at the origin. There are, however, many fields in

which such assumptions seem to be the exception, rather than the rule. For example, much of the

recent literature on computer network traffic data, starting with the seminal paper of Leland et al.

(1994), has focussed on the inadequacy of the traditional models designed for voice networks to

adequately describe the characteristics of the data. Similarly, Granger (1966) in his article on “The

typical spectral shape of an economic variable” argues that the typical spectral density of an eco-

nomic time series has a pole at the origin. For these cases, series often show strong correlation over

large lags and tend to fluctuate for long periods of time above and below a certain level, showing

a pattern that is often referred to as persistence. Mathematically, persistence, or slowly decaying



correlations, can be parsimoniously described by the notion of long range dependence (LRD).

LRD occurs in a stationary time series when the autocovariance function decays so slowly

that its absolute sum diverges. The concept was brought to the attention of statisticians and

mathematicians by Mandelbrot and his coauthors (see Mandelbrot and Ness, 1968; Mandelbrot

and Wallis, 1968, 1969a,b,c; Mandelbrot, 1977, 1983), although the phenomenon has been known

for a long time, the most celebrated example being the level of the river Nile. Since ancient times

the river Nile has been known for alternating long periods of dryness with long periods of flooding.

This fact has been described also in a passage of the Bible (Genesis 41, 29-30) that predicts seven

years of abundance followed by seven years of famine and has therefore been named the Joseph

effect (Mandelbrot and Wallis, 1968). Reliable measurements of the yearly minimum water levels

of the river Nile for the years 622-1281 A.D. (Tousson, 1925) are available and have been studied

extensively (Hurst, 1951). Qualitative features of the sample path are that the series globally

appears to be stationary and shows no apparent long-term trend, despite the existence of local

trends and seasonal effects. The long periods of high level and low level alternate in a manner that

seems random. A standard time series analysis of the series reveals that the sample autocorrelation

at lag k seems to decrease according to a power law of the form k−α for some 0 < α < 1, or,

equivalently, the variance of the sample mean decays to zero at a rate that is slower than N−1,

where N is the sample size. The asymptotic behavior of the autocorrelation translates into the

spectral domain at low frequencies, where the periodogram I(λ) seems to have a singularity for

λ = 0, and its logarithm decreases almost in linear manner with respect to the logarithm of the

frequencies.

Fields in which long-range dependence behavior has been detected include, to mention a few,

agricultural field trials (Fairfield Smith, 1938), textile yields (Cox, 1984), video data (Heeke, 1991;
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Heyman et al., 1991), network data (Leland and Wilson, 1991), climatological data (Jones and

Briffa, 1992; Smith, 1993), and Economics (Granger, 1966).

Long-range dependence sometimes goes under the alternative names of strong dependence, long

memory, slowly decaying correlation, 1/f noise, where f is intended as frequency near the origin,

flicker noise and pink noise.

In the last three decades, long-range dependence has seen an enormous increase of attention in

the scientific literature, as testified in the somewhat dated bibliographical guide to long-range depen-

dence of Willinger et al. (1996). More up-to-date accounts on the current status of studies of long-

range dependence can be found in Doukhan et al. (2003) and in the eclectic database of references

about 1/f noise literature that Wentian Li maintains at http://www.nslij-genetics.org/wli/1fnoise/.

Modern technologies of data collection have made possible to collect huge amount of data from

phenomena that exhibit LRD behavior. Often, the amount that can be collected and analyzed is

limited only by storage capacity and by the analysis tools. Network traffic data can be sampled

by sophisticated measuring devices at intervals as small as one nanosecond. Financial data on

securities traded on the stock exchange is available transaction-by-transaction (tick-by-tick.) There

is sufficient empirical and theoretical evidence that the dynamic of packet flows in high-speed

data networks exhibits LRD properties (Willinger et al., 2003). Likewise, the volatility process in

stochastic volatility models for financial data is often assumed to have long memory, and persistence

has been observed in the series of squared returns, log squared returns, and log absolute returns

(Harvey, 1998). The analysis of such a big amount of data can pose practical challenges if one

wants to look at large spans of time.

Typically, temporal aggregation has been employed as a form of data reduction to cope with

the limitations in the storage capacity and analysis tools. One question that arises immediately is
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whether the aggregated process has the same long-range dependence characteristics of the under-

lying process.

Intuitively, one can expect long-range dependence to be invariant under aggregation, since

such transformation reduces the basic process to a process of lower frequency, and long memory is

related to the low-frequency behavior of the process only. Another reason to expect that aggregation

does not interfere with long-range dependence is the close proximity of the class of long-memory

processes to the class of self-similar processes for which the autocorrelation function is invariant

under aggregation (Samorodnitsky and Taqqu, 1994).

Teles et al. (1999) showed that the fractional order of a FARIMA process is invariant under

aggregation. Chambers (1998) showed that the fractional order does not change for stationary

processes that admit a Wold representation.

Let Xt, t ∈ Z, be a stationary time series with long memory. We will assume that the process

Xt has a spectral density of the form

fX(λ) = cλ−2d{1 + aλb + o(λb)} λ→ 0 (1.1)

with c > 0, d ∈ [0, 0.5), b ∈ (0, 2]. The parameter d is the long-range dependence parameter, or

fractional parameter. Such a spectral density is a fairly general way to represent long memory and

has been assumed, for example, by Smith (1989) and Robinson (1995a). We will show that the

fractional order of the processes Xt is invariant under temporal aggregation.

A second closely related question is whether and how the estimators of long-range dependence

are affected by aggregation. Several estimators of long-range dependence are now available. We

will focus our attention on the class of semiparametric estimators based on the periodogram, which

include the log-periodogram regression estimator of Geweke and Porter-Hudak (1983) (GPH) and
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the local Whittle (LW) estimator introduced by Künsch (1987).

A common characteristics of the semiparametric estimators based on the periodogram is to make

assumptions on the functional form of the spectral density only in a neighborhood of the origin.

Therefore, the estimators use only the first few ordinates of the periodogram, and a trimming

parameter m needs to chosen by the user so as to balance the trade off between the increase in

variance that comes from having a small sample, and the bias that comes from extending the base

of the estimator to portions of the periodogram where the presence of short-range components

interferes with the assumption about the spectral density. One optimal choice of m is the value

that minimizes the mean squared error (MSE) of the estimator.

Investigating the effect of aggregation on the estimators translates into investigating how the

mean squared error and the optimal choice of the bandwidth parameter m varies under aggregation.

The asymptotic MSE of the GPH estimator was computed by Hurvich et al. (1998) for stationary

Gaussian processes with a fractional spectral density. We will extend their result to Gaussian

processes whose spectral density follows the model (1.1).

Since the LW estimator is defined implicitly, only a heuristic result due to Henry and Robinson

(1996) is available for the asymptotic MSE.

We will show how the MSE and MSE-optimal choice of m varies under aggregation for both

the GPH and LW estimators.

We will consider also the case when the process Xt may not be observed directly. Instead,

a process Zt which is the sum of Xt and white noise process is observed. This model emerges

for the log of square returns from long-memory stochastic volatility models (LMSV) (Hurvich

and Ray, 2001; Deo and Hurvich, 2001). For such a model, Deo and Hurvich (2001) derived

asymptotic properties, including the MSE, of the GPH estimator. We will derive an expression for
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the asymptotic MSE of LW estimator when the observed process is composed by a LRD process plus

noise. The expression does not lend itself to finding the optimal value of m analytically. Therefore,

the effect of aggregation on the estimator will be evaluated numerically.

Hurvich and Ray (2001) proposed a new LW-type estimator (ELW) which explicitly accounts

for the presence of noise. Recently Hurvich et al. (2005) derived the asymptotic properties of an

estimator that includes the ELW estimator as a particular case. The asymptotic MSE of the ELW

estimator cannot be evaluated analytically due to the complexity of the expression of the Hessian

matrix. We will derive a representation of the Hessian matrix as functionals of incomplete beta

functions that can be evaluated numerically. We will evaluate the effect of aggregation on the ELW

estimator numerically.

Chapter 1 introduces some notation and definitions of long range dependence in section 1.1.

Section 1.2 describes the most popular probabilistic models of long-range dependence. Section 1.3

describes the first empirical findings of long-range dependence and physical models that generate

it. Section 1.4 gives an account of the literature on the methods of detection and estimation of

long-range dependence.

Chapter 2 describes the theoretical results. Section 2.1 describes the effect of aggregation on

LRD processes. Section 2.2 analyzes the effect of aggregation on the LW and GPH estimators.

Section 2.3 consider the effect of adding a noise to a LRD process and describes the analytical

results that can be derived.

Chapter 3 analyzes numerically the effect of aggregation on the LW and ELW estimators when

a noise component is added to a LRD process.

Chapter 4 applies the analysis to the Internet traffic data collected at the UNC main gateway,

and to data generated in a lab that is supposed to mimic the behavior of the Internet network.
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1.1 Notation and Definitions of Long-Range Dependence

The definition of long-range dependence given above, as non-absolute summability of the autoco-

variance function, turns out not to be very useful from a practical point of view. Often one of the

two quantitative characteristics observed empirically for the time series of the river Nile is taken as

definition. That allows us, after introducing some notation, to state the following two definitions

of long-range dependence, one for the time domain, and one for the spectral domain.

Before proceeding, let us introduce some basic notation. X = {Xt, t ∈ N} denotes a long-

memory time series observed at points x = {x1, x2, . . . , xN}. Unless otherwise specified, X is

assumed to have mean zero, be stationary and have finite second moments, with autocovariance

function γ(k), such that
∑
|γ(k)| = ∞. γ̂(k) is the sample autocovariance at lag k. The auto-

correlation function and its corresponding sample equivalent are denoted by ρ(k) and ρ̂(k). The

spectral density of X at a frequency λ is defined by f(λ) := 1
2π

∑∞
k=−∞ e−ikλγ(λ). The integer

m∗ = [(N − 1)/2], where [·] is the integer part, is the number of available frequencies for the ob-

served series x. L1(·) and L2(·) indicate slowly varying functions at infinity and zero, respectively,

that is L1(ax)/L1(x) → 1 and L2(ax−1)/L2(x−1) → 1 as x → ∞. The symbols “ d=” and “ d→”

indicate the equality and convergence in distribution, respectively.

We are now ready to introduce the two following definitions of long-range dependence.

Definition 1.1.1 (LRD in the Time Domain). X exhibits long-range dependence if there exist a

real number α ∈ (0, 1) and a function L1 slowly varying at infinity such that

lim
k→∞

γ(k)
k−αL1(k)

= 1 (1.2)

Definition 1.1.2 (LRD in the Spectral Domain). X exhibits long-range dependence if there exist
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a real number β ∈ (0, 1) and a function L2 slowly varying at zero such that

lim
λ→0

f(λ)
| λ |−β L2(| λ |)

= 1 (1.3)

Note that Equation (1.3) is also valid the case of short-range, in which case β = 0, while this is

not true for Equation (1.2).

The two definitions are not equivalent in general, however, they are under the conditions of the

following Theorem (Taqqu, 2003; Bingham et al., 1987, Theorems 1.7.2 and 4.10.1).

Theorem 1.1.1 (Abelian-Tauberian Theorem for LRD). If there exists a value 0 < a < ∞ such

that γ(k) is monotone for all k > a, then Definition 1.1.1 and Definition 1.1.2 are equivalent with

α = 1− β and

L2(x) =
1
2π

Γ(α+ 1) sin
π(1− α)

2
L1(1/x) (1.4)

The value H = 2 − 2α is known as Hurst parameter and is taken as a measure of long-range

dependence. The closer H is to 1, the stronger the dependence is. The case H = 1/2 corresponds

to short-range dependence, while for 0 < H < 1/2, X is said invertible, or negative dependent, or

antipersistent

Long-range dependence can be generated by both physical and probabilistic models. The fol-

lowing sections will illustrated some examples taken from different fields.
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1.2 Probabilistic Models of Long-Range Dependence

1.2.1 Self-Similar Processes

Self-similar processes were introduced by Kolmogorov (1941), but were popularized among statisti-

cians mainly thanks to the works of Benoit Mandelbrot and his co-authors (Mandelbrot and Ness,

1968; Mandelbrot and Wallis, 1968, 1969a,b,c).

The idea of self-similarity is that the process exhibits a similar probabilistic structure indepen-

dently of the “resolution” at which one looks at it. They are important in probability because of

their connection to limit theorems.

The exposition of this section will follow loosely Samorodnitsky and Taqqu (1994) and Taqqu

(2003).

Throughout this section, Z = {Z(t), t ∈ R} indicates a finite variance continuous time process.

Definition 1.2.1 (Stationary Process). If, for any choice of {t1, t2, · · · , tk} ∈ Rk, k ∈ N, and any

constant c ∈ R, the distribution of the vector (Z(t1 + c), Z(t2 + c), · · · , Z(tk + c))′ does not depend

on c, the process Z is said to be stationary.

Definition 1.2.2 (Self Similar Process). A continuous time process Z is said to be self-similar

with self-similarity parameter H (H-ss) if, for any rescaling constant c > 0, the finite-dimensional

distributions of the process {c−HZ(ct), t ∈ R} are the same as those of Z.

The definition states that a change in the time scale is equivalent to a change in the state space

scale. Self-similar processes are also known as self affine processes, a term coined by Mandelbrot.

The limiting behavior of a self-similar process Z varies according to the values of the self
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similarity parameter H (Vervaat, 1987; Beran, 1994). The equality

Z(t) d= tHZ(1)

implies that, for t that diverges to infinity,

1. if H < 0, then Z(t) d→ 0

2. if H = 0, then Z(t) d= Z(1)

3. if H > 0 and Z(t) 6= 0, then |Z(t)| d→∞.

And, for t that converges to zero,

1. if H < 0 and Z(t) 6= 0, then |Z(t)| d→∞

2. if H = 0, then Z(t) d= Z(1)

3. if H > 0, then Z(t) d→ 0

If one ignores the trivial case of Z(1) ≡ 0, the above properties imply that a self-similar process

can be stationary only for H = 0.

There are, nevertheless, two important relations between self-similar and stationary processes.

The first establishes a one-to-one correspondence between the class of stationary processes and the

class of self-similar processes.

Theorem 1.2.1. If Z is H-ss, then

Y (t) = e−tHZ(et), −∞ < t <∞
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is stationary. Conversely, if Y is stationary, then

Z(t) = tHY (ln t), 0 < t <∞

is H-ss.

For a proof, see Samorodnitsky and Taqqu (1994), p. 313.

The second, due to Lamperti (1962), is a central limit-type theorem which establishes a relation

between self-similar processes and normalized partial sums of stationary processes.

Theorem 1.2.2. (i) Suppose that {U(t)}t≥0 is a discrete or continuous time process continuous

in probability, and such that

U(ξt) + g(ξ)
f(ξ)

d→ Z(t), as ξ →∞ (1.5)

with 0 < f(ξ) → ∞ as ξ → ∞. Then there exists H > 0, w(ξ) such that w(ξ) → w, w ∈ R,

as ξ →∞, and a slowly varying function at infinity L for which

f(ξ) = ξHL(ξ) (1.6)

g(ξ) = w(ξ)ξHL(ξ) (1.7)

and the process {Z(t)− w}t≥0 is H-ss

(ii) Conversely, every process Z such that {Z(t) − w}t≥0 is an H-ss process, with H > 0 and

w ∈ R, admits the representation (1.5).

If one takes ξ = n, w = 0, U(0) = 0 and U(nt) =
∑[nt]

k=1Xk, t > 0, for some stationary sequence

{Xk, k ∈ N}, Theorem 1.2.2 says that every limit of normalized partial sums of a stationary series
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is a self-similar process, and viceversa. In other words, self-similar processes play an analogous

role for stationary processes that stable distributions play for distributions. If the Xk are Gaussian

with long-range dependence, then the limit is fractional Brownian motion (see Definition 1.2.4).

For the purpose of modeling data that looks stationary, one only needs to model processes with

stationary increments.

Definition 1.2.3 (Stationary Increment Process). Z has stationary increments if, for all c ∈ R

and fixed t ∈ R, the distribution of

Z(t+ c)− Z(t) (1.8)

does not depend on t. The process Z is H-sssi if it is self-similar with stationary increments. For

integer j, the first difference process Xj = ∆Z(j) := Z(j)− Z(j − 1) is a stationary time series.

Example 1.2.1 (Brownian Motion). A Brownian motion {W (t), t ∈ R} is a Gaussian process

with mean 0 and autocovariance function γ(t1, t2) = min(|t1|, |t2|). It is H-sssi with H = 1
2

because, for c > 0, −∞ < t1, t2 < ∞, EW{(ct1)W (ct2)} = min(ct1, ct2) = cmin(t1, t2) =

E{[c
1
2W (t1)][c

1
2W (t2)]}

Proposition 1.2.3. An H-sssi process Z, with EZ2(1) = σ2, has the following properties:

1. Z(0) = 0 a.s.

2. If H 6= 1, EZ(t) = 0 for all t ∈ R.

3. Z(t) d= Z(−t).

4. E[Z2(t)] = |t|2Hσ2.
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5. The autocovariance function is

γ(s, t) = EZ(s)Z(t)

=
σ2

2
{
|t|2H − |t− s|2H + |s|2H

}
(1.9)

and it is non-negative definite.

6. H ≤ 1.

7. If H = 1, Z(t) = tZ(1) a.s. for all t.

For a proof, see Taqqu (2003), p.8.

The distribution of a Gaussian process is entirely determined by the structure of the first two

moments. Since, for a H-sssi process, these are defined in 2 and 5, there is exactly one Gaussian

H-sssi process, up to a constant.

Definition 1.2.4 (Fractional Brownian Motion). A Gaussian H-sssi process, 0 < H ≤ 1 is called

fractional Brownian motion (FBM) and is denoted by {BH(t), t ∈ R}. It is called standard

fractional Brownian motion if σ2 ≡ 1.

FBM admits several different representations. We refer the reader to Embrechts and Maejima

(2002) and Samorodnitsky and Taqqu (1994) for more details.

We now shift our attention to the increments of H-sssi processes, with 0 < H < 1.

Proposition 1.2.4. Let {Zt, t ∈ R} be an H-sssi process. The increment process {Xj} = {Z(j)−

Z(j − 1)}, j ∈ Z has the following properties:

1. Xj is stationary

2. EXj = 0 for all j ∈ Z.

13



3. The variance is

E[Z(j)− Z(j − 1)]2 = σ2 (1.10)

4. The autocovariance function is

γ(k) =
σ2

2
[(k + 1)2H − 2k2H + (k − 1)2H ] (1.11)

=
σ2

2
∆2|k|2H k ∈ N

and γ(k) = γ(−k) for k ∈ Z−.

where ∆ is the difference operator.

Increments of H-sssi processes are interesting because, for certain values of H, they form a

class of stationary processes with long memory. In fact, it follows from (1.10) and (1.11) that the

autocorrelation function of Xj is

ρ(k) =
1
2
[(k + 1)2H − 2k2H + (k − 1)2H ] (1.12)

One can find the asymptotic behavior of ρ(k) through a Taylor expansion. It can be shown (Beran,

1994) that, for 0 < H < 1 and H 6= 1/2,

ρ(k) ∼ H(2H − 1)k2H−2 as k →∞ (1.13)

Hence, the autocorrelation function decays asymptotically as a power law. For 1/2 < H < 1 its

sum diverges, and, therefore, Xj has long-range dependence. For 0 < H < 1/2,
∑∞

k=−∞ |ρ(k)| <∞

and, in particular,
∑∞

k=−∞ ρ(k) = 0 due to the telescoping nature of ρ(k). This latter case happens
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rarely in practice, although it may be generated by overdifferencing a series. For H = 1/2, the

autocorrelation function is trivially zero, for k 6= 0, and there is no dependence. That is, for

example, the case of the increments of Brownian motion.

The Gaussian case, as usual, deserves a name by itself.

Definition 1.2.5 (Fractional Gaussian Noise). The first difference process of a fractional Brownian

Motion is named fractional Gaussian Noise (FGN).

The dependence characteristics of the first difference of a H-sssi process translate, as expected,

into the frequency domain.

Theorem 1.2.5. The spectral density of the first difference of an H-sssi is given by

f(λ) = 2cf (1− cosλ)
∞∑

l=−∞
|2πl + λ|−2H−1 (1.14)

with cf = σ2

2π sin(πH)Γ(2H + 1).

It can be shown (Beran, 1994), by a Taylor expansion, that

f(λ) ∼ cf |λ|1−2H +O(|λ|min(3−2H,2)) as λ→ 0 (1.15)

1.2.2 FARIMA and FEXP Processes

Fractional Gaussian noise is an idealized model whose covariance structure depends uniquely on the

parameter H which determines both the long- and short-range dependence features. When dealing

with real data, it is often necessary to allow for greater flexibility to capture the dependence
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structure adequately. One possibility is to assume a spectral density of the form

f(λ) =| 1− eiλ |−(2H−1) f∗(λ) (1.16)

where f∗ is usually a smooth bounded function on [−π, π], nonvanishing at zero which captures

the short-range dependence structure. For λ → 0, f(λ) ∼ |λ|−(2H−1), hence the model (1.16) has

long memory.

One such type of processes is the well known class of FARIMA models, which stands for frac-

tional autoregressive integrated moving averages. FARIMA models were introduced by Adenstat

(1974) and studied by Granger (1980b) and Hosking (1981).

FARIMA models are like ARIMA models of Box and Jenkins (1971), but the differencing

parameter d can take any real value.

Definition 1.2.6 (FARIMA model). Let B be the lag operator, and εt a stationary sequence of

iid innovations with mean zero and variance σ2. For integers p and q, assume that the polynomials

φ(x) = 1 +
∑p

j=1 φjx
j and ψ(B) = 1 +

∑q
j=1 ψjx

j admit distinct roots outside the unit circle. The

process X is a FARIMA(p, d, q) if

φ(B)(1−B)dXt = ψ(B)εt d ∈ R+ (1.17)

where

(1−B)d :=
∞∑

k=0

(
d

k

)
(−1)kBk (1.18)

and (
d

k

)
:=

Γ(d+ 1)
Γ(k + 1)Γ(d− k + 1)

(1.19)
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It can be shown (Brockwell and Davis, 1991, p. 525, Theorem 13.2.2) that the spectral density

of a stationary FARIMA(p, d, q) process follows Equation (1.16), with H = d+ 1/2 and

f∗(λ) =
σ2

2π
| ψ(e−iλ) |2

| φ(e−iλ) |2
(1.20)

which is the spectral density of an ARMA(p, q) model.

Another class of models for which Equation (1.16) holds is the FEXP (Fractionally integrated

Exponential) class, which generalizes the so-called Bloomfield exponential class of models (Bloom-

field, 1973) and was studied by Janacek (1987) and Beran (1993).

Definition 1.2.7 (FEXP model). A FEXP process X is characterized by a spectral density (1.16),

with

f∗(λ) = exp


p−1∑
j=0

θjfj(λ)

 (1.21)

where f0 ≡ 0 and f1, f2, . . . , fq−1 are smooth functions in [−π, π] such that fj(λ) = fj(−λ) and,

for any n, the n × (p − 1) matrix Ω with column vectors [fj(2π/N), fj(2π2/N), . . . , fj(2πn/N)]′

(j = 1, 2, . . . , p− 1) is nonsingular.

In particular, for

fj =
cos(jλ)√

π
j = 0, 1, . . . , p− 1

we have

f(λ) =| 1− eiλ |−(2H−1) exp


p−1∑
j=0

θj
cos(jλ)√

π

 (1.22)

We will indicate by FEXP(p) a process that has spectral density (1.22). The coefficients θj are

known as cepstrum coefficients in the time series literature.
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1.3 Empirical Findings of Long-Range Dependence

1.3.1 Uniformity Trials

Fairfield Smith (1938) was among the first to give a detailed account of evidence of long-range

dependence. He analyzed the results from uniformity trials, that are experiments commonly con-

ducted in agronomy to determine the optimal plot size that provides, roughly speaking, the best

information at the minimum cost. An experimental area was planted uniformly with wheat, in

38 rows, 6 inches apart. Four rows at each side were disregarded to avoid border effects. The

remaining area was sectioned in 1080 elementary plots of 1
2 square foot and the yield of each one

recorded. Adjacent elementary plots were then combined in non-overlapping rectangular plots of

size k, for k varying from 1 to 120. For each fixed k, the average yield and its sample variance V (k)

over all rectangles of size k were computed. For long-range dependent series, the variance of the

sample mean is of order k2H−2, for large k (see also Section 1.4.1). Smith found that V (k) follows,

approximately, the following relation:

log V (k) = a+ b log(k) (1.23)

with b around −0.749. This implies that the variance converges to zero at a much slower rate that

if the observations were independent.

Fairfield Smith found similar results in all the uniformity trial data that he analyzed.

Whittle (1956, 1962) proposed an explanation to the phenomenon observed by Smith using

stochastic partial differential equations. He considered a process Yν with ν = (x, t) = (x1, . . . , xm, t),

m ≥ 1, where t is a time index, and x is a position index. In the case of uniformity trials, Yν may

represent soil fertility, and m = 3. He considered two opposite effects: on one side a uniformizing
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effect due to diffusion of salts in the soils, on the other side, a random disturbance due to weather,

artificial fertilization and other effects. He assumed that, when the two effects are in equilibrium,

the process follows the stochastic partial differential equation

∂Yν

∂t
+ αYν =

1
2
∇2Yν + εν (1.24)

where

∇2 =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
m

and εν is a random field.

Under suitable condition on the random component εν , Whittle showed that if the spatial

covariance of the process that is solution to the above stochastic partial differential equation depends

only on the Euclidean distance between two points x and x′ in space, and decays asymptotically

like dE(x, x′)4H−4, for some H between 1
2 and 1, then V (k) converges to zero like a constant times

k2H−2. If the trials were independent, one would expect V (k) to decrease like k−1 instead.

1.3.2 The Hurst Effect

The first attempt to measure long-range dependence that lead to a specific estimator is due to the

hydrologist Hurst (1951) in his studies of the level of the river Nile. Let Xt be the flux of a reservoir

at time t, and YT =
∑T

t=1Xt be the cumulative influx up to time T . The ideal capacity of the

reservoir between time t and t+ k can be shown to be equal to the adjusted range

R(t, k) = max
0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
− min

0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
(1.25)
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Let

S(t, k) =

√√√√k−1

t+k∑
i=t+1

(Xi − X̄t,k)2 (1.26)

be the sample standard deviation of the flux between time t and k, where X̄t,k = k−1
∑t+k

i=t+1Xi is

its sample mean.

The standardized ratio

Q(t, k) =
R(t, k)
S(t, k)

(1.27)

is known as rescaled adjusted range or R/S-statistic.

For the River Nile data, Hurst observed that, for large k,

logE[R/S] ≈ a+H log k (1.28)

with H > 1
2 . This is in contrast to what is expected from a short-memory processes, for which the

R/S ratio, for large k, should be approximately equivalent to k
1
2 . This empirical finding is known

as Hurst effect, and the parameter H is known as Hurst parameter.

1.3.3 Critical Phenomena

Cassandro and Jona-Lasinio (1978) describe how long-range dependence arises in physics in the

contest of critical phenomena. Suppose a thermodynamics system can be described by a random

field on a finite d-dimensional lattice Λ ∈ Zd. For instance, let Si be the spin at the position i ∈ Λ

of a ferromagnetic substance. The quantity MΛ(S) =
∑

i∈Λ Si is called total magnetization. The

properties of the system are studied considering the limit as Λ → Zd. In particular, one seeks a
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normalizing value σ(Λ) such that the ratio

M?
Λ(S) =

MΛ(S)− E[MΛ(S)]
σ(Λ)

(1.29)

converges to a nondegenerate random variable.

Under normal conditions, the spins Si are weakly dependent and

σ(Λ) ≈ c|Λ|
1
2

where |Λ| is the number of elements in Λ and c > 0.

There are however critical temperatures at which the spins show long-range correlation, for

example in the case of spontaneous magnetization of a ferromagnetic substance, or the transition

from liquid form to gaseous form of a gas. In such cases,

σ(Λ) ≈ c|Λ|α

for some 1
2 < α < 1.

1.3.4 Aggregated Series

Suppose the series St aggregates individual time series X(j)
t (j = 1, 2, 3, . . .), where each X(j)

t follows

an AR(1) process defined by

X
(j)
t = αjX

(j)
t−1 + ε

(j)
t j = 1, 2, 3, . . . (1.30)
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with −1 < αj < 1, and ε
(j)
t ’s serially independent random variables with zero mean and variance

σ2
j .

Suppose, furthermore, that the parameters αj and σ2
j are randomly drawn from populations

with distributions Fα and Fσ and means α and σε, respectively.

Then the spectral density of the partial sum

S
(N)
t =

N∑
j=1

X
(j)
t (1.31)

for large N , is approximately equal to

f (N)(λ) =
N∑

j=1

fj(λ)

=
N∑

j=1

σ2
j

2π
1

|1− αje−iλ|2

≈ N

2π
σ2

ε

∫
1

|1− ue−iλ|2
dFα(u) (1.32)

where fj is the spectral density of {X(j)
t }.

Granger (1980a) showed that if Fα is a beta distribution with suitable parameters, then f (N)(λ)

has a singularity at 0, and thus {S(N)
t } approximates a series with long memory.

1.4 Detection and Estimation of Long-Range Dependence

This section presents an overview of different methods for detecting and measuring long-range

dependence. Following Definitions 1.1.1 and 1.1.2, the methods are classified according to the

domain of application. Usually, time domains methods are based on the sample autocorrelation

function or second moments of moving sample averages over sub-blocks of observations, while
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spectral-domain methods are based on the periodogram. A separate section is devoted to the

Wavelet estimator, which does not fall in either of above two categories, although it can be thought

of as a different form of spectral decomposition.

An account of the recent developments in estimation theory can be found in Giraitis and Robin-

son (2003), Moulines and Soulier (2003) and Abry et al. (2003). A comparison of several of these

estimators is found in Taqqu et al. (1997), Taqqu and Teverovsky (1998) and Bardet et al. (2003).

An excellent description of several estimation methods, which includes examples and Splus code,

is available from Murad Taqqu’s web page at http://math.bu.edu/people/murad/methods.

1.4.1 Time-Domain Methods

Several methods of detection of long-range dependence in the time domain rely on graphical pro-

cedures. Most of them, while providing an estimate for H, do not offer an easy way to compute

confidence intervals, making the interpretation of the estimates difficult. Hence, they should be

regarded only as useful exploratory tools. Nevertheless, they are widely used for estimation as well,

partly due to the fact that they appeared first, and thus are well known, and partly because they

are easy to implement.

Sample ACF and PACF

One obvious way to detect long-range dependence is to plot the sample autocorrelation ρ̂(k) of the

series. If the series has long-range dependence, according to Definition 1.1.1, ρ̂(k) will decay slowly

like a power function, proportional to k2H−2.

Under the null hypothesis of zero correlation, and mild regularity conditions (see, e.g., Brockwell

and Davis, 1991),
√
nρ̂(k) are asymptotically standard normal iid random variables. It is common

to plots the approximate 95% confidence interval lines corresponding to ±2/
√
n and check for
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departures from the null hypothesis, together with a slow power-like decay. Such behavior is often

difficult to detect from the plots only. The definition implies a slow asymptotic decay, but nothing

about the absolute value of the ACF. It is indeed possible that the sample ACF of a LRD series

will lie within the ±2/
√
n bands for the entire observed range (see Beran, 1994, pp. 89–90). In

addition, correlations at high lags cannot be estimated reliably.

A more suitable visual display is plotting log |ρ̂(k)| vs log k. If the decay is hyperbolic, the

points will be scattered around a line with slope equal to 2H − 2. Fitting a linear regression will

also offer a rough estimate of H.

Analogous comments also apply to the partial autocorrelation function, which decays at a rate

of k−H−1/2.

The R/S approach

The R/S approach is historically the first and still the best known of methods for measuring long-

range dependence. It is discussed in detail in Mandelbrot and Wallis (1969b) and Mandelbrot

(1975).

Based on Hurst’s empirical findings, one heuristic approach to estimate H is as follows:

1. Divide the series into K block of size N/K

2. Compute the R/S statistics Q(ti, k), as defined in Equation (1.27), with starting values

ti = iN/K + 1 for all possible k such that ti + k < N

3. Plot its logarithm against the logarithm of k. This is sometimes called the pox plot for the

R/S statistics.

4. The estimated slope from the regression will be then the estimate of H.
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The theoretical foundations of this method rests on the following theorem of Mandelbrot (1975).

Theorem 1.4.1. Let Xt be such that X2
t is ergodic and t−H

∑t
s=1Xs converges weakly to a frac-

tional Brownian motion as t tends to infinity. Then, as k →∞,

k−HR(t, k)
S(t, k)

d→ ξ

where ξ is a nondegenerate random variable.

The R/S method has several limitations. First it is not clear what cut-off value k to use in the

regression for the asymptotic result to apply, nor can R/S be computed for large values of k. Second,

the distribution of R/S is neither normal nor symmetric and its values are correlated at different

time points t, which raises questions about the use of linear regression. Lastly, Bhattacharya et al.

(1983) have shown that the methodology is not robust with respect to slight non-stationarity. In

other words, it is possible to construct a short-memory process with slowly decaying trend for which

the R/S method produces an estimate of H greater than 1
2 .

Lo (1991) provided a test for the null hypothesis of absence of long-range dependence based on

the asymptotic distribution of a modified version of the R/S statistic. He considered R as above,

but suggested using the entire length of the series N , and instead of the standard deviation S, a

weighted sum of the autocovariances, namely,

Sq(N) =

√√√√S2(1, N) + 2
q∑

j=1

wj(q)γ̂(j) (1.33)

where

wj(q) := 1− j

q + 1
, q < N

25



are weights chosen so that Sq is the sample autocovariance of an aggregated or averaged time series.

If the series has no long-range dependence, Lo showed that, given the right choice of q, the

distribution of the statistic

Vq(N) := N−1/2R(1, N)/Sq(N) (1.34)

is asymptotic to

W1 := max
0≤t≤1

W0(t)− min
0≤t≤1

W0(t) (1.35)

where W0 is the standard Brownian bridge.

This fact allows to compute the 95% confidence interval for W1

P (W1 ∈ [.809, 1.862]) = 0.95

which can be used to set up a test for the null hypothesis of absence of long-range dependence.

Lo’s result is asymptotic for N, q(N) → ∞. For finite N , q(N) influences both the power

and the size of the test, and it’s not clear what the right choice is. Additionally, it indicates only

whether there is long-range dependence or not, it does not provide an estimate for H.

The Aggregated Variance and Absolute Moment Methods

A LRD stationary time series of length N with finite variance is characterized by the variance

of the sample mean being of order N2H−2 (Beran, 1994). This suggests the following method of

estimation.

1. For an integer m between 2 and N/2, divide the series in blocks of length m and compute
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the sample average over each kth block.

X̄
(m)
k :=

1
m

km∑
t=(k−1)m+1

Xt, k = 1, 2, . . . , [N/m] , (1.36)

2. For each m, compute the sample variance of X̄(m)
k

s2m :=
1

([N/m]− 1)

[N/m]∑
k=1

(X̄(m)
k − X̄)2

3. Plot log s2m against logm.

For sufficiently large values of m, the points should be scattered around a straight line with

slope 2H − 2. In the case of short-range dependence (H = .5,) the slope is equal to −1. It is often

convenient to draw such a line as reference, however, small departures from short-range dependence

are not easy to detect visually.

The estimate of H is found fitting a least square line to the points of the plot. In practice,

neither the left nor the right end points should be used in the estimation. On the left end, the low

number of observations in each block introduces bias due to short-range effects. On the right end,

the low value of [N/m] makes the estimate of s2m unstable. The two thresholds that restricts the

estimation range are left to the discretion of the researcher.

One disadvantage of the Aggregated Variance (AV) method is that it does not provide an

explicit estimation of the variance of the estimator. Another disadvantage is that is has been found

not to be very robust to departures from standard Gaussian assumptions (Taqqu and Teverovsky,

1998).

A generalization of the AV method is the Absolute Moments (AM) method.
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Consider the series of the averages defined in (1.36), and compute its nth absolute moment

AM (m)
n =

1
[N/m]

[N/m]∑
k=1

∣∣∣X̄(m)
k − X̄

∣∣∣n (1.37)

AM
(m)
n is asymptotically proportional to mn(H−1). To find an estimate for H, compute AM (m)

n

for different values of m, and plot it in a log-log plot against m. The point should be scattered

along a line with slope n(H − 1).

For n = 2 the AM method reduces to the AV method.

A further generalization of the case m = 1 was introduced by Higuchi (1988), who suggested

to use a sliding window to compute the averages, instead of non-overlapping blocks, thus providing

better accuracy for shorter time series, at the cost of being more computationally intensive than

the AV or AM methods. He considered the functional

L(m) =
N − 1
m3

m∑
i=1

[
N − 1
n

]−1 (N−i)/m∑
k=1

∣∣∣∣∣∣
i+km∑

j=i+(k−1)m+1

Xj

∣∣∣∣∣∣ (1.38)

and showed that the expected value of L(m) is asymptotic to CmH−2, for a constant C.

Gaussian Maximum Likelihood

Let X be causal and invertible, or, in other terms, let X admit the representations

Xt =
∞∑

s=1

φsXt−s + εt (1.39)

and

Xt =
∞∑

s=0

ψsεt−s (1.40)
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with innovations εt uncorrelated with mean 0 and variance σ2
ε .

Suppose that the autocovariance and spectral density of X can written in parametric form as

γ(k; θ0) and f(λ; θ0), where θ0′ = [θ0
1, θ

0
2, . . . , θ

0
M ]′ ∈ RM is a vector of parameters. θ1 typically

represents a scale parameter which can be σ2 in (1.11), or, more generally, the variance of the

innovation in (1.40). Often it is only a nuisance parameter that varies freely from the other

parameters, and, therefore can be eliminated from the estimation and written as a function of the

other parameters. θ2 = H is the usual Hurst parameter which measures long-range dependence,

and (θ3, . . . , θM ) is a set of parameters of the model that typically describe the short-range behavior

of X. For example, it can be the MA and AR polynomials in a FARIMA model.

An interesting fact (see Brockwell and Davis, 1991, p. 168, Corollary 5.1.1) is that the best

one-step linear predictor of X is

X̂t =
∞∑

s=1

φsXt−s (1.41)

and the mean squared prediction error corresponding to X̂t is given by Kolmogorov’s Formula

MSPE = σ2
ε = 2π exp

{
1
2π

∫ π

−π
log f(λ; θ)dλ

}
(1.42)

In particular, if f(λ; θ) = θ1f
∗(λ; η), with θ′ = [θ1 η′]′, then we have the following standard

representation: ∫ π

−π
log f(λ; θ)dλ = 2π log θ1 (1.43)

Let ΣN (θ) be the variance-covariance matrix of x, and | ΣN (θ) | its determinant. If X is

Gaussian, the MLE is found maximizing the log-likelihood, given by

LN (x; θ) = −N
2

log 2π − 1
2

log | ΣN (θ) | −1
2
x′ΣN (θ)−1x (1.44)
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The strong consistency of the Gaussian MLE is covered under the proof of Hannan (1973) for

the short-range dependence case. In fact, Hannan’s basic assumptions are that the series is ergodic

and linear in innovations that are martingale differences with existing second moment. Hannan’s

proof of asymptotic normality, instead, does not extend to the LRD case, since it assumes the

square integrability of the spectral density.

Dahlhaus (1989) extended the Central Limit Theorem of Hannan to the case of LRD, and

proved that

√
N(θ̂ − θ0) d→ N

(
0,
[

1
4π

∫ π

−π

{
∂

∂θ
log f(λ; θ)

}{
∂

∂θ
log f(λ; θ)

}′
dλ

]−1
)

(1.45)

Note that the rate of convergence
√
N is the same as for the short memory case. Dahlhaus

showed also that the MLE is still asymptotically efficient in the case of a LRD Gaussian series, in

the sense that it reaches the Cramer-Rao lower bound.

1.4.2 Frequency-Domain Methods

Frequency domain estimators of H are based on Definition 1.1.2 of long-range dependence.

These methods rely on the periodogram of X, which is defined by

I(λ) =
1

2πN

∣∣∣∣∣
N∑

t=1

Xte
iλt

∣∣∣∣∣
2

(1.46)

Usually, it is evaluated at the Fourier frequencies λk,N = 2πk
N , 0 ≤ k ≤ m∗.

Let λk be a generic frequency in [−π, π], not necessarily a Fourier frequency. For linear short-

range dependence processes, it is a well known fact (see, e.g., Brockwell and Davis, 1991, Proposition

10.3.1 and Proposition 10.3.2) that the periodogram has the following properties:

30



1. The periodogram is an asymptotically unbiased estimator of the spectral density, i.e.:

E(I(λk)) −→ f(λk) (1.47)

as N →∞, uniformly on [−π, π].

2. Under suitable conditions, the periodogram ordinates are asymptotically uncorrelated.

3. For any given finite s-tuple of distinct frequencies λk1 , λk2 , . . . , λks , such that λkj
→ λj , as

kj →∞, the periodogram ordinates I(λk1), I(λk2), . . . , I(λks) are asymptotically independent

exponential random variables with means

f(λ1), f(λ2), . . . , f(λs).

In general, these properties do not hold anymore for stationary LRD series (Hurvich and Beltrao,

1993).

For stationary invertible fractional processes satisfying (1.16) and some conditions on the cu-

mulants of εt in the MA representation (1.40), Yajima (1989) showed that property 3 still holds if

λj ± λj′ 6= 2πl, for l ∈ Z.

It has to be noted that this result is true only for a finite number of frequencies converging to

distinct limits away from zero, while in the SRD case the limit may be the same, and, in particular,

zero, as long as the sequences are distinct. Most frequency-domain estimators of LRD are instead

functions of the periodogram at an increasing number of Fourier frequencies in a neighborhood of

the origin, for which this result does not apply.

We restrict, therefore, our attention to the periodogram of fractional linear processes satisfying

(1.16) and computed at Fourier frequencies λk,N = 2πk
N tending to zero. Let I∗(λ) = I(λ)

f(λ) be the

rescaled periodogram. It can be shown (Hurvich and Beltrao, 1993) that, for processes satisfying
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(1.16),

lim
N→∞

| E(I∗(λk,N )− 1) |6= 0

and

lim
N→∞

| Cov(I∗(λk,N ), I∗(λl,N )) |6= 0

However, under appropriate conditions (see Robinson, 1995a), there exists a sequence r(f ; k)

with limk→∞ r(f ; k) = 0, such that, for any N ,

| E(I∗(λk,N )− 1) |≤ r(f ; k) (1.48)

for 1 ≤ k ≤ m∗. In other words, the bias is small for frequencies away from zero.

Similarly, there exists a sequence r(f ; k, l), with
∑

1≤k<l≤m∗ r(f ; k, l) = O(logr(n)), for some

r > 0, such that

| Cov(I∗(λk,N ), I∗(λl,N )) |≤ r(f ; k, l) (1.49)

for 1 ≤ k ≤ m∗.

Recently, Lahiri (2003) provided necessary and sufficient conditions for the asymptotic indepen-

dence of the periodogram ordinates under both short- and long-range dependence. He showed that

I(λj,N ) and I(λk,N ) are asymptotically independent if λj,N and λk,N are “sufficiently asymptotically

distant”, even if both converge to zero, that is

| N(λj,N − λk,N ) |→ ∞ as N →∞ (1.50)

The necessity of this condition depends on the taper function used and on the value of H.

Finally, Deo (1997) showed that for any given integer s, and a s-uple of distinct Fourier fre-
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quencies λk1,N , λk2,N , . . . , λks,N ,

(I∗(λk1,N ), I∗(λk2,N ), . . . , I∗(λks,N )) d→ (1.51)

(
(Z2

1 + Z2
2 )/2, (Z2

3 + Z2
4 )/2, . . . , (Z2

2s−1 + Z2
2s)/2

)
(1.52)

where Z = (Z1, . . . , Z2s)′ is a vector that has multivariate normal distribution with non-diagonal

covariance matrix. See Deo (1997, Corollary 3) for the expression of such a matrix.

The Whittle Approximate MLE

The MLE method discussed in section 1.4.1 seems to solve the problem of likelihood estimation for

H. Nevertheless, it poses some practical issues. First, the dimension of the ΣN (θ) is N ×N . The

inversion can take a great amount of resources if the series is long. Second, ΣN (θ) can be nearly

singular for high values of H, due to the slowly decaying correlations. Furthermore, if X has mean

different from zero, xi is usually replaced by the centered value (xi − x̄). For long-memory series,

the rate of convergence of x̄ is N2−2H , which can be lower than the rate
√
N of the convergence

for ĤMLE . This fact may impair the efficiency of the estimates of H. Indeed, empirical studies

(Cheung and Diebold, 1994) suggest that the approximation (1.60) which depends only on the

periodogram at the Fourier frequencies 1, . . . ,m∗ and, therefore, is not affected by x̄, may perform

better than other forms presented here.

For these reasons, equation (1.44) is often replaced by other target functions that imply the

same first order distribution for the estimators, but have computational advantages. The idea arose

first in the context of short-range dependence with the work of Whittle (1953).
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To approximate equation (1.44), first note that, under regularity conditions,

lim
N→∞

1
N

log | Σ(θ) |→ 1
2π

∫ π

−π
log f(λ; θ)dλ (1.53)

Therefore, log | Σ(θ) | can be replaced by

N

2π

∫ π

−π
log f(λ; θ)dλ (1.54)

MA Approximation

Consider the representation (1.40) of X, and write θ =
(

σ2
ε

2π , η
′
)′

. Then Σ = Σ∗(η)/θ1 for some

matrix Σ∗. Assume f(λ; θ) = f∗(λ; η)/θ1. The standard representation (1.43) holds, so that (1.44)

can be replaced by

−1
2

log θ1 −
1

2NBθ1
x′Σ∗(η)−1x (1.55)

The estimate for η is found minimizing the quadratic form

x′Σ∗(η)−1x

and θ1 is estimated by (1.55) at its minimum.

AR Approximation

If, instead of the MA representation, we use the AR representation (1.39) of X, and approximate

xt by the finite truncation

xt =
t−1∑
s=1

ψ(s; θ)xt−s + ε∗t (η) t = 1, . . . , N (1.56)
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Then equation (1.55) can be replaced by

− 1
2N

log θ1 −
1

2N

N∑
t=1

ε∗t (η)
2

θ1
(1.57)

This procedure was suggested by Box and Jenkins (1971) for short-memory time series, but the

truncation (1.56) makes it less attractive for LRD series. On the other hand, Beran (1994) asserts

that the asymptotic results for this approximation hold also in the case H ≥ 1, which makes it

suitable for non-stationary series.

Whittle Approximation

A further approximation to ΣN (θ) is due to Whittle (1953), who discovered it in the context of

shot-memory series. Let A(θ) = [α(j − l)]j,l=1,...,N , and

α(j − l) = (2π)−2

∫ π

−π

1
f(λ; θ)

ei(j−l)λdλ (1.58)

A(θ) is asymptotically equivalent to the inverse of ΣN (θ) so that minimizing (1.44) is approxi-

mately equivalent to minimizing

LW (θ) =
1
2π

{∫ π

−π
log f(λ; θ)dλ+

∫ π

−π

I(λ)
f(λ; θ)

dλ

}
(1.59)

We can further approximate (1.59) by a Riemann sum at the Fourier frequencies λj = 2πj
N . The

approximate MLE can be found minimizing the following equation:

L ∗
W (θ) =

m∗∑
j=1

log f(λj ; θ) +
m∗∑
j=1

I(λj)
f(λj ; θ)

(1.60)
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where m∗ =
[

N−1
2

]
. In particular, if the standard representation (1.43) holds, (1.44) is approxi-

mately equivalent to

log θ1 +
1

Nθ1

m∗∑
j=1

I(λj)
f∗(λj ; η)

(1.61)

The approximation (1.61) was first suggested by Graf (1983) for FGN. His argument made the

simplifying assumption that

I(λ; θ) = f(λ; θ)ξj (1.62)

where ξj are independent exponential random variables. This assumption, as we have seen, is not

formally correct, as it holds only for fixed frequencies away from zero.

Asymptotic Results and Extensions

In a seminal paper, Fox and Taqqu (1986) extended the asymptotic normality of the Whittle

estimator to the LRD case. Their basic intuition was that the vanishing f∗(λ; θ)−1 in (1.59) near

λ = 0 compensate for the blowing off of I(λ), so that square integrability is not required.

Giraitis and Surgailis (1990) generalized the result of Fox and Taqqu to series that are linear

in iid innovations with finite fourth moment. Hosoya (1997) allowed for martingale differences

innovations and other more general models. Heyde and Gay (1993) consider also multivariate

models.

In the case of short-range dependence, the asymptotic normality of the Whittle estimate is

achieved under a variety of hypotheses about the series X. However, in the LRD case, the class

of limiting distributions is richer, and Gaussianity seems to be the exception rather than the rule.

Giraitis and Taqqu (1999) considered a process X = P (Y ) with spectral density θ1f(λ; η), where

Y is a Gaussian LRD process, and P (·) is a polynomial function. They showed that the Whittle
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estimate of H is consistent, but does not converge with rate
√
N , and its asymptotic distribution

may not be Gaussian.

The GPH estimators

While the Whittle estimator attains asymptotic efficiency, it requires, as any parametric procedure,

global assumptions on the spectral density, introducing model bias if the model chosen is not correct.

Short-range features have no influence at low frequencies. If the only interest is the estimation of

the long-range dependence parameter, one can disregard modeling the spectral density at high

frequencies, and base the estimation only on the lower tail of the periodogram. The estimates will

then be valid across several classes of models.

If one assumes that the spectral density, in a neighborhood of the origin, can be approximated

by

fc,H(λ) := cλ1−2H (1.63)

By talking logarithm, one obtains the following relation

log I(λj) = log c+ (1− 2H) log λj + uj (1.64)

A natural estimator of H can be obtained using least squares on the regression model (1.64)

restricted to m frequencies in the lower tail of the periodogram, with m(N) → ∞ and m/N → 0

as N →∞.

This approach was first suggested by Geweke and Porter-Hudak (1983) (GPH), but they con-

sidered the more restrictive fractional model (1.16), essentially replacing log λj with log | 1− eiλj |.
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They argued that

m1/2(ĤGPH −H) d→ N

(
0,
π2

24

)
(1.65)

However, their proof is not formally accurate because they considered the uj asymptotically uncor-

related and homoscedastic.

Robinson (1995a) gave a formally correct proof of the above result for GaussianX, and indicated

that it holds also in the setting of GPH. Velasco (2000) extended the result to linear non-Gaussian

processes.

In the same paper, Robinson showed that the variance in (1.65) can be reduced by “pooling”

adjacent periodogram ordinates prior to logging and advocated deleting some of the smallest Fourier

frequencies. Likewise, Hurvich and Beltrao (1994); Andrews and Guggenberger (2000); Robinson

and Henry (2000) propose estimators that reduce the bias.

One issue with the GPH estimator is how to choose the number of frequencies to use in the

regression. GPH, based on empirical observations, proposed m =
√
N . Hurvich and Beltrao

(1994) proposed cross-validation, and showed that trimming to the left can adversely affect the

GPH estimator. Hurvich et al. (1998) provided a formula for the asymptotic MSE for Gaussian

series, and showed that the optimal number of frequencies mopt that minimizes the MSE is equal

to CN4/5, for some constant C that depends on the spectral density f . Smith (1989), in un

unpublished paper, achieved heuristically a similar result. Hurvich and Deo (1999) suggested a

plug-in rule for computing C and mopt that results in a consistent estimator and yields to better

results than the suggestion of GPH even in small samples.

The main advantages of the GPH estimator is that it is graphical, and it provides a closed form

expression for the estimate, and therefore it can be implemented easily. The asymptotic theory,

however, is somewhat complicated because of the nonlinearity implied by the logarithms.
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The Local Whittle Estimator

The local Whittle estimator (LWE), or Gaussian semiparametric estimator (GSE), is another local

semiparametric estimator based on the lower tail of the periodogram. It was initially suggested by

Künsch (1987) and later studied by Robinson (1995b). The idea is to combine the efficiency of the

Whittle estimator with the flexibility of the GPH procedure.

Like the GPH estimator, it assumes that the spectral density f(λ) of the process can be ap-

proximated by the function

fc,H(λ) = cλ1−2H (1.66)

for frequencies λ in a neighborhood of the origin.

The LWE of the Hurst parameter, ĤLW (m), is implicitly defined by minimizing the Whittle

contrast
m∑

j=1

{
log fc,H(λj) +

IN (λj)
fc,H(λj)

}
(1.67)

with respect to c and H, limited to a subset of m frequencies in the lower tail of the periodogram.

Robinson (1995b) showed that, if the innovations in the Wold representation (1.40) are martin-

gales with finite second moments, and under some mild regularity conditions on f in a neighborhood

of the origin, the LW estimator is consistent for H in a compact subset of (0, 1), as m diverges at

a slower rate than N .

Under slightly stronger conditions, which include finite fourth moments of the innovations, he

proved also that

√
m(ĤLW −H) → N

(
0,

1
4

)
(1.68)

Like the GPH estimator, the LWE is only
√
m consistent, and, thus, it is less efficient than the

Whittle approximate MLE when the correct model is chosen. On the other hand, since it relies
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only on local assumptions, it can be applied to a wider range of models, and it’s asymptotically

more efficient than the GPH estimator.

Again, like the GPH estimator, the LWE depends on the number of frequencies m over which

the summation is performed. It should be chosen so as to balance the trade-off between adding more

bias as m increases, due to the fact that the approximation (1.66) holds only in a neighborhood of

0, and increasing the variance as m decreases. Henry and Robinson (1996) computed heuristically

the asymptotic bias and variance for this estimator and suggested a consistent plug-in rule for

choosing the optimal bandwidth mopt that minimizes the asymptotic MSE.

The LWE has been proved to be fairly robust to deviation from standard assumptions and

seems to be one of the best performing estimators (Taqqu and Teverovsky, 1998; Bardet et al.,

2003).

The FEXP and FAR Estimators

Another estimator based on the log periodogram is the FEXP estimator, initially proposed by

Janacek (1987), and studied by Moulines and Soulier (1999) and Hurvich and Brodsky (2001).

Unlike the GPH estimator which makes only local assumptions, the FEXP estimation is a global,

or broadband, method, in that it makes assumption on the spectral density over the whole set of

Fourier frequencies. The spectral density is assumed to admit a representation on the cosine basis

in the form of an FEXP(∞) model, and is approximated by a finite truncation FEXP(p), defined

in Equation (1.22).

An ordinary least square regression is performed for the model

log I(λj) = (1− 2H) log |1− eiλj |+
p−1∑
k=0

cos(kλ)√
(π)

(1.69)
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Equation (1.69) can also be justified in term of generalized linear models (see Beran, 1993).

As for the GPH case, this method allows for a closed expression of the estimate.

Hurvich et al. (2002) considered the model (1.69) applied to a tapered and pooled version of

the periodogram, with X either Gaussian or linear. They showed that, under some regularity

conditions on f , if p diverged at a rate slower than N
log5 N

, the FEXP estimator is consistent and

asymptotically normal with convergence rate
√

N
p . The FEXP estimator can, therefore, attain a

faster convergence that the LWE, but it requires assumptions on the spectral density over the whole

spectrum.

The FAR estimator is another global semiparametric estimator. Like the FEXP estimator, it

is based on a truncated expansion of the spectral density. In this case, a FAR(p) model is used to

approximate f , with p increasing with the sample size. The estimate of H is found minimizing the

Whittle contrast, where f is replaced by the spectral density of the finite-order FAR(p) model.

Kokoszka and Bhansali (1999), using an invertible LRD process, proved the consistency and

conjectured the asymptotic normality of the FAR estimator if the coefficients of the AR polynomial

decay exponentially fast and p diverges at a rate slower than N .

1.4.3 Wavelet Method

The Wavelet estimator differs somewhat from the semiparametric methods that we have presented

so far in that it does not use directly the properties implied by either definition of long-range

dependence. It does, however, utilize, in an indirect way, properties of the spectral density.

Wavelet transforms have been used to detect features of a signal at different locations and scales.

Therefore, they are a natural tool for investigating the scaling properties that are associated with

self-similar processes, or long-range dependent processes that are asymptotically self-similar. The
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use of wavelet for analyzing LRD was first suggested by Flandrin (1989), and later developed by

Abry et al. (1998) and Veitch and Abry (1999).

Let X := {X(t) : t ∈ R} be a continuous time stationary L2 process with spectral density (1.16),

for 1
2 < H < 1. Assume that X is observed at every point in the interval [0, N ]. The coefficient, or

detail, of the discrete wavelet transform of X at scale n = 2j and location k is defined as

dX(j, k) := 2−j/2

∫
R
ψ(2−jt− k)X(t)dt (1.70)

= 2j/2

∫
R
ψ(t)X(2j [t+ k])dt

where ψ ∈ L1 ∩L2 is called the mother wavelet and is supposed to have Q vanishing moments, also

called Q zero moments, that is

∫
R
tkψ(t)dt = 0 k = 0, . . . , Q− 1 (1.71)

and ∫
R
tQψ(t)dt 6= 0 (1.72)

The value j is called octave.

The wavelet coefficients have the following properties.

1. If X is stationary, so is {dX(j, k), k ∈ N}, for any j ∈ N.

2. If X is Gaussian, so is {dX(j, k), k ∈ N, j ∈ N}.

3. If X is LRD, then the Q-moment property of ψ implies that {dX(j, k), k ∈ N} is a short-range
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dependent process for any j ∈ N. In particular, it can be shown that, for k 6= k′ and j ∈ N,

EdX(j, k)dX(j, k′) = O
(
|k − k′|2(H−Q)−2

)
(1.73)

so that the correlation of the wavelet coefficient decreases as Q increases.

It can be shown (Abry et al., 1998) that

νj := V ar[dX(j, k)] ≈ 2j(2H−1)f∗(0)Φ(1− 2H) (1.74)

where

Φ(γ) :=
∫
λ−γ |ψ̂(λ)|2dλ (1.75)

and ψ̂ is the Fourier transform of ψ.

This fact suggests to estimate H from the log-regression of vj := log2 (νj) on j, since

vj ≈ log2[f
∗(0)Φ(1− 2H)] + 2(H − 1)j (1.76)

We need then to estimate the variance of the wavelet coefficients. Let nj ≈ [N2−j ] be the

number of coefficients available at the octave j. The numbers of coefficients roughly decreases by

half as the scale doubles. Let

ν̂j,N :=
1
nj

nj∑
k=1

dX(j, k)2 (1.77)

be the sample second moment of the wavelet coefficients at octave j. Under some regularity

conditions on f∗ and ψ (Bardet et al., 2000), ν̂j,N is a consistent estimator of νj . Hence, one can

regress v̂j,N := log2(ν̂j,N ) on j1, . . . , jp, where j1 and jp are user-chosen trimming numbers such
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that j1 is the lowest octave for which the diagram is linear, and jp is the largest octave for which

vj can be estimated reliably.

Due to the decreasing number of available coefficients, as j increases, the variance of ν̂j,N is not

constant. It is, therefore, more appropriate to use weighted regression rather than ordinary least

squares. Let σ̂2
j be the estimate of the variance of ν̂j,N . Define

S0 :=
p∑

i=1

σ̂−2
ji

(1.78)

S1 :=
p∑

i=1

jiσ̂
−2
ji

(1.79)

S2 :=
p∑

i=1

j2i σ̂
−2
ji

(1.80)

Abry et al. (1995) suggested the following estimator for H:

Ĥw :=
p∑

i=1

wiν̂ji,N − 1
2

(1.81)

where

wi :=
jiS0 − S1

2σ̂2
i (S2S0 − S2

1)
(1.82)

Abry et al. (1998) improved the estimator with some modification to estimate jointly f∗(0)

and H, and to improve the finite-sample properties. A heuristical asymptotic theory is presented

in Abry et al. (2000), but it is based on the assumption that the wavelet coefficients are iid,

which is not verified in the case of LRD processes. Bardet et al. (2000) proved that the wavelet

estimator is consistent for a Gaussian process X, under some regularity conditions on f∗ and

ψ, when j1(N) diverges at a slower rate than N , and |ji(N) − j1(N)| ≤ k, i = 2, . . . , p, for

some finite k. They showed that it is asymptotically normal under the additional condition that
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limN→∞ 2−j1(N)(1+2β)N = 0, where β > 0 is a parameter that determines some regularity features

of f∗ in a non-vanishing neighborhood of the origin. They also proposed a plug-in rule for j1 that

minimizes the asymptotical MSE.

Remarks

• The asymptotic variance of Ĥw depends on H, unlike for the semiparametric estimators based

in the periodogram. This implies that confidence intervals or tests based on the asymptotic

distribution of Ĥw will be more complicated because they need some estimate of H.

• The scale 2j is chosen so that one can use the pyramidal algorithm to compute the wavelet

coefficients. In reality, the theory holds for any choice of scales that verifies the conditions

stated (see Bardet et al., 2003, for details).

• The algorithm is of order O(N), and it has a finite number of steps, unlike the local Whittle

estimator whose minimization algorithm step has unknown order.

• The estimator is invariant with respect to non-stationarity induced by polynomial trends

P (t) of order less than Q− 1, since the Q vanishing moments of ψ make so that the wavelet

coefficients of X(t) and X(t) + P (t) are equal.

• Empirical studies (Bardet et al., 2003) show that it performs well when compared to other

estimators.
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Chapter 2

Theoretical Results

In several fields where long range dependence arises the amount of data collected can be such that

it is often convenient to aggregate it in bins for analysis purposes. Equivalently, the sampling

frequency of a cumulative variable can be decided arbitrarily by the analyst. One such example

is network data for which the source is practically endless and the sampling resolution is only

limited below by the current technology of the networking monitoring systems. The UNC network

data discussed in Chapter 4 were sampled at 1ms intervals. Splus could not compute the Fourier

transform of the original data because it exhausted the memory resources. We had to resort to

memory-efficient programs written in C language to able to handle data sets of such dimension.

Failing that, the only other option would have been to aggregate the data or, equivalently, increase

the length of the sampling interval.

One question that arises immediately is whether the aggregated process has the same long-range

dependence characteristics of the underlying process.

Let Xt, t ∈ Z, be a stationary time series with long memory. Denote by Y
(k)
t the time series



derived by aggregating Xt at bins of size k:

Y
(k)
t := X(t−1)k+1 +X(t−1)k+2 + · · ·+Xtk (2.1)

=
k−1∑
j=0

BjXkt

where B is the lag operator. Denote by N the length of the observed series Xt, and assume for

simplicity that N is a multiple of k, then Nk = N
k is the length of Y (k)

t .

The original process Xt will be called the basic process.

One wants to know what is the relationship between the long-memory parameter of the basic

process Xt and that of Yt. Intuitively, one can expect long-range dependence to be invariant under

aggregation, since such transformation reduces the basic process to a process of lower frequency,

and long memory is related to the low-frequency behavior of the process only. Another reason to

expect that aggregation does not interfere with long-range dependence is the close proximity of the

class of long-memory processes and the class of self-similar processes for which the autocorrelation

function is invariant under aggregation.

A second closely related question is whether and how the estimators of long-range dependence

are affected by aggregation. Since we will be concerned only with the Geweke and Porter-Hudak

(henceforth GPH) and Local Whittle (henceforth LW) estimators, that translate to investigate

how the mean squared errors (MSE’s) and the optimal choice of the bandwidth parameter m varies

under aggregation.

Section 2.1 will present results that answer the first question, while Section 2.2 will present

results that answer the second question for the GPH and LW estimators. Section 2.3 considers the

case when the observed process is composed of a LRD process plus a white noise.
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2.1 Aggregation and Long-Range Dependent Processes

In order to understand how aggregation affects long-range dependence we must first see how the

long-memory characteristics of the aggregated process Yt defined in (2.1) relate to the long-range

dependence of the basic process Xt.

We will assume that the process Xt has a spectral density of the form

fX(λ) = cλ−2d{1 + aλb + o(λb)} λ→ 0 (2.2)

with c > 0, d ∈ [0, 0.5), b ∈ (0, 2]. Such a spectral density is a fairly general way to represent long

memory and has been assumed, for example, by Smith (1989) and Robinson (1995a).

Likewise, we will assume that the aggregated process Y (k)
t has a spectral density of the form

fk(λ) = ckλ
−2dk{1 + akλ

bk + o(λbk)} (2.3)

The problem becomes then to find the relationship between the parameters (a, b, c, d) of (2.2)

and the parameters (ak, bk, ck, dk) of (2.3).

Teles et al. (1999) considered the case when Xt is a stationary and invertible FARIMA(p, d, q)

process and proved that Yt is a FARIMA(p, d,∞) process. The proof is based on earlier results of

Wei (1990) about ARIMA processes that extend without modification to the case of fractional d.

Chambers (1998) investigated the more general case when the basic process Xt admits the Wold

representation

(1−B)(δ+d)Xt =
∞∑

h=0

ψhet−h (2.4)

where ψ0 = 1,
∑
|ψh| <∞, et is a white noise sequence with variance σ2

e , δ ∈ Z and −0.5 < d < 0.5
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is the usual long-range dependence parameter. Chambers considered two cases:

1. Y (k)
t is a stock variable, that is a variable that is observed once every k intervals, so that

Y
(k)
t = Xtk

2. Y (k)
t is a flow variable, that is Y (k)

t is the sum of the values of Xt in the previous k − 1

subperiods, as defined in Equation (2.1).

He showed that for a stock variable, the spectral density of Y (k)
t is given by

fS(λ) =
σ2

e

2π
|1− e−iλ/k|−2(δ+d)ψ(e−iλ/k)ψ(eiλ/k) − π < λ < π (2.5)

where ψ(z) =
∑∞

h=0 ψ
hzh, and satisfies

fS(λ) ∼ σ2
e

2π
ψ(1)2|λ|−2(δ+d)k2(δ+d) as λ→ 0. (2.6)

For a flow variable, the spectral density of Y (k)
t is

fF (λ) =
σ2

e

2π
|1− e−iλ|−2(δ+d)ψ(e−iλ)ψ(eiλ)|

k∑
j=0

eijλ|2 − π < λ < π (2.7)

and satisfies

fF (λ) ∼ σ2
e

2π
ψ(1)2|λ|−2(δ+d)k2+2(δ+d) as λ→ 0. (2.8)

As already seen for the FARIMA models, Chambers’s results imply that the fractional order of

the aggregated process is the same as that of the basic process.

A related result was derived by Hannig et al. (2001). They considered a stationary time series

with sample autocorrelation function ρX(l), l ∈ Z, and binning intervals of size k = 2. They showed
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that for a smooth ρX(l) such that ρX(2l − 1) + ρX(2l + 1) ≈ 2ρX(l),

ρ2(l) ≈
2ρX(l)

1 + ρX(1)
(2.9)

where ρ2 is the autocorrelation function of Y (2)
t .

Similarly, for the periodogram, they showed that

I2(λ) ≈ 2Ix

(
λ

2

)
− π < λ < π (2.10)

A similar but more general result for the spectral density has been derived by Cao in an

unpublished note (see Appendix B). He showed that for a stationary time series Xt, t ∈ Z, with

spectral density fX(λ), λ ∈ [0, 2π) and the aggregated process Y (k)
t defined in Equation (2.1), the

spectral density of Y (k)
t is given by

fk(λ) =
1
k

k−1∑
j=0

sin2 λ
2

sin2 λ+2πj
2k

fX

(
λ+ 2πj

k

)
(2.11)

Since, to our knowledge, this result has not been published, we are reporting the full proof in

Appendix B.

We can use the above result to find the relationship between the spectral density of Xt and

Y
(k)
t .

First note that if Xt is a white noise process, then

fX(λ) =
σ2

2π
, fk(λ) =

kσ2

2π
(2.12)
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Substituting in (2.11), it gives the following identity for any λ.

k2 =
k−1∑
j=0

sin2 λ
2

sin2 λ+2πj
2k

(2.13)

In a neighborhood of the origin, we have

lim
λ→0

sin2 λ
2

sin2 λ+2πj
2k

=


k2 if j = 0

0 if j > 0
(2.14)

Hence, for small λ

fk(λ) ≈ kfX

(
λ

k

)
(2.15)

which is similar to the result (2.10) that Hannig et al. (2001) developed for the periodogram.

When j = 0, a Taylor series expansion around the origin of the numerator and denominator in

the left-hand side of (2.14) gives

sin2 λ
2

sin2 λ
2k

= k2

(
1− λ2

12

)
+ o(λ2) (2.16)

while, when j > 0,

sin2 λ
2

sin2 λ+2πj
2k

=
λ2

4 sin2 πj
k

+ o(λ2) (2.17)

Combining the leading terms of Equation (2.16) and Equation (2.17) with Cao’s result (2.14), we
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have

fk(λ) =
k2

k

(
1− λ2

12

)
fX

(
λ

k

)
+

1
k

k−1∑
j=1

λ2

4 sin2 πj
k

fX

(
λ+ 2πj

k

)

= k

(
1− λ2

12

)
c

(
λ

k

)−2d
{

1 + a

(
λ

k

)b
}

+
1
k

k−1∑
j=1

λ2

4 sin2 πj
k

{
fX

(
2πj
k

)
+O(λ)

}

≈ ck1+2dλ−2d

[(
1− λ2

12

){
1 + a

(
λ

k

)b
}

+
λ2d+2

4ck2d+2

k−1∑
j=1

1
sin2 πj

k

fX

(
2πj
k

)

The errors are or order o(λ2) + o(λb) in the the first term inside the square brackets, and of order

O(λ2d+3) in the second term. It follows immediately that

ck = k1+2dc (2.18)

dk = d (2.19)

bk = b (2.20)

and

ak =


ak−b if b < 2

ak−b − 1
12 if b = 2

(2.21)

We can state the following Proposition.

Proposition 2.1.1 (Invariance of Long Memory). Let Xt, t ∈ Z, be a long-memory stationary

time series characterized by the spectral density (2.2). Let Y (k)
t be the time series defined in (2.1)
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obtained by aggregating Xt at bins of size k. Then Y
(k)
t and Xt have the same fractional order.

2.2 Aggregation and Estimators of Long-Range Dependence

To understand how aggregation affects the performance of the estimators of long-range dependence

we need to be able to compare the estimators’ mean squared error (MSE) at different aggregation

levels. As mentioned before, we will focus our attention on the GPH and on the LW estimators.

2.2.1 Aggregation and the GPH Estimator

Hurvich et al. (1998) considered a stationary Gaussian long-memory time series Xt, t ∈ Z, with

spectral density

f(λ) = |1− e−iλ|−2df∗(λ) (2.22)

where d ∈ (−0.5, 0.5) and f∗(·) is an even, positive, continuous function on [−π, π], bounded above

and bounded away from zero with first derivative at zero f∗
′
(0) = 0 and second and third derivatives

bounded in a neighborhood of the origin.

The function f∗ models the short-term correlation structure of the process. For example, for a

FARIMA(p, d, q) series, f∗ is the spectral density of an ARMA(p, q) process.

They showed that, for N →∞, m→∞ at a slower rate than N such that m logm/N → 0, the

asymptotic MSE of the GPH estimator of d is

MSE(d̂GPH) =
4π4

81

{
f∗

′′
(0)

f∗(0)

}
m4

N4
+

π2

24m
+O

{
m(log3m)

N2

}
+ o

(
m4

N4

)
+ o

(
1
m

)
(2.23)
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which, ignoring the remainders, leads to the optimal choice of m

mopt = CN4/5 (2.24)

where

C :=
(

27
128π

)1/5

K2/5 (2.25)

and K := f∗′′ (0)
f∗(0) .

In a follow-up paper, Hurvich and Deo (1999) suggested a plug-in estimator for C. They

considered a Taylor expansion of log f∗ at the origin which yields the relation

log I(λj) = log f∗(0)− γ − 2d log |2 sin(λj/2)|+
λ2

j

2
K +

λ3
j

6
Rj + εj (2.26)

where εj = log I(λj)/f(λj)+γ, γ = 0.577216 . . . is Euler’s constant, and Rj is uniformly bounded in

a neighborhood of the origin. Hence, they suggested to estimate K from the second slope coefficient

of the the regression of log I(λj) on log |2 sin(λj/2)| and λ2
j/2, for j = 1, 2, . . . , L where L is an

arbitrary number of frequencies. They showed that, if L ∝ n6, the plug-in estimator of C obtained

by replacing K with K̂ in Equation (2.25) is a consistent estimator for C.

In an unpublished work Smith (1989) considered a spectral density of the form (2.2). The

spectral density of Hurvich et al. (1998) implies that b = 2 in (2.2).

Under this assumption, Smith showed heuristically that the asymptotic mean squared error of

the GPH estimator is

MSEGPH = A2
(m
N

)2b
+
B

m
(2.27)
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where A = ab(2π)b/2(b+ 1)2 and B = π2/24. This leads to the optimal values of m

mopt =
(

π2

12A2b

) 1
2b+1

N
2b

2b+1 (2.28)

corresponding to the MSE

MSEopt =
2b+ 1

2b
(2bA2)

1
2b+1

(
π2

6N

) 2b
2b+1

(2.29)

We provide a proof of Smith’s results in Appendix A. The proof is based on results in Robinson

(1995b) and Hurvich et al. (1998).

If we replace in Equations (2.28) and (2.29) the expression of the parameters of the spectral

density of Y (k)
t in terms of the parameters of the basic process given in Equations (2.18) through

(2.20), and replace N by Nk = N
k , we can immediately verify that mopt and MSE are unchanged

by the aggregation. This allows us to state the following Proposition.

Proposition 2.2.1 (Invariance of the GPH estimator). Let Xt, t ∈ Z, be a long-memory stationary

time series characterized by the spectral density

fX(λ) = cλ−2d{1 + aλb + o(λb)} (2.30)

with c > 0, d ∈ [0, 0.5), a > 0, 0 < b < 2. Denote by Y (k)
t the time series derived by aggregating Xt

at bins of size k:

Y
(k)
t :=

k−1∑
j=0

BjXkt (2.31)

where B is the lag operator. Then the asymptotic efficiency of the GPH estimator of the long-

memory parameter d is invariant under aggregation. In particular, the optimal values of the band-
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width parameter m at which the minimum of the asymptotic MSE is attained is also invariant under

aggregation.

If b = 2, then the order of m(k)
opt will still be the same as mopt, but its value will depend on k and

a. More precisely, m(k)
opt = a2(

a− k2

12

)2mopt, which implies that m(k)
opt < mopt if k2 > 24a.

2.2.2 Aggregation and the Local Whittle Estimator

Henry and Robinson (1996) computed heuristically the asymptotic bias and variance for this es-

timator and suggested a consistent plug-in rule for choosing the optimal bandwidth mopt that

minimizes the asymptotic MSE. They considered the same hypotheses that lead to the asymptotic

normality in Robinson (1995b), but extended the model to have spectral density similar to the one

in Smith (1989):

f(λ) = cλ−2d[1 + aλb + o(λb)] (2.32)

as λ→ 0+, for some b ∈ (0, 2].

They found that the MSE can be approximated by

1
4

[
1
m

+ a2 b2

(b+ 1)4
λ2b

m

]
(2.33)

which leads to

mopt =
[

(b+ 1)4

2b3a2(2π)2b

] 1
1+2b

N
2b

1+2b (2.34)

In particular, for b = 2,

mopt =
(

3N
4π

)4/5

|a|−2/5 (2.35)

For the model (2.32), with b = 2, they suggested the following iterative plug-in rule:
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1. Set m̂(0) = N4/5.

2. Find ĉ(s)(m̂(s)) and d̂(s)(m̂(s)) using the LWE.

3. Perform the regression

I(λj)

ĉ(s)λ−2d̂(s)
= α(s) + β(s)λ2

jj = 1, 2, . . . , m̂(s) (2.36)

and set a(d̂(s)) = β̂(s).

4. Let

m̂(s+1) =
(

3N
4π

)4/5 ∣∣∣a(d̂(s))
∣∣∣−2/5

(2.37)

Then repeat steps 1-4 until convergence is attained.

A proof of (2.33) would require an evaluation of the bias E(d̂LW − d). Since the LW estimator

is defined implicitly, a direct computation of the bias, as it is done by Deo and Hurvich (2003)

for the GPH estimator, is not possible. We attempted to bound the expected value of the bias by

some quantities that would converge to zero or to some negligible error term, but failed to do so.

In fact, a direct proof may very well be impossible, as suggested by Deo and Hurvich (2001), and

then again by Cliff Hurvich in a private conversation.

An indirect proof of (2.33) was given recently by Andrews and Sun (2004) while introducing the

class of adaptive local polynomial Whittle estimators (ALPW) that generalizes the LW estimator.

They considered a spectral density of the form

f(λ) = |λ|−2dϕ(λ) (2.38)

where d ∈ [d1, d2],−1/2 < d1 < d2 < 1/2 and ϕ(λ) is a positive bounded at zero function that

57



characterizes the SRD behavior. They assumed regularity condition in a neighborhood of zero

for ϕ(λ) such that its logarithm can be approximated by an even polynomial of degree 2r, viz.

logG −
∑r

k=1 θkλ
2k. This approximation is used to specify a local polynomial Whittle (LPW)

likelihood function. They provide an adaptive estimator of d (ALPW) that uses the data to select

r and m, up to a constant. Under suitable smoothness conditions on ϕ(λ), this estimator is shown

to be N1/2−δ-consistent for all δ > 0 and, hence, attaining a rate of convergence that is arbitrarily

close to the parametric rate. Their proof of the asymptotic properties of the ALPW estimator

differs from the typical method for LW estimators pioneered by Robinson (1995b) which consists

in establishing consistency first, and, then, assume consistency when proving the normality of the

estimator. Such an approach would be problematic for the ALPW estimator because the LPW

log-likelihood becomes flat as a function of θ as n → ∞, and the rate at which it flattens differs

for each element of θ. In their proof, Andrews and Sun establish consistency and asymptotic

normality simultaneously. First they show that there exists a solution to the first order conditions

with probability that goes to one as n diverges, and this solution is consistent and asymptotically

normal. Then they show that the negative LPW log-likelihood is a strictly convex function of the

parameters. This implies that, if there is a solution to the first order conditions, then it is unique

and equals the minimizing values. Therefore the solution must be consistent and asymptotically

normal. Andrews and Sun’s approach has two advantages. First, as mentioned, it eliminates the

need of a separate proof for consistency. Second, if one lets m diverge to infinity at what is found to

be the asymptotically MSE-optimal rate, the asymptotic mean of the estimator can be interpreted

as the asymptotic bias. In their Theorem 2 and Corollary 1, Andrews and Sun show that the

asymptotic bias of the LW estimator, as defined above, is equal to the expression found by Henry

and Robinson (1996).
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Similarly to what we did for the GPH estimator, we can replace in Equations (2.33) and (2.34)

the parameters of spectral density of Xt with the the expression of the parameters of the spectral

density of Y (k)
t in terms of the parameters of the basic process given in Equations (2.18) through

(2.20), and replaceN byNk = N
k . We can immediately verify thatMSE andmopt are unchanged by

the aggregation. This allows us to state a Lemma similar to the one we stated the GPH estimator.

Proposition 2.2.2 (Invariance of the LW estimator). Let Xt, t ∈ Z, be a long-memory stationary

time series characterized by the spectral density

fX(λ) = cλ−2d{1 + aλb + o(λb)} (2.39)

with c > 0, d ∈ [0, 0.5), a > 0, 0 < b < 2. Denote by Y (k)
t the time series derived by aggregating Xt

at bins of size k:

Y
(k)
t :=

k−1∑
j=0

BjXkt (2.40)

where B is the lag operator. Then the asymptotic efficiency of the Local Whittle estimator of the

long-memory parameter d is invariant under aggregation. In particular, the optimal values of the

bandwidth parameter m at which the minimum of the asymptotic MSE is attained is also invariant

under aggregation.

If b = 2, then the order of m(k)
opt will still be the same as mopt, but its value will depend on k and

a. More precisely, m(k)
opt = a2(

a− k2

12

)2mopt, which implies that m(k)
opt < mopt if k2 > 24a.
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2.3 Long Memory with Added Noise

In this section we will consider the estimation of the long-memory parameter d when Xt is not

observed directly, but, instead, the process

Zt = µ+Xt + εt (2.41)

is observed, where µ is the mean and εt is a serially uncorrelated process with mean zero and

variance σ2
ε , independent of Xt.

This case emerges naturally from the Long Memory Stochastic Volatility (LMSV) model in

which the process of returns rt follows the equation

rt = σtζt σt = σe
Xt
2 (2.42)

where ζt is a white noise process with unit variance and Xt is a long-memory process, usually a

FARIMA process. Taking the log of the squared returns one has

Zt = log r2t

= log σ2 + E(log ζ2
t ) +Xt + [log ζ2

t − E(log ζ2
t )]

= µ+Xt + εt

See Crato and Ray (2002) and Deo and Hurvich (2001) and references therein for more details on

the LMSV model.

The ratio σ2
ε

σ2
x

is named noise-to-signal ratio (ns). The higher ns, the more difficult it is to

estimate the parameters of the signal process Xt.
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2.3.1 The GPH Estimator with Added Noise

Deo and Hurvich (2001) assumed that Xt has spectral density (2.22) so that the spectral density

of Zt has an added component due to the white noise

fZ(λ) = |2 sin
(
λ

2

)
|−2df∗(λ) +

σ2
ε

2π
(2.43)

They derived the MSE of the GPH estimator and showed that, for n → ∞, m → ∞, and

N−2dm2d logm→∞, then

E(d̂GPH − d) = −(2π)2d σ2
ε

2πf∗(0)
d

(2d+ 1)2

(
m2d

22d

)
+O

(
log3m

m

)
+ o

(
m2d

n2d

)
(2.44)

and

V ar(d̂GPH) =
π

24m
+ o(m−1) +O

(
m4d

n4d log2m

)
(2.45)

which imply that d̂GPH is consistent for d if m = Knδ, for some constant K and 0 < δ < 1. The

first term in the bias is due to εt and is dominant only if δ > (2d+ 1)−12d. Hence d̂GPH will have

increasingly negative bias as m and as the ns ratio increase.

Furthermore, the showed that asymptotic normality still holds. Under the stronger conditions

that n−4dm4d+1 log2m→ 0 and log2 n = o(m),

m1/2(d̂GPH − d) d→ N

(
0,
π2

24

)
(2.46)

That is, the limiting distribution is unchanged compared to the one found by Robinson (1995a)

and Hurvich et al. (1998).

61



2.3.2 The Extended LW Estimator

Hurvich and Ray (2001) considered the following parametrization for the spectral density of Zt

fθ(λ) = b0(1 + b1λ
−2d) λ ↓ 0 (2.47)

where θ = (b0, b1, d) are the parameters. They proposed an extension to the Local Whittle estimator

that consists in minimizing the contrast

L(θ) =
m∑

j=1

[
log fθ(λj) +

IZ(λj)
fθ(λj)

]
(2.48)

with respect to θ. They conjectured that the estimate of d̂ is still asymptotically normal with

asymptotic variance (4m log2 λm) when m−1 + m5/n → 0. In a Monte Carlo study, they showed

that the extended LW (ELW) estimator performs better than the GPH or LW estimator with two

parameters when the noise-to-signal ratio is high.

Recently, Hurvich et al. (2005) considered a more general model that encompasses both the

LMSV model and the fractionally integrated exponential GARCH (FIEGARCH) of Bollerslev and

Mikkelsen (1996). Their spectral density has the form

Gλ−2d (1 + h(d, θ, λ)) (2.49)

with

h(d, θ, λ) = θ0λ
2d +

u∑
j=1

θjλ
βj (2.50)

and βj , j = 1, . . . , u is a known sequence of positive numbers.

They showed that the ELW estimator obtained by minimizing the Whittle contrast (2.48) is
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consistent for d ∈ (0, 1) and asymptotically normal for d ∈ (0, 3/4). In particular, if the spectral

density of the short memory component of the signal is sufficiently smooth, a convergence rate of

N2/5−δ can be attained, where δ > 0 is arbitrarily small.

We considered the following parametrization of the LMSV model

fθ(λi) = α

{
1 + β

(
i

m

)−γ
}

(2.51)

where θ = (α, β, γ) and considered the ELW estimator that minimizes the contrast (2.48). We

heuristically computed the expected value of the Hessian matrix of θ̂ as a first step to determine

the MSE. The details of the computations are in Appendix A.

If we were able to compute analytically the asymptotic MSE for such a model, we could compare

the MSE of the model at different aggregation levels, in a similar fashion to what we already did

for the GPH and LWE. In particular, we could to determine if there exists an optimal aggregation

level at which the MSE is minimized. However, the complexity of the expected value of the Hessian

matrix in Appendix A does not allow us to find an analytical solution. We will have to resort to

numerical evaluations of the MSE, which is the topic of the next chapter.

2.3.3 The LW estimator with of Added Noise

If the underlying model contains added noise, and the LW estimator is used to estimate d, the MSE

of the estimator will likely be greater because of the added bias introduced by the noise component

which makes estimating the signal a more difficult task. One can expect that the additional bias

be greater as the noise-to-signal ratio increases or d decreases.

Similarly to what Deo and Hurvich (2003) did for the GPH estimator, we can compute the MSE

of the LW estimator when noise is added to a LRD process. In Appendix A we show that the bias
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of the LW estimator can be approximated by the following expression.

γδ

(δ + 1)2

(
2πm
N

)δ

− αβ1

(1−β1)2

(
2πm
N

)−β1

(2.52)

where α = σ2
ε

2πc , and β1 = −2d.

The first term of equation (2.52) is the bias of the LW estimator when no noise is present. The

second term represents the additional bias introduced by adding the noise component. As expected,

the second component of the bias increases as ns increases.

The optimal value of the MSE, and the corresponding values ofm, can only be found numerically,

and will depend on the value of d. Similarly to the ELW, the effect of aggregation on the MSE of

the LW estimator when the model is misspecified will be addressed with a numerical analysis in

the next chapter.
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Chapter 3

Numerical Analysis of Local Whittle

Estimators in Presence of Noise

As mentioned in section 2.3, and again in Appendix A, when an error term is added to the underlying

model, the MSE of the LW estimator, and, consequentially, the optimal value of the bandwidth

parameter m, cannot be evaluated analytically.

In this chapter we present a numerical analysis of the effect of adding noise and aggregating the

original process on the MSE of LW estimators, and how these factor influence the optimal choice

of m. We considered two estimators: the Local Whittle (LW) and the Extended Local Whittle

(ELW) estimator which explicitly accounts for the presence of the noise term.

We simulated 100 FARIMA(0,d,0) series of length 219 ≈ 5 ∗ 105 for each value of d in

(0.1, 0.2, 0.3, 0.4). The algorithm we used for the simulation is based on the circular embedding

of the covariance matrix and it is described in Dietrich and Newsam (1997). The variance of the

innovation was set to 1.

Each series {xt} was added a white noise component εt. The noise-to-signal ratio ns for the

resulting series zt = xt + εt takes values (0, 0.1, 0.5, 1, 1.5).

The series zt was aggregated nine times in bins of two observations. For each level of aggregation



k = 1, . . . , 9, a new series z(k)
t = z

(k−1)
2t−1 + z

(k−1)
2t−1 was created, with z

(0)
t := zt. The series {z(k)

t } has

length N (k) = 219−k, with N (k) ranging from N (1) = 218 = 262, 144 at the first level of aggregation,

to N (9) = 210 = 1024 at the highest level of aggregation.

3.1 The LW Estimator

For each value of d, ns, k, and a fixed value of the bandwidth parameter m, the performance of

the LW estimator was evaluated by comparing the MSE computed in three different ways:

1. The actual MSE of the LW estimator across all series

2. The asymptotic MSE according to equation (2.33)(HRMSE), as computed by Henry and

Robinson (1996)

3. The asymptotic MSE of the LW estimator corrected by the presence of the noise component

according to equation (A.16)(CHRMSE).

The optimal value of the bandwidth parameter m which minimizes the MSE was computed

for each combination of d, ns, and k and each one of the MSE’s expression described above. All

computations were done using the R statistical package. The minimization problem for the LW

estimator uses the nlm function. The scale parameter c was concentrated out of the Whittle contrast

so that a faster one-dimensional problem could be solved. When the spectral density of the LRD

process has the form f(λ) = |1 − exp(iλ)|−2df∗(λ), the constants γ and a in equations (A.16)

and (2.33), respectively, can be approximated by f∗′′ (0)
2f∗(0) + d

12 , as shown in Delgado and Robinson

(1996).

Since the LW estimator is defined implicitly, and an explicit expression for the MSE is not avail-

able, one cannot use standard minimization algorithms to find the value m(opt) that minimizes the
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MSE. We found that iterative plug-in procedures, such as the one proposed by Henry and Robinson

(1996), did not converge in most cases. Besides, such a procedure would not be appropriate in this

context because it is based on an asymptotic approximation of the MSE, whereas we are trying

to compute the minimal value of the actual MSE. Therefore, the value of m(opt) was computed by

“brute force”. Each MSE expression was evaluated over a range of values of m, and m(opt) was

chosen as the values that minimizes the MSE over such range. Unfortunately, this resulted in a

heavy computational burden because of the large number on non-linear optimizations required to

find the LW estimators. At first, we attempted to use a fixed step between the values of m. The

estimated completion time was about 500 days. Noticing that the values of the MSE stabilizes as

m becomes progressively large, a variable step which increases as m increases can be used without

prejudice for the analysis. By trial and error, we settled on the following formula:

mi+1 −mi =
[
log(lastm)

log(29)
∗m1/3

i + 10
]

(3.1)

where lastm = min(
[

N
2

]
, N5/6). The valueN5/6 was chosen because the optimalm, according to the

analysis of Henry and Robinson (1996), is of order O(N4/5). The values of lastm are 58385, 32768,

18390, 10321, 5792, 3250, 1824, 1024, 574, 322, for aggregation levels k = 0, 1, . . . , 9, respectively.

Equation (3.1) provides a reasonable compromise between the need to have a good resolution of

m at all aggregations levels and an acceptable computational time. The whole process still took

about 30 days to complete on a personal computer with two 2.6GHz Pentium Xeon processors.

Figure 3.1 shows the step interval of m when no aggregation is applied, that is, for N0 = 219.
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Figure 3.1: Step of m, N=219
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3.1.1 MSEs Comparisons

Figure 3.2 through Figure 3.21 compare, for a given value of long-range dependence parameter d,

noise-to-signal ratio ns, and aggregation level k, the actual MSE of the Local Whittle estimator

(MSE) of d obtained from the simulated series to the asymptotic expression of the MSE of Henry and

Robinson (1996)(HRMSE), equation (2.33), and the similar asymptotic expression (A.16) which

accounts for the presence of the noise component (CHRMSE). The plot on the right-hand side

display the three estimates of the MSE. The plots on the left-hand side, display the difference

between the two asymptotic expression (HRMSE and CHRMSE) and the actual MSE.

Displaying plots for all 200 combinations of values of (d, ns, k) is impractical. Therefore, we are

displaying here only the plots relative to d = 0.1 and d = 0.4, and to k = 0, that is, no aggregation

is performed, and k = 9, the highest level of aggregation. The display is sufficient for illustrating

the general behavior. The remaining plots are available on request.

We can observe the following facts.

• When there is no noise (ns = 0), HRMSE=CHRMSE. The second term of the bias component

of CHRMSE in equation (A.15) is equal to zero because α = σ2
ε

2πc = 0. Therefore HRMSE

and CHRMSE are equivalent.

• As the number of frequencies increase, both HRMSE and CHRMSE overestimate the actual

MSE. This is not entirely unexpected, because both equations account for a bias term due

to short-range dependency that is not present in the FARIMA(0, d, 0) processes used in the

simulation.

• When the long-range dependence is mild (d = 0.1) and N is high, HRMSE and CHRMSE are

virtually indistinguishable. This is again because the second term in equation (A.16) is very
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close to zero because of the high value of N , and the small value of β1 = −2d. Vice versa,

as N decreases and d increases, the difference between the two asymptotic MSE expressions

becomes more pronounced.

• Similarly, as the noise-to-signal ratio ns increases, so does the difference between HRMSE

and CHRMSE.

• As the aggregation level increases, the difference between the asymptotic expressions and the

actual MSE increases.

Both asymptotic expressions tend to underestimate the actual MSE when m is low, and to

overestimate it when m is high. The overestimation at large frequencies is more pronounced for the

CHRMSE and when d and ns are high, and N is low, for the reasons discussed above. The actual

MSE of the LW estimator is almost unchanged when the noise is added. The performance of the

LW estimator when applied to the purely LRD processes FARIMA(0, d, 0), does not seem to be

affected by the addition of the noise component as much as the theoretical results would suggest.
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Figure 3.2: Comparison of MSEs, d = 0.1, ns = 0, N = 219

71



0 10000 20000 30000 40000 50000 60000

0
20

00
40

00
60

00
80

00
12

00
0

Fourier Frequency 

M
S

E

MSEs Comparison

MSE
HRMSE
CHRMSE

0 10000 20000 30000 40000 50000 60000

0
20

00
40

00
60

00
80

00
12

00
0

Fourier Frequency 
M

S
E

Difference from Actual MSE

Figure 3.3: Comparison of MSEs, d = 0.1, ns = 0.1, N = 219
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Figure 3.4: Comparison of MSEs, d = 0.1, ns = 0.5, N = 219
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Figure 3.5: Comparison of MSEs, d = 0.1, ns = 1, N = 219

0 10000 20000 30000 40000 50000 60000

0
20

00
40

00
60

00
80

00
12

00
0

Fourier Frequency 

M
S

E

MSEs Comparison

MSE
HRMSE
CHRMSE

0 10000 20000 30000 40000 50000 60000

0
20

00
40

00
60

00
80

00
12

00
0

Fourier Frequency 

M
S

E

Difference from Actual MSE

Figure 3.6: Comparison of MSEs, d = 0.1, ns = 1.5, N = 219
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Figure 3.7: Comparison of MSEs, d = 0.1, ns = 0, N = 210
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Figure 3.8: Comparison of MSEs, d = 0.1, ns = 0.1, N = 210
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Figure 3.9: Comparison of MSEs, d = 0.1, ns = 0.5, N = 210
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Figure 3.10: Comparison of MSEs, d = 0.1, ns = 1, N = 210
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Figure 3.11: Comparison of MSEs, d = 0.1, ns = 1, N = 210
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Figure 3.12: Comparison of MSEs, d = 0.4, ns = 0, N = 219
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Figure 3.13: Comparison of MSEs, d = 0.4, ns = 0.1, N = 219
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Figure 3.14: Comparison of MSEs, d = 0.4, ns = 0.5, N = 219

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Fourier Frequency 

M
S

E

MSEs Comparison

MSE
HRMSE
CHRMSE

0 10000 20000 30000 40000 50000 60000

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Fourier Frequency 

M
S

E

Difference from Actual MSE

Figure 3.15: Comparison of MSEs, d = 0.4, ns = 1, N = 219
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Figure 3.16: Comparison of MSEs, d = 0.4, ns = 1, N = 219
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Figure 3.17: Comparison of MSEs, d = 0.4, ns = 0, N = 210
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Figure 3.18: Comparison of MSEs, d = 0.4, ns = 0.1, N = 210
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Figure 3.19: Comparison of MSEs, d = 0.4, ns = 0.5, N = 210
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Figure 3.20: Comparison of MSEs, d = 0.4, ns = 1, N = 210
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Figure 3.21: Comparison of MSEs, d = 0.4, ns = 1, N = 210
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3.1.2 Effects of Aggregation

Crato and Ray (2002) advocate that aggregation reduces the ns ratio and, thus, reduces the bias of

the estimation. On the other hand, for a finite sample, the reduction in the number of observations

implied by aggregation would increase the variance of the estimator.

Figures 3.22 through 3.41 display how the minimal MSE and optimal choice of m vary with

aggregation, for given d and ns, d ∈ (0.1, 0.2, 0.3, 0.4) and ns ∈ (0.1, 0.5, 1, 1.5). The left-hand

side plots display the minimal MSE. The right-hand side plots display the value of the bandwidth

parameter m corresponding to the minimal MSE. The x-axis displays the logarithm in base 2 of the

number of observations in each aggregation bin. For example, on the extreme right of the x-axis,

corresponding to the highest level of aggregation, k = 9, each observation of the series {z(9)} is

the sum of 29 contiguous observations of the series {z(0)}. To appropriately interpret the plots,

recall that the highest value of m available for each aggregation level is 58385, 32768, 18390, 10321,

5792, 3250, 1824, 1024, 574, 322, for aggregation levels k = 0, 1, . . . , 9, respectively. For comparison

purposes, also the minimal HRMSE and CHRMSE, and relative optimal values of m are displayed.

However, as noted in the previous section, these grossly overestimate the MSE in most cases.

We can observe the following facts.

• When there is no added noise (ns = 0), the series are nearly pure LRD processes. That

implies that there is no trade-off between bias and variance, since the bias is null due to the

lack of short-range dependence components. This is reflected in the plots by the fact that,

when ns = 0, the minimal MSE keeps increasing with aggregation, and that the optimal

m is essentially the last value of m available. The variance is inversely proportional to m.

Therefore, as m increase, the MSE decrease.

• If even a small amount of noise is introduced, e.g. ns = 1, moderate aggregation can reduce
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Figure 3.22: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0

the MSE.

• The amount of aggregation that can be used before the MSE increases again is dependent on

the size of the noise-to-signal ratio ns. After a certain level of aggregation, the series behave

again as a pure LRD processes, that is, the MSE decreases monotonically with m.

The above facts suggest that, if the series is suspected to be the sum of noise component and

LRD component, the MSE of the LW estimator can be improved by a small amount of aggregation,

provided that the data available is long enough not to run into an increase of the variance component

of the MSE.
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Figure 3.23: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0.1
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Figure 3.24: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0.5
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Figure 3.25: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 1
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Figure 3.26: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 1.5
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Figure 3.27: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0
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Figure 3.28: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0.1
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Figure 3.29: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0.5
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Figure 3.30: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 1

89



0 2 4 6 8

0.
00

0.
01

0.
02

0.
03

0.
04

Log2 (number of obs in bin) 

m
in

im
al

 M
S

E

Optimal MSE

MSE
HRMSE
CHRMSE

0 2 4 6 8

0
50

0
10

00
15

00

Log2 (number of obs in bin) 

op
tim

al
 m

Optimal m

Figure 3.31: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 1.5
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Figure 3.32: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0
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Figure 3.33: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0.1
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Figure 3.34: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0.5
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Figure 3.35: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 1
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Figure 3.36: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 1.5
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Figure 3.37: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0
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Figure 3.38: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0.1
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Figure 3.39: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0.5
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Figure 3.40: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 1
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Figure 3.41: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 1.5
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3.2 The Extended LW Estimator

As explained in Chapter 2, an analytical expression for the MSE of the ELW estimator is not

available. Therefore, the MSE can only be evaluated numerically, and so the effect of aggregation

on the estimator.

In this section we will analyze numerically the MSE of the ELW estimator; how it is affected by

aggregation and how it compares to the MSE of the LW estimator. The framework of the analysis

is similar to Section 3.1. Therefore, we will describe only where it differs.

A short-range dependent component was introduced by applying an AR(1) filter with parameter

0.5 to the simulated FARIMA(0, d, 0) used in the previous section, thus generating FARIMA(1, d,

0) series. Due to time constraints, the series length was truncated to 217 observations, allowing for

7 levels of aggregations. The number of series used for computing the MSE was restricted to 10.

Additionally, the fix portion of the step of m was increased from 10 to 20.

The log-likelihood of the ELW flattens as a function of the parameters as N diverges, and the

rate at which it flattens differs for each parameter (Hurvich et al., 2005). This makes the analysis

of the ELW estimator challenging not only analytically, but numerically too. The estimation is

highly sensitive to the starting values, it needs more data point (higher m) than the LW estimator

to attain convergence, often does not converge or, especially when N is large, it is common that

the parameters run into regions that cause the optimizer to overflow. We found the most stable

parametrization to be the one suggested by Hurvich and Ray (2001), that is, the spectral density

in a neighborhood of the origin has the form

f(λ) = b0(1 + b1λ
−2d) (3.2)
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The parameter b0 can be concentrated out the log-likelihood so that a two-dimensional problem

can be solved. We can rewrite the local Whittle contrast as

L(θ̃) =
m∑
1

{
log f̃(λj) +

I(λj)
f̃(λj)

}
(3.3)

where θ̃ = (b1, d),

f̃(λ) = b̃0(1 + b1λ
−2d) (3.4)

and

b̃0 =
1
m

m∑
1

I(λj)
1 + b1λ

−2d
j

(3.5)

The optimization is performed initially using the nlm function of R, where the step of the

algorithm has been limited to try and prevent that the parameters run into regions that overflow

the target function. The true values of the parameters are used as starting value. If the optimization

does not converge, the GPH estimates with the variance of the error component assumed to be 1

are used as starting values. Should the estimation still not converge, or should it converge to values

that are not admissible, the nlmin function is used, which enables to constrain the parameters to

the admissible region. The constrained optimization slows down the process considerably and is

avoided when possible.

3.2.1 MSEs Comparisons

Figure 3.42 through Figure 3.61 compare, for a given value of long-range dependence parameter d,

noise-to-signal ratio ns, and aggregation level k, the MSE of the ELW estimator (ELW) of d to the

MSE of the LW estimator (LW), and the asymptotic expression of the MSE of Henry and Robinson

(1996)(HRMSE), equation (2.33), and the similar asymptotic expression (A.16) which accounts
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for the presence of the noise component (CHRMSE). The plot on the left-hand side display the

estimates of the MSE. The plots on the right-hand side, display the difference from the LW MSE.

We computed also an asymptotic expression for the MSE of ELW estimator based on the

approximation

E(θ̂ − θ0) ≈ −H∗−1(θ0)E∇h(θ0) (3.6)

V ar(θ̂ − θ0) ≈ H∗−1(θ0) (3.7)

(3.8)

where H∗ is the approximation to the expected value of the Hessian matrix given by equa-

tions (A.30)–(A.30), and E∇h(θ0) is the expected value of the gradient. This last approximation

of the MSE is not displayed in the plots because it is on a widely different scale than the other

estimates for any value of ns different from zero, presumably because the Hessian matrix is nearly

singular.

Again, we are displaying here only the plots relative to d = 0.1 and d = 0.4, and to k = 0,

that is, no aggregation, and k = 7, the highest level of aggregation. The display is sufficient for

illustrating the general behavior. The remaining plots are available on request.

We can observe the following facts.

• The variance of the ELW is higher at low frequencies. This is not unexpected, because the

ELW tries to estimates the variance of the error component as well.

• For all values of m, d, ns, k, the MSE of the ELW is almost uniformly greater than the MSE

of the LW. This is true also when the noise-to-signal ratio is high. It seems that the bet-

ter asymptotic properties of the ELW estimator do no translate into better finite sample
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Figure 3.42: Comparison of MSEs, d = 0.1, ns = 0, N = 217

properties. In fact, in most cases, the LW proves to be superior.

• Even with the added SRD AR component, both the HRMSE and CHRMSE approximations

to the MSE of the LW estimator keep grossly overestimating the actual MSE. However, the

CHRMSE estimator, which explicitly accounts for the error term, gives a better approximation

to the MSE for moderate values of ns. For large values of ns, the value of d becomes

more important. When d is high and m is low, the HRMSE performs better. Eventually,

though, for large m, the CHRMSE performs better for all values of d. Unfortunately, the

CHRMSE requires the knowledge of the variance of the noise, which is not estimated by the

LW estimator.
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Figure 3.43: Comparison of MSEs, d = 0.1, ns = 0.1, N = 217
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Figure 3.44: Comparison of MSEs, d = 0.1, ns = 0.5, N = 217
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Figure 3.45: Comparison of MSEs, d = 0.1, ns = 1, N = 217
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Figure 3.46: Comparison of MSEs, d = 0.1, ns = 1.5, N = 217
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Figure 3.47: Comparison of MSEs, d = 0.1, ns = 0, N = 210
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Figure 3.48: Comparison of MSEs, d = 0.1, ns = 0.1, N = 210
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Figure 3.49: Comparison of MSEs, d = 0.1, ns = 0.5, N = 210
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Figure 3.50: Comparison of MSEs, d = 0.1, ns = 1, N = 210
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Figure 3.51: Comparison of MSEs, d = 0.1, ns = 1.5, N = 210
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Figure 3.52: Comparison of MSEs, d = 0.4, ns = 0, N = 217
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Figure 3.53: Comparison of MSEs, d = 0.4, ns = 0.1, N = 217
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Figure 3.54: Comparison of MSEs, d = 0.4, ns = 0.5, N = 217
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Figure 3.55: Comparison of MSEs, d = 0.4, ns = 1, N = 217
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Figure 3.56: Comparison of MSEs, d = 0.4, ns = 1, N = 217
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Figure 3.57: Comparison of MSEs, d = 0.4, ns = 0, N = 210
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Figure 3.58: Comparison of MSEs, d = 0.4, ns = 0.1, N = 210
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Figure 3.59: Comparison of MSEs, d = 0.4, ns = 0.5, N = 210
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Figure 3.60: Comparison of MSEs, d = 0.4, ns = 1, N = 210
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Figure 3.61: Comparison of MSEs, d = 0.4, ns = 1.5, N = 210
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3.2.2 Effects of Aggregation

Figures 3.62 through 3.81 display how the minimal MSE and optimal choice of m vary with aggre-

gation, for given d and ns, d ∈ (0.1, 0.2, 0.3, 0.4) and ns ∈ (0.1, 0.5, 1, 1.5). The left-hand side plots

display the minimal MSE. The right-hand side plots display the value of the bandwidth parameter

m corresponding to the minimal MSE. The x-axis displays the logarithm in base 2 of the number

of observations in each aggregation bin. Again, we considered the MSE of the LW estimator, the

MSE of the ELW estimator, and the HRMSE and CHRMSE approximations.

We can observe the following facts.

• The MSE of the ELW estimator is almost always monotonically increasing with aggregation.

• The high choice of m for the ELW estimator indicates that the variance component largely

dominates the MSE.

• The LW estimator performs almost uniformly better than the ELW estimator, even when the

noise-to-signal ratio is high. The difference is more pronounced the lower the value of d.

Given the observations above, and the fact that the ELW is numerically unstable, it seems hard

to recommend its use in practice for estimating LRD, even when the presence of a noise component

is suspected.
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Figure 3.62: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0
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Figure 3.63: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0.1
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Figure 3.64: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 0.5
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Figure 3.65: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 1
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Figure 3.66: MSEs and Optimal m vs. Aggregation, d = 0.1, ns = 1.5
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Figure 3.67: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0
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Figure 3.68: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0.1
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Figure 3.69: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 0.5

0 1 2 3 4 5 6 7

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Log2 (number of obs in bin) 

m
in

im
al

 M
S

E

Optimal MSE

ELWMSE
LWMSE
HRMSE
CHRMSE

0 1 2 3 4 5 6 7

0
10

00
20

00
30

00
40

00

Log2 (number of obs in bin) 

op
tim

al
 m

Optimal m

Figure 3.70: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 1
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Figure 3.71: MSEs and Optimal m vs. Aggregation, d = 0.2, ns = 1.5
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Figure 3.72: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0
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Figure 3.73: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0.1
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Figure 3.74: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 0.5

0 1 2 3 4 5 6 7

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Log2 (number of obs in bin) 

m
in

im
al

 M
S

E

Optimal MSE

ELWMSE
LWMSE
HRMSE
CHRMSE

0 1 2 3 4 5 6 7

0
10

00
20

00
30

00
40

00
50

00
60

00

Log2 (number of obs in bin) 

op
tim

al
 m

Optimal m

Figure 3.75: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 1
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Figure 3.76: MSEs and Optimal m vs. Aggregation, d = 0.3, ns = 1.5
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Figure 3.77: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0
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Figure 3.78: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0.1
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Figure 3.79: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 0.5
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Figure 3.80: MSEs and Optimal m vs. Aggregation, d = 0.4, ns = 1
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Chapter 4

UNC Internet Data Analysis

In this chapter we will investigate how aggregation influences the Local Whittle (LW) and the

Geweke and Porter-Hudak (GPH) estimators in applications, and whether our preliminary findings

in Chapter 2 represent a reasonable approximation of the behavior of the estimates in a finite

sample.

While the definition of long-range dependence based on the periodogram involves a slow-varying

function (see Definition 1.1.2), for estimation purposes it is assumed that the spectral density of a

LRD process in a neighborhood of the origin can be approximated by

f(λ) ≈ cλ−2d (4.1)

where c > 0 is a constant.

We will focus our attention on how the estimates of the parameters c and d vary across aggre-

gation levels, and, in particular, how that affects the choice of the optimal bandwidth parameter

mopt.

Section 4.1 describes in details the data that were utilized for this purpose. In Section 4.2

we illustrate the results of the analysis for a selection of the data sets considered. Finally, in



Section 4.2.3 we draw our conclusions and suggest possible developments.

4.1 Data Description

4.1.1 UNC Internet Data

The data consist of 20 separate data sets collected by the DIstributed and Real-Time systems

(DIRT) group (http://www.cs.unc.edu/Research/dirt/) of the UNC Computer Science Department

during the second week of April 2002. A monitor of one microsecond resolution and approximately

one millisecond accuracy was placed on the main router that connects the UNC campus network

to the Internet. Packet headers and arrival times were recorded for TCP/IP packets traversing the

router, and the traces were subsequently processed to create time series of packet arrival counts per

each millisecond interval. All data traversed a 1 Gbps (Giga bites per second) Ethernet link from

the ISP router to the campus aggregation switch. The UNC campus itself is on switched 1 Gbps

Ethernet network and includes the UNC hospitals, for a total of over 50,000 computers and 35,000

users, giving rise to a very heterogeneous usage which includes business, education, entertainment,

and a variety of protocols such as http, ftp, ssh, etc. Each data set spans approximately a 2

hour period in a way to represent the different usage times during a normal week. The 2-hour

time interval was selected somewhat arbitrarily in order to maintain the traffic level approximately

stationary within each data set. The number of observations in each data set is of the order of 72

million. In aggregate, the traces represent 40 hours of network entry traffic into the UNC campus

and include information about 3.55 billion packets that carried 1.17 Terabytes of data. The average

load of utilization of the link during the duration of the data collection precess ranged from a low

of 2.7% on Tuesday at 5:00 AM, to a high of 9.1% on Thursday at 3:00 PM. More details on the

data can be found in Park et al. (2005).
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4.1.2 Lab Data

The synthetic data was generated in a laboratory testbed network designed to emulate a network

with characteristics similar to the UNC campus network. At one end of the link there were 18

machines (“clients”) that emulated the behavior of hundreds of Web users. On the other end of the

link, there were 10 machines (“servers”) that acted as web servers. The traffic load is controlled

by a parameter that specifies a fixed size population of users browsing the web and was set to 2%,

5%, 8%, 11%, and 14% of capacity to emulate the real load recorded on the UNC main router link.

More details on the data collection can be found in Park et al. (2005), and on the data generation

process in Le et al. (2003).

4.1.3 Simulated data

Three different traces that simulate FGN have been analyzed. To be consistent with the findings

about the real data, all have Hurst parameter H = 0.9, equivalent to d = 0.4, but differ in the

algorithms used to generate them. The first and last data sets (fgn pipiras and fgn long) have 72

million observations to replicate the length of the real data. The second data set (fgn zhu) instead

has 524288 observations due to memory limitations in the software package used to generate it.

The variance has been set to 20, given the fact that the mean number of packet per millisecond

for the UNC data is approximately 20 and that, for the Poisson model, the variance is equal to

the mean. As with the previous data sets, these series have been discussed in details in Park et al.

(2005).

Details of the wavelet method, corresponding to the data set fgn pipiras, can be found in

Abry and Sellan (1996) and Pipiras (2005). It is based on a fast orthogonal wavelet transform that

simulates a sequence of two discrete times FARIMA series. The last series is then subsampled to
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obtain an approximation to a fractional Brownian motion whose first difference series constitutes

the FGN.

Details about the first spectral method, corresponding to the data set fgn zhu, can be found in

Wood and Chan (1996) and Dietrich and Newsam (1997). This method is an exact simulation of

the FGN and relies on the fact that the periodic repetition of the covariance function of the FGN

in the interval [0, 1] is a circulant matrix.

Details about the second spectral method, corresponding to the data set fgn long, can be found

in Paxson (1995) and Danzig et al. (2000). It is based on generating sample paths that have the

same power spectrum as the FGN.

Three FARIMA series were also simulated using the arima.fracdiff.sim function of Splus.

The function is based on the algorithm described in Haslett and Raftery (1989). Due to the amount

of time needed to generate the series (over 36 hours each on the UNC statistical server), the number

of observations is limited to one million per each series. The series are as follows: FARIMA(1, .3, 0),

with ar(1) = 0.2; FARIMA(1, .3, 0) with ar(1) = 0.9; FARIMA(1, .3, 1) with ar(1) = 0.9 and

ma(1) = 0.5.

4.2 Analysis

4.2.1 UNC Internet Data

We chose to display only the results for the subset of data collected on Wednesday April, 10 2002

at 9:30 pm. This data set was selected because it yielded consistent estimates of the long range

dependence parameter across different estimators and it does not show clear visual evidence of

nonstationarity (see Park et al. (2005) for details.)

Since the algorithm that we used to compute the FFT is most efficient when the number of
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observations can be factored in small primes (less or equal to 13), we used only the first 7,200,000

observations.

The data were aggregated in bins of one hundredth of a second (1cs), one tenth of a second

(1ds) and one second (1s). The local Whittle and GPH estimates were computed for the original

1ms data and all aggregation levels for a number of frequencies m ranging from 10 to the minimum

of 10,000 and the number of frequencies available. That means that the maximum number of

frequencies used is 10,000 for all data sets, except for the 1s aggregation level, for which it is 3,600

due to the limited numbers of observations available at the highest aggregation level.

Figure 4.1 through Figure 4.8 illustrate the estimates for each fixed aggregation level. The last

portion of the plot titles indicate the aggregation level, while the subscript detr indicates that the

data has been detrended prior to estimation.

The two plots in the first row from top show the local Whittle and the GPH estimates of d

versus m/10.

We used two methods for selecting the bandwidth parameter m and uniquely determining the

estimates. First we looked at the plot of d̂ versus m and found a common value of m where the

estimates seemed to stabilize. We picked such a value as choice of m for all data sets. We named

this automatic method. The vertical line in the plots corresponding to 200 (i.e. m=2,000) indicates

such a choice. For this particular data set, m = 2, 000 seems excessive since the estimates stabilize

well before that. This fact is confirmed also by the plots on the third row from top, which show

the estimates of d̂ versus the inverse of the periodogram ordinates, according to the visual method

for selecting m suggested by Taqqu and Teverovsky (1996). However, one must remember that the

choice of m = 2, 000 was made to keep the values uniform across all UNC internet data sets.

The second method to select m, which we named tuned, consists in finding an estimate of the
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asymptotic MSE of d̂, and choosing the value of m that minimizes it. We attempted to use the

plug-in algorithm suggested by Henry and Robinson (1996) but found that it did not converge to

a unique values in most cases. Therefore we resorted to compute estimate the asymptotic MSE for

each value of m for which the parameter was estimated and then plotting it against m to find its

minimum. For the local Whittle estimator we used the formula for asymptotic MSE in Henry and

Robinson (1996), while for the GPH estimator, we used the formula in Smith (1989).

The plots on the second row show the estimated MSE against m. The second vertical line in

the plots indicate the ordinate at which the MSE attains its minimum. In the case of the LW

estimator, the variance dominates the estimated bias so that the optimal choice of m (mopt) is

always the maximum m available. This happens regardless whether the variance was estimated

using the Hessian matrix or using the asymptotic expression V ar(d̂LW ) ≈ 1
4m . Vice versa, for the

GPH estimator, the bias dominates the variance by several orders of magnitude so that the mopt

is the value that minimizes the asymptotic bias.

Figure 4.10 show the estimated parameters across aggregation levels for the tuned and automatic

method. The first column of the plots refers to the estimates of the long range dependence parameter

d, while the the second to the estimates of the logarithm of the scale parameter log c.

The first striking feature is that the estimates of d do not vary much across aggregation levels

for both estimators and both estimation methods for a given number m of frequencies used in

the estimation. The only exception is the tuned methods for the LW estimator at 1s aggregation

presumably because the number of frequencies available is lower, and, therefore, forces a lower

choice of m.

The second striking feature is that the logarithm of the scale parameter c increases linearly

with aggregation. According to formula (2.18) ck = k1+2dc, where k is the number of observation
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in each bin. In our case, k = 10j , j = 0, 1, 2, 3. It follows that

log ck = log c+ j(1 + 2d) log 10 (4.2)

The estimated coefficient of the regression of log c on j is displayed on the bottom of the plots,

along with the theoretical value computed using Formula (4.2) where for d we used the estimated

d̂ at 1ms level. In all cases, the estimate of the coefficient is very close to the theoretical values.
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Figure 4.6: Apr 10 21:30, 1/100-th Sec Detrended. The left column illustrates the LW estimates, while the right
column the GPH estimates. In the first row the estimates are plotted against the m/10. The second row shows the
estimates of the MSE against m/10. The third row shows the estimated d against 10/m. The last row shows the
estimates of log c against m/10 137



Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

d

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Num of PGM ordinates

G
P

H
 d

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

M
S

E

0 200 400 600 800 1000

0.
0

0.
01

0
0.

02
0

Num of PGM ordinates / 10

G
P

H
 M

S
E

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

1/(PGM ordinates / 10)

W
hi

ttl
e 

d

0.0 0.02 0.04 0.06 0.08 0.10

0.
35

0.
45

0.
55

1/(PGM ordinates / 10)

G
P

H
 d

0.0 0.02 0.04 0.06 0.08 0.10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

lo
g(

c)

0 200 400 600 800 1000

5
6

7

Num of PGM ordinates / 10

G
P

H
 lo

g(
c)

0 200 400 600 800 1000

0
2

4
6

2002_Apr_10_Wed_2130_1ds_detr

Figure 4.7: Apr 10 21:30, 1/10-th Sec Detrended. The left column illustrates the LW estimates, while the right
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Figure 4.8: Apr 10 21:30, 1 Sec Detrended. The left column illustrates the LW estimates, while the right column
the GPH estimates. In the first row the estimates are plotted against the m/10. The second row shows the estimates
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Figure 4.9: Estimates vs Aggregation, Automatic Method, Apr 10 21:30. The left column illustrates the estimates
of d versus the aggregation level. The right columns shows instead the estimates of log c. The first two rows show
the LW estimates, while the last two the GPH estimates. The first one of each employs the original data, while, in
the second row, the data has been detrended prior to estimation140
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Figure 4.10: Estimates vs Aggregation, Tuned Method, Apr 10 21:30. The left column illustrates the estimates of
d versus the aggregation level. The right columns shows instead the estimates of log c. The first two rows show the
LW estimates, while the last two the GPH estimates. The first one of each employs the original data, while, in the
second row, the data has been detrended prior to estimation141



4.2.2 Simulated Data and Lab Data

The results that we have observed with the UNC data repeat without significant difference for the

simulated and the lab data. The only difference worth noticing is that the estimates, as function

of m, are more stable when compared to the real data due to the fact the the data are “better

behaved”. This fact allowed us to choose m = 50 for the automatic method with the FARIMA

data so that we could use the same value across all aggregation levels.

It is worth noticing that, in the case of the simulated data, both estimators came very close

to the actual value of the parameter d. Unfortunately, the time needed to produce one simulated

series did not allow us to perform a study of the variability of the estimates. This can be a possible

further development.

For brevity, here we present only the plots for one of the FGN simulations and one of FARIMA

series. Detrending has virtually no effect, except for a mild effect for fgn pipiras. For this reason,

detailed plots of the estimates for the detrended data are omitted.

We maintained the rule k = 10j and the notation 1ms, 1cs, 1ds, 1s to indicate j = 0, 1, 2, 3 for

consistency with the UNC data. For the data set fgn zhu that implied that we could only estimate

the parameters for the first three aggregation levels since it contains only 524288 observations.

4.2.3 Conclusions

The analysis showed consistent results for both estimators across all data sets, whether the data

was real or simulated.

Unfortunately, the estimation of the MSE of d̂ did not unveil much about the variation of mopt

across aggregation levels. However, we uncovered interesting facts about the estimators of c and d.

We can summarize them as follows.
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• For a given m, the estimates of long-range dependence parameter d do not vary significantly

across aggregation levels. This finding is consistent with our theoretical results about the

GPH estimator in Chapter 2. One can conjecture that a similar result holds for the other

semiparametric periodogram-based estimator. It can be intuitively explained by considering

that aggregation is a form of “compression” of data that “looses” the high-frequency char-

acteristics but preserves the long-term features. This intuition is reflected in the fact that

the only the right tail of the periodogram is lost to aggregation, while the left tail, that is

the relevant fraction to both estimators, remains essentially unchanged in its most important

feature as far as long-range dependence is concerned, that is the slope of the its logarithm as

a function of the log frequencies.

• For any fixed value ofm, the estimates of the scale parameter c follow almost exactly the linear

relation (4.2). On one side this may leads to think that, as with d̂, one can retrieve an equally

valid estimate of the scale parameter c of the original process from the estimate of ck, the

scale parameter of the aggregated process. On the other hand, one may conjecture that, since

c, in most cases, is dependent on the variance of the original process, better estimates may

be obtained when the high-frequency characteristics of the data are not lost to aggregation.

This intuition suggests that the optimal approach to estimating the scale parameter may

differ from the best approach to estimate d. If an accurate estimation of the variance of the

process is as relevant as the the estimation of the long-range dependence effect, this may lead

to two different estimation strategies.

The above facts and the findings in Chapter 2 suggest some possible developments of our

research. First we can attempt and compute the asymptotic MSE of the parameter c in the

same fashion that in Chapter 2 is done for the GPH estimator of d, and study its variation with
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aggregation. Second, similar results can be developed for the local Whittle estimator. Third,

simulation studies can be performed to measure the MSE of c in finite samples for some selected

models. For this purpose, however, faster and less memory-demanding algorithms will have to be

employed.
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Figure 4.11: FGN Pipiras, 1ms. The left column illustrates the LW estimates, while the right column the GPH
estimates. In the first row the estimates are plotted against the m/10. The second row shows the estimates of the
MSE against m/10. The third row shows the estimated d against 10/m. The last row shows the estimates of log c
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Figure 4.12: FGN Pipiras, 1/100-th Sec. The left column illustrates the LW estimates, while the right column the
GPH estimates. In the first row the estimates are plotted against the m/10. The second row shows the estimates
of the MSE against m/10. The third row shows the estimated d against 10/m. The last row shows the estimates of
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Figure 4.13: FGN Pipiras, 1/10-th Sec. The left column illustrates the LW estimates, while the right column the
GPH estimates. In the first row the estimates are plotted against the m/10. The second row shows the estimates
of the MSE against m/10. The third row shows the estimated d against 10/m. The last row shows the estimates of
log c against m/10 147



Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

d

0 200 400 600 800 1000

-0
.2

0.
0

0.
2

0.
4

0.
6

Num of PGM ordinates

G
P

H
 d

0 200 400 600 800 1000

-0
.5

0.
0

0.
5

Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

M
S

E

0 200 400 600 800 1000

0.
0

0.
01

0
0.

02
0

Num of PGM ordinates / 10

G
P

H
 M

S
E

0 200 400 600 800 1000

0.
0

0.
05

0.
15

1/(PGM ordinates / 10)

W
hi

ttl
e 

d

0.0 0.02 0.04 0.06 0.08 0.10

0.
20

0.
30

0.
40

1/(PGM ordinates / 10)

G
P

H
 d

0.0 0.02 0.04 0.06 0.08 0.10

0.
1

0.
2

0.
3

0.
4

Num of PGM ordinates / 10

Lo
ca

l W
hi

ttl
e 

lo
g(

c)

0 200 400 600 800 1000

13
.0

13
.5

14
.0

14
.5

15
.0

Num of PGM ordinates / 10

G
P

H
 lo

g(
c)

0 200 400 600 800 1000

13
14

15

fgn_pipiras_1s

Figure 4.14: FGN Pipiras, 1 Sec. The left column illustrates the LW estimates, while the right column the GPH
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Figure 4.15: Estimates vs Aggregation, Automatic Method, FGN Pipiras. The left column illustrates the estimates
of d versus the aggregation level. The right columns shows instead the estimates of log c. The first two rows show
the LW estimates, while the last two the GPH estimates. The first one of each employs the original data, while, in
the second row, the data has been detrended prior to estimation149
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Figure 4.16: Estimates vs Aggregation, Tuned Method, FGN Pipiras. The left column illustrates the estimates of
d versus the aggregation level. The right columns shows instead the estimates of log c. The first two rows show the
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Figure 4.17: FARIMA(1,.3,1), ar(1)=.9, ma(1)=.5, 1ms. The left column illustrates the LW estimates, while the
right column the GPH estimates. In the first row the estimates are plotted against the m/10. The second row shows
the estimates of the MSE against m/10. The third row shows the estimated d against 10/m. The last row shows the
estimates of log c against m/10 151
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original data, while, in the second row, the data has been detrended prior to estimation155
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Chapter 5

Conclusions

We analyzed the effect that temporal aggregation has on long-range dependence. We first consid-

ered the effect that temporal aggregation has on LRD processes. Making only local assumptions

on the spectral density in a neighborhood of the origin we showed in Proposition 2.1.1 that the

fractional order of a LRD processes is invariant under aggregation. Long-range dependence is a

phenomenon that characterizes the process at low frequencies. Temporal aggregation is a form

of data compression that looses the high-frequency characteristics of the data, but preserves the

low-frequency behavior. We confirmed this result with our empirical analysis of the UNC network

data. Provided sufficient data is available at all aggregations levels, the estimates of the LRD

parameter d is invariant under aggregation, regardless whether the bandwidth parameter m used

in the estimation is fixed across aggregation levels (automatic method), or it is chosen to minimize

the asymptotic MSE (tuned method). Furthermore, we established that the logarithm of the scale

parameter varies linearly with aggregation. Again, this fact is confirmed in our empirical analysis

of the UNC network data in Chapter 4.

We then considered the effect of aggregation on the finite sample properties of periodogram-

based estimators of long-range dependence. In particular, we looked at the efficiency of the esti-

mators as measured by the MSE, and how the MSE-optimal choice of the bandwidth parameter m



varies with aggregation. Based on asymptotic expression for the MSE of the estimators, Proposi-

tion 2.2.1 and Proposition 2.2.2 show that, for b < 2, the MSE and MSE-optimal choice of m for

the GPH and LW estimators, respectively, are invariant under aggregation.

We considered also the effect of aggregation when the LRD process is not observed directly.

Instead, a process that is the sum of an LRD process and a white noise process is observed. For such

a case, we considered the LW estimator and the ELW estimator of Hurvich and Ray (2001). For the

ELW estimator, it was not possible to derive any expression for the MSE. Therefore, the analysis

was conducted numerically. We derived an expression for the asymptotic MSE of the LW estimator

that can be used to evaluate numerically the effect of aggregation. The bias of the LW estimator

in Equation (2.52) is composed by a component due to short-range dependence, plus a component

that depends on the variance of the noise. The two components may have antagonist effects on

the bias. The component due to the noise generates a positive bias for the LRD stationary range

0 < d < 0.5. The SRD component can generate either a positive or negative bias depending on the

sign of the parameter γ in Equation (2.52). For a FARIMA(1,d,0) process, γ can be approximated

by −θ/(1−θ)2+d/12 (Delgado and Robinson, 1996), where θ is the autoregressive parameter. This

implies that, for positive θ, γ is negative except for small values of θ and relatively large values

of d. The presence of noise, therefore, can effectively reduce the MSE of the LW estimator when

there is positive SRD correlation. This is the case, for example, of Figure 5.1, where, for d = 0.1,

the MSE of the LW estimator decreases for values of ns greater than 0.5.

The numerical analysis in Chapter 3 shows that the asymptotic expressions (2.33) of the MSE

of the LW estimator derived by Henry and Robinson (1996) grossly overestimate the bias for large

m. In particular, the LW bias does not seem to follow a power 4 relationship with respect to m,

as the theoretical results would predict. The LW estimator performs better than expected at large
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Figure 5.1: Optimal MSE of the LW estimator vs. noise-to-signal, d = 0.1, N = 219

frequencies, and it seems to be affected only moderately by the bias induced by SRD components.

The minimal value of the MSE for FARIMA(0,d,0) processes is attained almost always at the last

available frequency, which indicates that the variance component of the MSE dominates the bias

component. The asymptotic expression of the MSE overestimates the bias also when a white noise

and an AR(1) component are added, although the minimal MSE is not attained any longer at

the maximum m, a sign that the bias/variance trade-off becomes relevant. The same can be said

regarding the MSE expression (A.16) which accounts for the presence of the noise component.

For the practitioner, this seems to suggest to choose a value of m larger than the one indicated

by minimizing the estimated MSE according to the procedure suggested by Henry and Robinson

(1996). It has to be noted that while equation (2.33) does not predict accurately the MSE of the

LW estimator when the true values of the parameters are used, when it is used for finding the

minimal MSE on real data with estimated parameters, as it is the case of the “tuned method”

employed for the UNC network data, it often leads to select the highest frequency available as the
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value that minimizes the MSE. This behavior is consistent with the behavior observed by the MSE

in the numerical analysis.

The LW estimator performs at least as well as the ELW estimator for all values of the noise-

to-signal ratio, and for all levels of aggregation. The better asymptotic properties of the bias

component of the ELW estimator do not translate to the finite sample, where the variance compo-

nent of the MSE is dominant. This is particularly true for small values of d, being the asymptotic

variance of the ELW estimator equal to 1+2d
16d2 (Hurvich et al., 2005), which diverges as d converges

to zero. Unless the estimation of the volatility of the noise component is required, as it is the

case of LMSV models, it seems hard to recommend the ELW in place of the LW estimator for

the estimation of the LRD parameter, even when the presence of an additive noise component is

suspected.

When no bias term is present, that is, when the process is pure LRD, the MSE of the LW

estimator depends uniquely on the variance, which decreases exponentially with m. Therefore, the

minimal MSE is attained at the highest value of m available. This implies that, for pure LRD

processes, aggregation is deleterious because it reduces the number of available frequencies. If a

bias component is present, because of either a noise component or a SRD components, temporal

aggregation can have beneficial effects. The numerical analysis in Chapter 3 shows that the MSE

of the LW estimator is essentially unaffected by temporal aggregation, provided that the number

of frequencies is not reduced to the point where the variance effect becomes dominant. When the

values of d and ns are large, corresponding to a larger noise component of the bias, higher levels of

aggregation can be used before the variance effect become dominant.

The variance of the ELW estimator dominates the MSE of the estimator to a greater extent

than the variance of the LW estimator does. It is not surprising, therefore, that aggregation affects
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the ELW estimator negatively at lower levels of aggregation than it does for the LW estimator, and

more so for small values of d. As for the LW estimator, with large values of d and ns, corresponding

to a larger noise component of the bias, higher levels of aggregation can be used before the variance

effect becomes dominant. Because the ELW estimator is less robust with respect to aggregation

than the LW estimator, we would again recommend against using the ELW estimator to estimate

d if there is no need to estimate the volatility of the noise.

To determine how much aggregation is acceptable, a rule of thumb can be to estimate d using

the LW estimator according to the procedure suggested by Henry and Robinson (1996) for a range

of aggregation levels. The performance of the estimator is invariant under aggregation, provided

enough frequencies are available to reach the optimal value of m. If the estimated value d̂ is

constant over all aggregation levels, one can reasonably infer that the variance effect has not become

dominant over the whole range of frequencies at any level of aggregation. Therefore, an estimate

that attain the minimal MSE can be obtained at the highest level of aggregation considered.
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Appendix A

The overall procedure to compute the MSE LW-type estimators is inspired by the proofs in Smith

(1989), Henry and Robinson (1996) and Hurvich et al. (1998) and can be summarized as follows.

The Local Whittle estimator minimizes the contrast

h =
m∑

i=1

(
log fi +

yi

fi

)
(A.1)

where m < N is a bandwidth parameter chosen by the user in a way that balances the trade-off

between bias and variance.

Let’s write θ̂ for the value that minimizes (A.1), and θ0 for the true value of θ. Indicate by ∇h

the gradient of h and by H its Hessian matrix.

If θ̂ is in a neighborhood of θ0, one can use the following Taylor approximation

∇h(θ̂) = 0 = ∇h(θ0) +H(θ0)(θ̂ − θ0) + rN (A.2)

where H(θ) is the Hessian matrix computed at θ. If the remainder rN is negligible, the asymptotic

properties of θ̂ − θ0 are equal to the properties of

θ̂ − θ0 ≈ −H−1(θ0)∇h(θ0) (A.3)

In practice, we will replace ∇h(θ0) by an approximation and H by its expectation H∗. Hence, we
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will have

E(θ̂ − θ0) ≈ −H∗−1(θ0)E∇h(θ0) (A.4)

and

V ar(θ̂ − θ0) ≈ H∗−1(θ0) (A.5)

A.1 The Bias of the LW Estimator with Added Noise

In this section we assume that the underlying model is the composed by a LRD process plus a white

noise, that is, it has the form of Equation (2.41). However, the local Whittle estimator employs

the familiar form of the spectral density f(λ) = cλ−2d in the expression of the contrast. In other

words, we are assuming that the model has been misspecified in the estimation step.

The Whittle contrast is the usual

h =
m∑

i=1

{
log c− 2d log λi +

I(λi)
cλ−2d

i

}

Let xi := log λi and Ii = I(λi).

For the purpose of evaluating the bias and variance of the estimator, assume that the expected

value of the periodogram ordinates is

E{Ii} = exp(β0 + β1xi){1 + γλδ
i + αλ−β1

i + o(λmin(−β1,δ)
i )} (A.6)

where α = σ2
ε

2πc , β0 = log c, and β1 = −2d. The parameters β0 and β1 are the targets of the

estimation.
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Write lj for ∂L
∂βj

, ljk for ∂2l
∂βj∂βk

, j, k = 0, 1. Then

h0 =
∑

i

{1− Ii exp(−β0 − β1xi)},

h1 =
∑

i

xi{1− Ii exp(−β0 − β1xi)},

h00 =
∑

i

Ii exp(−β0 − β1xi),

h01 =
∑

i

xiIi exp(−β0 − β1xi),

h11 =
∑

i

x2
i Ii exp(−β0 − β1xi).

We replace each of these by its expected value evaluated by (A.6) and ignore the O(λmin(−β1,δ)
i )

terms in (A.6). Then

h∗00 = m,

h∗01 =
∑

xi,

h∗11 =
∑

i

x2
i .

and the expected value of the Hessian matrix is

H =

 m
∑
xi∑

xi
∑
x2

i

 ,

H−1 =
1

m
∑
x2

i − (
∑
xi)2


∑
x2

i −
∑
xi

−
∑
xi m

 . (A.7)
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Evaluating the sums,

m∑
i=1

xi =
m∑

i=1

(
log i+ log

2π
N

)
≈

∫ m

0

(
log x+ log

2π
N

)
dx

= m logm−m+m log
2π
N
, (A.8)

m∑
i=1

x2
i =

m∑
i=1

(
log i+ log

2π
N

)2

=
m∑

i=1

log2 i+ 2 log
2π
N

m∑
i=1

log i+m log2 2π
N

≈
∫ m

0
log2 xdx+ 2 log

2π
N

∫ m

0
log xdx+m log2 2π

N

= m log2m− 2m logm+ 2m+ 2 log
2π
N

(m logm−m) +m log2 2π
N

from which follows that

m
∑

x2
i − (

∑
xi)2 ∼ m2 (A.9)

From the discussion at the beginning of this section, we have that

θ̂ − θ0 ≈ −H−1∇h(θ0),

E
{
θ̂ − θ0

}
≈ −H−1E {∇h(θ0)} , (A.10)

V ar{θ̂ − θ0} ≈ H−1. (A.11)

And so

V ar{β̂1} ≈
1
m
. (A.12)

To complete the calculation we must evaluate the asymptotic expectations of h0 and h1.
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Using (A.6) we have

E{h0} ≈
m∑

i=1

{1− (1 + γλδ
i − αλ−β1

i )}

= −γ
(

2π
N

)δ m∑
i=1

iδ + α

(
2π
N

)−β1 m∑
i=1

i−β1

≈ −γ
(

2π
N

)δ ∫ m

0
xδdx− α

(
2π
N

)−β1
∫ m

0
x−β1dx

= −γ
(

2π
N

)δ mδ+1

δ + 1
− α

(
2π
N

)−β1 m1−β1

1−β1
(A.13)

and

E{h1} ≈
m∑

i=1

xi{1− (1 + γλδ
i − αλ−β1

i )}

= −γ
(

2π
N

)δ m∑
i=1

iδ
(

log i+ log
2π
N

)

+α
(

2π
N

)−β1 m∑
i=1

i−β1

(
log i+ log

2π
N

)

≈ −γ
(

2π
N

)δ ∫ m

0
xδ

(
log x+ log

2π
N

)
dx

+α
(

2π
N

)−β1
∫ m

0
x−β1

(
log x+ log

2π
N

)
dx (A.14)
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Then the bias of β̂1 is approximately

1
m2

(
m∑

i=1

xih0 −mh1)

=
1
m2

[(
m logm−m+m log

2π
N

){
−γ
(

2π
N

)δ mδ+1

δ + 1

}
(
m logm−m+m log

2π
N

){
−α

(
2π
N

)−β1 m1−β1

1−β1

}

+mγ
(

2π
N

)δ {mδ+1 logm
δ + 1

− mδ+1

(δ + 1)2
+
mδ+1

δ + 1
log

2π
N

}]

−mα
(

2π
N

)−β1
{
m1−β1 logm

1−β1
− m1−β1

(1−β1)2
+
m1−β1

1−β1
log

2π
N

}]

=
γδ

(δ + 1)2

(
2πm
N

)δ

− αβ1

(1−β1)2

(
2πm
N

)−β1

(A.15)

Combining (A.12) and (A.15), the approximate MSE of β̂1 is given by

1
m

+
γ2δ2

(δ + 1)4

(
2πm
N

)2δ

+
α2β1

2

(1−β1)4

(
2πm
N

)−2β1

− 2
γδαβ1

(δ + 1)2(1− β1)2

(
2πm
N

)δ−β1

(A.16)

The optimal value of m can only be found numerically, and it will depend on the value of d.

A.2 The Extended Local Whittle

Suppose the model is characterized by a spectral density f(λ, θ), for some vector of parameters

θ. Let fi := f(λi) be the value of the density corresponding to the Fourier frequency λi = 2πi
N ,

i = 1, . . . , [N/2]. Similarly, let yi := I(λi) be the ith periodogram ordinate.

For the model with added noise, we will assume that

fi = α

{
1 + β

(
i

m

)−γ
}

(A.17)
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where θ = (α, β, γ) is the set of parameters. The long range dependence effect is driven by the

parameter γ = 2d.

For a long-memory process, the periodogram is a biased estimator of the spectral density in a

neighborhood of the origin (Hurvich and Beltrao, 1994). Therefore, we assume that

E(yi) = α

{
1 + β

(
i

m

)−γ
}{

1 + δ

(
i

m

)τ

+ o

[(
i

m

)τ]}
(A.18)

for some δ, τ > 0.

We will now proceed to compute a heuristic expression for H∗ for the ELW estimator.

The Whittle contrast (A.1) is

h =
m∑

i=1

logα+ log

{
1 + β

(
i

m

)−γ
}

+ yiα
−1

{
1 + β

(
i

m

)−γ
}−1

 (A.19)

Denote the derivatives of h by hθi
:= ∂h

∂θi
and hθi,θj

:= ∂h
∂θ∂θi

. Then, we have, for the gradient

hα =
m∑

i=1

α−1yiα
−2

{
1 + β

(
i

m

)−γ
}−1


hβ =

m∑
i=1

(
i

m

)−γ
{1 + β

(
i

m

)−γ
}−1

− yiα
−1

{
1 + β

(
i

m

)−γ
}−2


hγ = −β

m∑
i=1

(
i

m

)−γ

log
(
i

m

){1 + β

(
i

m

)−γ
}−1

− yiα
−1

{
1 + β

(
i

m

)−γ
}−2



168



And for the Hessian matrix,

hαα =
m∑

i=1

−α−2 + 2yiα
−3

{
1 + β

(
i

m

)−γ
}−1


hββ =

m∑
i=1

(
i

m

)−2γ
−{1 + β

(
i

m

)−γ
}−2

+ 2yiα
−1

{
1 + β

(
i

m

)−γ
}−3


hγγ = β

m∑
i=1

(
i

m

)−γ

log2

(
i

m

){1 + β

(
i

m

)−γ
}−1

− yiα
−1

{
1 + β

(
i

m

)−γ
}−2


+β2

m∑
i=1

(
i

m

)−2γ

log2

(
i

m

)−{1 + β

(
i

m

)−γ
}−2

+ 2yiα
−1

{
1 + β

(
i

m

)−γ
}−3


hαβ =

m∑
i=1

(
i

m

)−γ
yiα

−2

{
1 + β

(
i

m

)−γ
}−2


hαγ = −β

m∑
i=1

(
i

m

)−γ

log
(
i

m

)yiα
−2

{
1 + β

(
i

m

)−γ
}−2


hβγ = −

m∑
i=1

(
i

m

)−γ

log
(
i

m

){1 + β

(
i

m

)−γ
}−1

− yiα
−1

{
1 + β

(
i

m

)−γ
}−2


−β
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i=1

(
i

m

)−2γ

log
(
i

m

)−{1 + β

(
i

m

)−γ
}−2

+ 2yiα
−1

{
1 + β

(
i

m

)−γ
}−3


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Replacing fi for yi in the equations above, we find the expected values

h∗αα = mα−2

h∗ββ =
m∑

i=1

(
i

m

)−2γ
{

1 + β

(
i

m

)−γ
}−2

h∗γγ = β2
m∑

i=1

(
i

m

)−2γ

log2

(
i

m

){
1 + β

(
i

m

)−γ
}−2

h∗αβ = α−1
m∑

i=1

(
i

m

)−γ
{

1 + β

(
i

m

)−γ
}−1

h∗αγ = −βα−1
m∑

i=1

(
i

m

)−γ

log
(
i

m

){
1 + β

(
i

m

)−γ
}−1

h∗βγ = −β
m∑

i=1

(
i

m

)−2γ

log
(
i

m

)
−

{
1 + β

(
i

m

)−γ
}−2

Replacing sums with integrals, we can write

h∗ββ ≈
∫ m

0

( y
m

)−2γ
{

1 + β
( y
m

)−γ
}−2

dy

= m

∫ 1

0
x−2γ(1 + βx−γ)−2dx (A.20)

In (A.20), operate the substitution

x = β1/γ

(
u

1− u

)−1/γ

(A.21)
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Then h∗ββ becomes

h∗ββ ≈ mβ1/γ−2γ−1

∫ 1

β/(β+1)
u1−1/γ(1− u)1/γ−1du

= mβ1/γ−2γ−1B

(
2− 1

γ
,
1
γ

){
1− Iβ/(1−β)

(
2− 1

γ
,
1
γ

)}
(A.22)

where

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt (A.23)

is an incomplete beta function, and B(a, b) = Γ(a)Γ(b)/Γ(a+ b).

Similarly, for the other elements of H∗, we have

h∗γγ ≈ mγ−1 ∂

∂η

∂

∂ξ

∣∣∣∣β1/γ+η+ξB

(
2− 1

γ
{1 + η + ξ}; 1

γ
{1 + η + ξ}

)
{

1− Iβ/(1−β)

(
2− 1

γ
{1 + η + ξ}; 1

γ
{1 + η + ξ}

)}∣∣∣∣
η=0,ξ=0

(A.24)

(A.25)

h∗α,β ≈ mα−1β1/γ−1γ−1B

(
1− 1

γ
,
1
γ

)
{

1− Iβ/(1−β)

(
1− 1

γ
,
1
γ

)}
(A.26)

(A.27)

h∗αγ ≈ −m ∂

∂η

∣∣∣∣β(1+η)/γγ−1B

(
1− 1 + η

γ
;
1 + η

γ

)
{

1− Iβ/(1−β)

(
1− 1 + η

γ
;
1 + η

γ

)}∣∣∣∣
η=0

(A.28)

(A.29)
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h∗βγ ≈ −m ∂

∂η

∣∣∣∣β(1+η)/γ−1γ−1B

(
2 +

1 + η

γ
;−1 + η

γ

)
{

1− Iβ/(1−β)

(
2 +

1 + η

γ
;−1 + η

γ

)}∣∣∣∣
η=0

(A.30)

A.3 The Mean Squared Error of the Geweke-Porter Hudak Esti-

mator

In this section we extend the result of Hurvich et al. (1998) regarding the MSE of the GPH estimator

to a model similar to the one employed by Robinson (1995a). We will assume a Gaussian series yt

whose spectral density near the origin has the form

f(λ) = αλ−2d{1 + βλδ + o(λδ)} (A.31)

and that m,n→∞ with m going to infinity at a rate faster than Knγ , for γ > 2/3. We will show

that, under these conditions, the MSE is approximately given by

π2

24m
+

β2δ2

4(δ + 1)4

(
2πm
N

)2δ

(A.32)

Note that the bias component of the GPH estimator does not depend on the scale parameter α.

Taking the logarithm of the spectral density, and using a Taylor expansion, we can rewrite

log f(λ) = logα− 2d log λ+ log{1 + βλδ + o(λδ)}

≈ logα− 2d log λ+ βλδ + o(λδ)
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or

log
f(λ)
I(λ)

I(λ) = logα− 2d log λ+ βλδ + o(λδ)

which implies

log Ij = (logα− C)− 2dxj + βλδ
j + εj

where Ij = I(λj), λj = 2πj
N , xi = log λj , εj = Ij

fj
+ C, and C = 0.5777 is Euler’s constant.

Let aj = (xi − x̄) and Sxx =
∑m

1 (xi − x̄)2. Then the GPH estimator of d is

d̂ = −1
2

∑m
1 aj log Ij
Sxx

= d− 1
2

aj

[
βλδ

j + o(λδ)
]

Sxx
− 1

2

∑m
1 ajεj
Sxx

which implies that the bias is

d̂− d = − 1
2Sxx

aj

[
βλδ

j + o(λδ)
]
− 1

2Sxx

m∑
1

ajεj (A.33)

with expected value

E(d̂− d) = − 1
2Sxx

m∑
i

aj

[
βλδ

j + o(λδ)
]
− 1

2Sxx

m∑
1

ajE(εj) (A.34)

The variance of d̂ is

V ar(d̂) =
1

4S2
xx

V ar(
m∑
1

ajεj)

=
1

4S2
xx

m∑
1

a2
jV ar(εj) +

1
2S2

xx

m∑
j=1

m∑
k=j

ajakCov(εj , εk) (A.35)
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Now, we have (Hurvich and Beltrao, 1994) (or also from the above discussion),

Sxx = m+ o(m) (A.36)

In order to evaluate the asymptotic expression of the bias, we first need to find asymptotic for the

first term in Equation (A.34).

∑
aj

[
βλδ

j + o(λδ
j)
]

= β
∑

ajλ
δ
j +

∑
ajo(λδ

j)

We have:

∑
ajλ

δ
j =

∑
(xi − x̄)λδ

j

=
∑

(log λj − 1/m
∑

log λj)λδ
j

=
∑

λδ
j log λj −

1
m

∑
λδ

j

∑
log λj

and

∑
λδ

j =
∑(

qπj

N

)δ

≈
(qπ
N

)δ
∫ m

0
xδdx

=
(qπ
N

)δ mδ+1

δ + 1

∑
λδ

j log λj =
∑(

2πj
N

)δ

log j +
∑(

2πj
N

)δ

log
2π
N

=
(

2π
N

)δ∑
jδ log j +

(
2π
N

)δ

log
2π
N

∑
jδ
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∑
jδ ≈ mδ+1

δ + 1

integrating by parts,

∑
jδ log j ≈

∫ m

0
xδ log xdx

=
mδ+1

δ + 1
logm− mδ+1

(δ + 1)2

Hence ∑
λγ log λj ≈

(
2pi
N

)δ {mδ+1

δ + 1
logm− mδ+1

(δ + 1)2

}
+
(

2pi
N

)δ

log
2π
N

mδ+1

δ + 1
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∑
ajλ

δ
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2pi
N
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δ + 1
logm− mδ+1

(δ + 1)2
+ log

2π
N
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δ + 1

−m
δ+1
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(
logm− 1 + log

2π
N

)}
=

(
2π
N

)δ { δ

(δ + 1)2
mδ+1

}

which implies

− β

2Sxx

∑
ajλ

δ
j ≈ − βδ

2(δ + 1)2

(
2πm
N

)δ

(A.37)

This results is equivalent to Lemma 1 in Hurvich et al. (1998), and to the bias term in MSE

computation in Smith (1989). However, to fully evaluate the expected value of the bias, we still

need to show that the remainder terms are negligible.

We now need the expected value and variance-covariances of εj = log Ij

fj
+C. Following Hurvich

et al. (1998), we compute first Cov(εj , εk), j > k.
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Rewrite

Ij
fj

=

(
Aj

f
1/2
j

)2

+

(
Bj

f
1/2
j

)2

where

Aj =
1

2πN

1/2 N−1∑
t=0

yt cos(λjt)

Bj =
1

2πN

1/2 N−1∑
t=0

yt sin(λjt)

For the discrete orthogonality of the Fourier coefficients, it follows that E(Aj) = E(Bj) = 0.

Since yt is Gaussian, and since εj = log Ij

fj
+ C, the joint distribution of (εj , εk) is determined

by the covariance matrix Σ of

ν :=

(
Aj

f
1/2
j

,
Bj

f
1/2
j

,
Ak

f
1/2
k

,
Bk

f
1/2
k

)
= (ν1, ν2, ν3, ν4)′ (A.38)

The distribution of ν is multivariate normal with mean zero and variance-covariance matrix Σ.

Let

αj,k := max

{
|Cov( Aj

f
1/2
j

,
Ak

f
1/2
k

)|, |Cov( Aj

f
1/2
j

,
Bk

f
1/2
k

)|,

|Cov( Bj

f
1/2
j

,
Ak

f
1/2
k

)|, |Cov( Bj

f
1/2
j

,
Bk

f
1/2
k

)|

}
(A.39)

Lemmas 2 and 3 of Hurvich and Deo (1999) or Theorem 2 Robinson (1995a) apply, so that

Cov(εj , εj) = O(α2
j,k) uniformly for log2m ≤ j < j ≤ m, and αj,k = O(log j/k) uniformly for

1 ≤ k < j ≤ m.

The final result follows from a straightforward application of Lemmas 4-8 of Hurvich et al.

(1998).
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Appendix B

In this Appendix we report the result by Cao (2002) that links the spectral density of the basic

process to the spectral density of the aggregate process.

Let Xt, t ∈ Z, be a stationary process with covariance function γx(k), k ∈ Z, and let

fX(λ) =
1
2π

∞∑
k=−∞

γx(k)e−iλk λ ∈ [0, 2π) (B.1)

be its spectral density.

Denote by X̃t the spectral representation of Xt, that is X̃t is an orthogonal process with mean

zero such that

Xt =
∫ 2π

0
eiλtdX̃(λ) (B.2)

X̃t has the following properties:

E[dX̃(λ)dX̃(λ′)] = 0 if λ 6= λ′ (B.3)

E[|dX̃(λ)|2] = fX(λ)dλ (B.4)

Lemma B.0.1 (Jin Cao’s result). Let

Y
(k)
t := X(t−1)k+1 +X(t−1)k+2 + · · ·+Xtk (B.5)
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Then the spectrum of Y (k)
t is

fk(λ) =
1
k

k−1∑
j=0

sin2 λ
2

sin2 λ+2πj
2k

fX

(
λ+ 2πj

k

)
(B.6)

Proof. Let

g(λ) = 1 + eiλ + · · ·+ ei(k−1)λ (B.7)

Using the spectral representation for Xt, and noting that eiλx has period 2π, we have

Y
(k)
t =

k−1∑
j=0

∫ 2π

0
eiλ(mk−j)dX̃(λ)

=
k−1∑
j=0

∫ 2π

0
eiλmkg(λ)dX̃(λ)

=
k−1∑
j=0

∫ 2kπ

0
eiλmg

(
λ

k

)
dX̃

(
λ

k

)

=
k−1∑
j=0

∫ 2π(j+1)

2πj
eiλmg

(
λ

k

)
dX̃

(
λ

k

)

=
∫ 2π

0
eiλm

k−1∑
j=0

g

(
λ+ 2πj

k

)
dX̃

(
λ+ 2πj

k

)

=
∫ 2π

0
eiλmdỸ (λ)

where

dỸ (λ) =
k−1∑
j=0

g

(
λ+ 2πj

k

)
dX̃

(
λ+ 2πj

k

)
(B.8)

is an orthogonal process and, hence, is the spectral representation of Y (k)
t .
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Applying Equation (B.4), and noting that |g(λ)|2 = sin2 kλ
2

sin2 λ
2

,

E[|dỸ (λ)|2] = fk(λ)d(λ)

=
1
k

k−1∑
j=0

∣∣∣∣g(λ+ 2πj
k

)∣∣∣∣2 fX

(
λ+ 2πj

k

)
dλ

=
1
k

k−1∑
j=0

sin2 λ
2

sin2 λ+2πj
2k

fX

(
λ+ 2πj

k

)
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Granger, C. W. J. (1966), “The Typical Spectral Shape of an Economic Variable,” Econometrica,
34, 150–161.

— (1980a), “Long memory relationship and the aggregation of dynamic models,” Journal of Econo-
metrics, 14, 227–238.

Granger, Clive W. J. and. Joyeux, R. (1980b), “An introduction to long-range time series models
and fractional differencing,” J. of Time Series Analysis, 1, 15–30.

Hannan, E. J. (1973), “The asymptotic theory of linear time series models,” Journal of Applied
Probability, 10, 130–145.

Hannig, J., Marron, J., and RH Riedi, R. (2001), “Zooming statistics: Inference across scales,”
Journal of the Korean Statistical Society, 30, 327–345.

Harvey, A. C. (1998), “Long memory in stochastic volatility,” in Forecasting Volatility in Financial
Markets, eds. Knight, J. and Satchell, S., London: Butterworth-Heinmann.

183



Haslett, J. and Raftery, A. E. (1989), “Space-time modeling with long-memory dependence: as-
sessing Ireland’s wind power resource (with discussion),” Applied Statistics, 38, 1–50.

Heeke, H. (1991), “Statistical multiplex gain for variable bit rate codecs in ATM networks,” Int.
J. Digit. Analog. Commun. Syst., 4, 182–189.

Henry, M. and Robinson, P. M. (1996), “Bandwidth choice in Gaussian semiparametric estimation
of long-range dependence,” in Robinson and Rosenblatt (1996), pp. 220–232.

Heyde, C. and Gay, G. (1993), “Smoothed Periodogram asymptotics and estimation for processes
and fields with long-range dependence,” Stochastic Processes and Their Application, 45, 169–187.

Heyman, D., Tabatabai, A., and Lakshman, T. (1991), “Statistical analysis and simulation of video
teleconferencing in ATM networks,” IEEE Trans. Circuits Syst. Video Technol., 2, 49–59.

Higuchi, T. (1988), “Approach to an irregular time series on the basis of the fractal theory,” Physica
D, 31, 277–283.

Hosking, J. R. M. (1981), “Fractional Differencing,” Biometrica, 68, 165–176.

Hosoya, Y. (1997), “Limit theory with long-range dependence and statistical inference of related
models,” Annals of Statistics, 25, 105–137.

Hurst, H. (1951), “Long term storage capacity of reservoirs,” Trans. Am. Soc. Civil Engineers, 161,
770–799.

Hurvich, C. M. and Beltrao, K. I. (1993), “Asymtoptics for the low-frequency ordinates of the
periodogram of a long-memory time series,” J. of Time Series Analysis, 14, 455–472.

— (1994), “Automatic semiparametric estimation of the memory parameter of a long memory time
series,” J. of Time Series Analysis, 15, 285–382.

Hurvich, C. M. and Brodsky, J. (2001), “Broadband semiparametric estimation of the memory
parameter of a long memory time series using fractional exponential models,” J. of Time Series
Analysis, 22, 221–249.

Hurvich, C. M. and Deo, R. (1999), “Plug-in selection of the number of frequencies in regression
estimates of the memory parameter of a long-memory time series,” J. of Time Series Analysis,
20, 331–341.

184



Hurvich, C. M., Deo, R., and Brodsky, J. (1998), “The mean squared error of Geweke and Porter-
Hudak’s estimator of a long-memory time-series,” J. of Time Series Analysis, 19, 19–46.

Hurvich, C. M., Moulines, E., and Soulier, P. (2002), “The FEXP estimator for non-Gaussian,
potentially non stationary processes,” Stochastic Processes and their Application, 97, 307–340.

— (2005), “Estimating Long Memory in Volatility,” Econometrica, 73, 1283–1328.

Hurvich, C. M. and Ray, B. K. (2001), “The local Whittle Estimator of long memory stochastic
volatility,” Journal of Financial Econometrics, 1, 445–470.

Janacek, G. J. (1987), “Determining the degree of differencing for time series via log spectrum,” J.
of Time Series Analysis, 3, 177–183.

Jones, P. and Briffa, K. (1992), “Global surface air temperature variations during the twentieth
century, part 1, Spatial, temporal and seasonal detail,” Holocene, 2, 165–179.

Kelly, F. P., Zachary, S., and Ziedins, I. (eds.) (1996), Stochastic Networks, Oxford: Oxford Uni-
versity Press.

Kokoszka, P. S. and Bhansali, R. J. (1999), “Estimation of the long memory parameter by fitting
fractional differenced autoregressive models,” Preprint.

Kolmogorov, A. N. (1941), “The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30. Translated by V. Levin. Reprinted in
Proc. R. Soc. Lond, 434, 9–13.
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