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Abstract

A second-order expansion is established for predictive distributions in Gaussian processes
with estimated covariances. Particular focus is on estimating quantiles of the predictive dis-
tribution and their subsequent application to prediction intervals. Two basic approaches are
considered, (a) a “plug-in” approach using the restricted maximum likelihood estimate of the
covariance parameters, (b) a Bayesian approach using general priors. Calculations of “coverage
probability bias” show that the Bayesian approach is superior in the tails of the predictive dis-
tributions, regardless of the prior. However they also imply the existence of a “matching prior”
for which the second-order coverage probability bias vanishes. Previously suggested frequen-
tist corrections do not have this property, but we use our results to suggest a new frequentist
approach that does. We also compute the expected length of a Bayesian prediction interval,
suggesting that this might be used as a design criterion combining recent “estimative” and “pre-
dictive” approaches to network design. A surprising parallel emerges with the recent two-stage
estimative-predictive approach of Zhu and Stein.

Keywords: Design of monitoring networks; Predictive inference; Second-order asymptotics;
Spatial statistics.

1 Introduction

Many of the techniques of spatial statistics are built around the assumption that a set of observations
— for example, measurement of atmospheric pollutants or meteorological variables at a finite
network of stations, or some transformation of those variables — are samples from a Gaussian
random field. The mean of the random field may be constant or may be representable as a linear
combination of covariates, while the covariance function is chosen from a parametric family of
positive-definite covariances. Kriging is a technique for predicting unobserved values of the random
field through linear combinations of the observed variables. The weights are chosen to minimize the
mean squared prediction error subject to an unbiasedness constraint. Ordinary kriging is applied
when the mean of the process is an unknown constant, and universal kriging when it is a linear
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combination of covariates. Often the covariance structure of the process is represented in terms of
the variogram instead of the covariance function itself, which is a little more general because the
variogram may exist in certain circumstances when the ordinary covariance function does not, but
we shall not consider that as a separate case of the present paper. Numerous books, e.g. Ripley
(1981), Cressie (1993), Chilès and Delfiner (1999), Stein (1999) have presented all these concepts
in detail.

One widely recognized difficulty with these methods is that the usual formula for the mean
squared prediction error of a kriging predictor does not take into account the estimation of the
covariance model parameters. Typically in geostatistics, the estimation of the covariance model
parameters is performed first, then the estimated model is used to construct the predictor, but in
the second stage, the covariance parameters are treated as if they were known. Because of this, it is
widely assumed that the prediction standard errors derived through kriging are underestimates of
the true prediction standard deviations, even when the form of the model is correct. Zimmerman
and Cressie (1992) and Stein (1999) have proposed approximate techniques for estimating the mean
squared prediction error with estimated model parameters, but these techniques are somewhat ad
hoc, and it is usually still assumed that the predictive distribution is normal. Bayesian methods
were first proposed for these problems in the early 1990s (see e.g. Le and Zidek 1992, Handcock
and Stein 1993, Brown, Le and Zidek 1994) and are often believed to be superior to standard
kriging methods, because they take into account the uncertainty of model parameters and also
do not rely on any normality assumptions about the posterior distributions of model parameters
and predictions. However, despite much speculation about the issue (e.g. Stein 1999, Berger, De
Oliveira and Sanso 2001), there is no proof in general that Bayesian methods are superior when
assessed, for example, by how closely the true coverage probability of a prediction interval matches
the nominal coverage probability.

The present paper examines these issues through second-order asymptotics. For reasons that
will become clear in Section 2, our preferred method of estimation in spatial processes is restricted
maximum likelihood (REML), and the “plug-in” approach to prediction uses ordinary or univer-
sal kriging, substituting the covariance model parameters by their REML estimates. We compare
prediction intervals constructed by these methods with Bayesian prediction intervals. The latter
may be simplified by using a Laplace approximation to the integral, and one of the by-products
of the paper is a method of constructing approximate Bayesian prediction intervals without using
Markov Chain Monte Carlo methods. Our main results, however, are approximate formulae for the
coverage probability bias of both plug-in and Bayesian prediction intervals, and for the expected
length of a prediction interval. The latter is potentially valuable as a design criterion. The cover-
age probability results do not produce a universal conclusion that either predictor is better than
the other, but we show that as the desired coverage probability approaches 1, the second-order
approximation to the Bayesian coverage probability bias is always smaller than that of the plug-in
approach. This result holds regardless of the prior density, provided it satisfies some smoothness
conditions. However, we also examine the possibility that the prior may be chosen so that the
second-order coverage probability bias vanishes entirely, the case of a so-called “matching prior”.

Although the paper was motivated by the problem of spatial prediction, there is nothing explic-
itly “spatial” about the results. The mathematical framework is that of a Gaussian process with
mean linearly dependent on covariates, whose covariance function depends on a finite-dimensional
vector of unknown parameters. This may include time series models such as ARMA processes, or
variance components models such as mixed effects ANOVA. Also in the spatial case, although it
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is common to assume that spatial covariances (or variograms) are stationary and isotropic, those
assumptions are not essential for our methods either. The results may also be applied to nonsta-
tionary processes or spatial-temporal models provided the covariance functions are parametric.

2 Mathematical framework

Suppose we have an n-dimensional vector of observations Y , and are interested in predicting some
unobserved scalar value of the random field Y0. In practice we may well be interested in predicting
more than one Y0 from a given Y , but we do not treat that case separately, assuming that it suffices
to consider one Y0 at a time. The joint density of Y and Y0 is assumed to be of the form

(
Y
Y0

)
∼ N

[(
Xη
xT

0 η

)
,

(
V (θ) wT (θ)
w(θ) v0(θ)

)]
(1)

where X and x0 are known matrices of regressors of dimensions n× q and q × 1 respectively, and
η is an unknown q × 1 vector of regression coefficients. The ordinary kriging model is the special
case of (1) where η is of dimension 1, X = 1T (1 is a column vector of ones) and x0 = 1. We
assume V (θ), w(θ) and v(θ) are covariance elements that are all known functions of an unknown
p-dimensional parameter vector θ. Where there is no ambiguity, we shall simply write V, w and v
without indicating explicitly the dependence on θ. Define `n(θ) to be the restricted log likelihood
function

e`n(θ) = (2π)−(n−q)/2|XT X|1/2|V |−1/2|XT V −1X|−1/2 exp

(
−G2

2

)
, (2)

where G2 = G2(θ) = Y T
{
V −1 − V −1X(XT V X)−1XT V −1

}
Y is the generalized residual sum of

squares. Also let

λ = V −1w + V −1X(XT V −1X)−1(x0 −XT V −1w), (3)
σ2

0 = v0 − wT V −1w + (xT
0 − wT V −1X)(XT V −1X)−1(x0 −XT V −1w). (4)

Lemma 1. Assume (1) holds and let fn(Y ; η, θ), fn+1(Y, Y0; η, θ) denote respectively the density
of Y , and the joint density of Y and Y0. Then

∫
fn(Y ; η, θ)dη = |XT X|−1/2e`n(θ), (5)

∫
fn+1(Y, Y0; η, θ)dη = |XT X|−1/2e`n(θ) · 1√

2πσ2
0

exp



−

1
2

(
Y0 − λT Y

σ0

)2


 (6)

Remark. Equation (5) is due to Harville (1974); (6) follows by an extension of Harville’s
argument. The detailed proof is in Section 8.1.

In the case that θ is known and η unknown with a uniform (improper) prior density, (5) and
(6) show that the predictive density of Y0 given Y is

∫
fn+1(Y, Y0; η, θ)dη∫

fn(Y ; η, θ)dη
=

1√
2πσ2

0

exp



−

1
2

(
Y0 − λT Y

σ0

)2


 (7)
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— in other words, a normal density with mean λT Y and variance σ2
0. Thus in this case the Bayesian

predictor coincides with universal kriging, usually derived by the frequentist argument of choosing λ
to minimize E{(Y0−λT Y )2} subject to the unbiasedness constraint E{Y0−λT Y } = 0. This simple
equivalence of Bayesian and frequentist arguments shows that, in this case, Bayesian prediction
intervals have exactly the correct coverage probabilities.

Now let us consider the more complicated case that θ is unknown, with prior density π(θ).
We continue to assume a uniform prior for η (independent of θ), but we allow π(θ) to be arbitrary
provided it exists and is differentiable over a region that includes the true θ. The posterior predictive
density of Y0 given Y in this case is

∫ ∫
fn+1(Y, Y0; η, θ)dηdθ∫ ∫

fn(Y ; η, θ)dηdθ
=

∫
e`n(θ) · 1√

2σ2
0

exp
{
−1

2

(
Y0−λT Y

σ0

)2
}
· π(θ)dθ

∫
e`n(θ) · π(θ)dθ

. (8)

Alternatively, if we are interested in the predictive distribution function, we may define

ψ(z ; Y, θ) = Φ

(
z − λT Y

σ0

)

where Φ is the standard normal distribution function, and (8) leads to the predictive distribution
function

ψ̃(z ; Y ) =
∫

e`n(θ)+Q(θ)ψ(z ; Y, θ)dθ∫
e`n(θ)+Q(θ)dθ

(9)

where we have written Q(θ) = log π(θ) and, here and subsequently, we use a tilde to denote a
Bayesian estimate or predictor.

In contrast to (9), we also consider the plug-in predictor

ψ̂(z ; Y ) = ψ(z ; Y, θ̂) (10)

where θ̂ is the REML estimator, i.e. the value of θ that maximizes `n(θ).

3 Laplace approximation

First, we introduce some notation. We use superscripts to denote components of θ, such as θi for
the ith component. Where we use scalar functions of θ, such as ψ(z ; Y, θ) (with z and Y held
constant for the time being) or Q(θ), subscripts will indicate differentiation with respect to the
components of θ. Thus Qi = ∂Q

∂θi , ψij = ∂2ψ
∂θi∂θj , etc. We also define Ui = ∂`n(θ)

∂θi , Uij = ∂2`n(θ)
∂θi∂θj ,

Uijk = ∂3`n(θ)
∂θi∂θj∂θk . All of these quantities are functions of a particular θ, and when we evaluate

them at the REML estimator θ̂, we denote this with a hat, e.g. Ûi, ψ̂ij , etc. To avoid making the
notation still more complicated, we do not indicate explicitly that all these quantities also depend
on n, but it is assumed that `n(θ) and all of its derivatives are of Op(n), to be consistent with
regular maximum likelihood theory for i.i.d. observations, while quantities such as Q and ψ, and
their derivatives, are of Op(1). In the context of asymptotic theory for spatial processes, these
conditions assume that we are working in the framework of “increasing domain asymptotics”, as
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defined by Mardia and Marshall (1984), rather than the alternative “infill asymptotics” that have
been popularized by Stein (1999). We have Ûi = 0 (because the REML estimator is defined as
the local maximum of `n), while the values of −Ûij form the observed information matrix. We
assume the latter matrix is invertible and denote the inverse matrix with superscripts rather than
subscripts. In other words, if G is the p × p matrix whose (i, j) entry is Ûij , then G−1 exists and
its (i, j) entry is Û ij . Throughout we use the summation convention, that where a repeated index
appears as both a subscript and a superscript in the same formula, summation over that index is
implicit.

With these notations, two applications of formulae (8.3.50)–(8.3.55) in Chapter 8 of Bleistein
and Handelsman (1986), to the numerator and denominator of (9), lead to the result

ψ̃ − ψ̂ =
1
2
Ûijkψ̂`Û

ijÛk` − 1
2
(ψ̂ij + 2ψ̂iQ̂j)Û ij + Op(n−2). (11)

It should be noted that (11) involves Taylor expansion of both the numerator and denominator of (9)
about the REML estimator θ̂. An alternative approximation, due to Tierney and Kadane (1986),
assumes that the integrands in the numerator and denominator of (9) are separately maximized
with respect to θ; the approximation to ψ̃ is then the ratio of the maximized integrands. As
shown by Tierney and Kadane, this is accurate to Op(n−2) without any additional correction terms
based on Taylor expansion. Compared with (11), the Tierney-Kadane method avoids the need to
evaluate Ui, Uij , etc., which can be cumbersome. However for the purposes of the present paper,
in particular the theoretical calculations of Sections 4 and 5, the explicit expression (11) is more
useful.

We can also apply these arguments to the inverse of the predictive distribution function. Sup-
pose we want to find zP = zP (Y ) to solve the equation ψ(zP ; Y, θ) = P for some given P . The plug-
in estimator in this case is defined by setting (10) equal to P ; this leads to ẑP = λ̂T Y + σ̂0Φ−1(P )
where the hats over λ and σ0 denote that they are evaluated at θ̂. The Bayes estimator z̃P is de-
fined to be the P -quantile of the Bayesian predictive distribution function; in other words, choose
z̃P to solve ψ̃(z̃P ; Y ) = P . We use primes on ψ to denote differentiation with respect to z and
subscripts,as previously, for differentiation with respect to components of θ. With these definitions,
Taylor expansion of ψ about ẑP leads to the approximation

z̃P − ẑP = − ψ̃(ẑP )− ψ̂(ẑP )
ψ̂′(ẑP )

+ Op(n−2). (12)

To evaluate ψ̃(ẑP )− ψ̂(ẑP ), we either use directly the approximation (11) with z = ẑP , or else apply
the Tierney-Kadane approximation as noted in the discussion immediately following (11).

For the evaluation of derivatives of `n that are used in (11), see Section 8.2.
To summarize this section, formula (11) for the predictive distribution function or (12) for its

inverse provide an alternative to the popular Markov chain Monte Carlo (MCMC) methods for
Bayesian computation, that have the advantage of being explicit formulae, not requiring consider-
ation of such issues as the number of MCMC iterations which, despite much research, remains a
source of possible large bias in routine implementation of MCMC. For the calculation of prediction
intervals, a natural way to proceed is to select two values of P , say P1 and P2, such that P2 − P1

is the desired coverage probability. For example, for a 95% prediction interval, obvious values
are P1 = 0.025, P2 = 0.975. Then (ẑP1 , ẑP2) defines the plug-in prediction interval based on the
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REML estimator, and (z̃P1 , z̃P2) is its Bayesian analogue. Equation (12) may be used to define an
approximation, accurate to Op(n−2), to the Bayesian interval. The question that now arises is to
what extent either of these intervals actually achieves its nominal coverage probability, in the sense
that in repeated sampling, the probability that ẑP1 < Y0 < ẑP2 or z̃P1 < Y0 < z̃P2 comes close to
P2−P1. These questions may be approached by calculating the coverage probability bias, to which
we now turn.

4 Asymptotic approximation to the coverage probability bias

We need some further notation. Write Ui = n1/2Zi, Uij = nκij + n1/2Zij , Uijk = nκijk + n1/2Zijk

where κij , κijk are non-random and Zi, Zij , Zijk are random with mean 0; it is part of the assumption
that all these quantities are O(1) or Op(1) as n →∞. Also let κi,j = E{ZiZj}, κij,k = E{ZijZk}.
By a standard identity, κi,j = −κij and is the (i, j) entry of the (normalized) Fisher information
matrix; we assume this matrix is invertible with inverse entries κi,j . Explicit formulae exist for
calculating these quantities; see Section 8.2. In this section, when quantities such as Uijk or
ψij are indicated without hats, it is assumed that they are evaluated at the true θ. Let W =
V −1 − V −1X(XT V −1X)−1XT V −1.

In this notation, a standard Taylor expansion of `n yields the approximation

ψ̂ − ψ = n−1/2κi,jZiψj + n−1
(

κi,jκk,`ZikZjψ` +
1
2
κi,rκj,sκk,tκijkZrZsψt +

1
2
κi,jκk,`ZiZkψj`

)

+Op(n−3/2). (13)

Equation (11) shows that

ψ̃ − ψ̂ =
1
2n

{
κijkκ

i,jκk,`ψ` + (ψij + 2ψiQj)κi,j
}

+ Op(n−3/2). (14)

Equations (13) and (14) provide approximations for both ψ̂ − ψ and ψ̃ − ψ, accurate to Op(n−1),
and these are the basis for all subsequent asymptotic manipulations.

Now consider the inverse of the predictive distribution function. We write ψ = ψ(z ; Y, θ)
to indicate explicitly the dependence on z and Y , and also let ψ∗(z ; Y ) denote an estimator of
ψ(z ; Y, θ); ψ∗ could be either ψ̂ or ψ̃. Assume ψ∗ has an expansion

ψ∗(z ; Y ) = ψ(z ; Y, θ) + n−1/2R(z, Y ) + n−1S(z, Y ) + op(n−1), (15)

We define the true and estimated P -quantiles of the predictive distribution, zP = zP (Y, θ) and
z∗P = z∗P (Y ), by the equations ψ∗(z∗P ; Y ) = ψ(zP ; Y, θ) = P . Then further asymptotic arguments
show that

z∗P − zP = −n−1/2 R(zP , Y )
ψ′(zP ; Y, θ)

+ n−1

{
R(zP , Y )R′(zP , Y )

ψ′2(zP ; Y, θ)
− 1

2
R2(zP , Y )ψ′′(zP ; Y, θ)

ψ′3(zP ; Y, θ)

− S(zP , Y )
ψ′(zP ; Y, θ)

}
+ op(n−1). (16)
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and

ψ(z∗P ; Y, θ)− ψ(zP ; Y, θ) = −n−1/2R(zP , Y ) + n−1
{

R(zP , Y )R′(zP , Y )
ψ′(zP ; Y, θ)

− S(zP , Y )
}

+op(n−1). (17)

Where there is no danger of confusion we omit the arguments zP , Y, θ.
The argument leading to (16) and (17) is essentially that of Cox (1975), but because the precise

form of the result is different from Cox’s, we provide an independent derivation in Section 8.3.
The expected value of (17) will be called the coverage probability bias; it represents the discrep-

ancy between Pr{Y0 ≤ z∗P | Y, θ} and the target probability P . The expected value of (16) is also
of interest, in connection with the expected length of a Bayesian prediction interval; this is further
discussed in Section 5. By (13) and (14), for both ẑP and z̃P , R = κi,jZiψj . For ẑP , we have
S = κi,jκk,`ZikZjψ` + 1

2κi,rκj,sκk,tκijkZrZsψt + 1
2κi,jκk,`ZiZkψj`; we subsequently denote this by

S1. For z̃P , the corresponding expression is S2 = S1 + 1
2κijkκ

i,jκk,`ψ` +
(

1
2ψij + ψiQj

)
κi,j .

After considerable manipulations, given in detail in Section 8.4, the coverage probability bias
in ẑP reduces to

nE{ψ(ẑP ; Y, θ)− ψ(zP ; Y, θ)}
≈ φ(Φ−1(P ))Φ−1(P )

{
κi,jκk,` σ0`

σ0

(
κik,j +

1
2
κijk

)

+
1
2
κi,j

(
σ0ij

σ0
− σ0iσ0j

σ2
0

Φ−1(P )2
)
− 1

2σ2
0

κi,jλT
i V λj

− 1
2nσ2

0

κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)}
. (18)

The corresponding result for z̃P is

nE{ψ(z̃P ; Y, θ)− ψ(zP ; Y, θ)}
≈ φ(Φ−1(P ))Φ−1(P )

{
κi,jκk,` σ0`

σ0
(κik,j + κijk)

+κj,`
(

σ0j`

σ0
− σ0jσ0`

σ2
0

)
+ κi,jQj

σ0i

σ0

− 1
2nσ2

0

κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)}
. (19)

We now make some comments about the general form of the results (18) and (19). Nothing in
the results up to this point suggests any reason why either one of (18) or (19) should dominate the
other universally. In particular, it is entirely plausible that there are situations when the plug-in
approach leads to smaller coverage probability bias than the Bayesian approach. However, the most
interesting cases are as P → 0 or P → 1 — the limiting cases when we want to be nearly certain
that our prediction interval covers the true value. These cases are symmetric so we consider only
P → 1. In this case, (18) shows that the dominant term in the coverage probability bias is

−1
2
φ(Φ−1(P ))Φ−1(P )3κi,j σ0iσ0j

σ2
0
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whereas in (19), all the terms are of O(φ(Φ−1(P ))Φ−1(P )). Since Φ−1(P ) → ∞ as P → 1, this
suggests that the coverage probability bias of the plug-in predictor is bigger by O(Φ−1(P )2), as
P → 1, compared with the Bayesian predictor. Also this result does not depend on any particular
choice of the prior density since the role of Qj = ∂

∂θj log π(θ) is relatively unimportant for this
comparison.

However the form of (19) suggests another possibility: if we can choose π so that

κi,jκk,` σ0`

σ0
(κik,j + κijk) + κj,`

(
σ0j`

σ0
− σ0jσ0`

σ2
0

)
+ κi,jQj

σ0i

σ0

− 1
2nσ2

0

κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
= 0. (20)

then the second-order coverage probability bias of the Bayesian predictor is 0.
Equation (20) is in the form of a first-order linear partial differential equation, of a structure

that typically arises in the literature of matching priors for confidence intervals, see e.g. Datta and
Ghosh (1995). Levine and Casella (2003) have collected and reviewed several methods for numerical
solution of such equations. For reasons to be explained in Section 6, it may not be worth the effort
actually to solve these equations, but the existence of a matching prior is still an important result
qualitatively. For instance, even if we do not try to find a matching prior, we could still compare
and rank different priors (such as the flat prior, the Jeffreys prior, or one of the different forms of
reference prior developed by Berger et al. (2001)) according to how close they come to satisfying
(20).

5 Expected length of a Bayesian prediction interval

We now give the corresponding calculations based on (16). Detailed calculations, given in Section
8.5, show that

nE{ẑP (Y )− zP (Y, θ)} ≈ Φ−1(P )
{

κi,jκk,`σ0`

(
κik,j +

1
2
κijk

)
+

1
2
κi,jσ0ij

}
(21)

and

nE{z̃P (Y )− zP (Y, θ)} ≈ Φ−1(P )
{

κi,jκk,`σ0`(κik,j + κijk)

+κi,j
(

σ0ij − σ0iσ0j

σ0

)
+ κi,jQjσ0i +

1
2
Φ−1(P )2κi,j σ0iσ0j

σ0
+

1
2
κi,j λT

i V λj

σ0

}
. (22)

In this case, the asymptotics as P → 1 are the other way round from (18) and (19): the order of
magnitude is O(Φ−1(P )) for ψ̂ but O

(
Φ−1(P )3

)
for ψ̃. This, however, is what we would expect: the

Bayesian prediction interval achieves more accurate coverage probability than the plug-in interval,
but at the cost that it is a longer interval. This discrepancy is reflected in the O

(
Φ−1(P )3

)
term

in (22.
We now discuss the consequences of these formulae for the length of a prediction interval.

Suppose we choose P1 and P2 so that P2 − P1 is the desired coverage probability. For example,
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for a 95% prediction interval we would most likely choose P1 = 0.025, P2 = 0.975. The Bayesian
prediction interval is (z̃P1 , z̃P2), and its expected length is

E {z̃P2 − z̃P1} = E {zP2 − zP1}+ E {z̃P2 − zP2} − E {z̃P1 − zP1}
= σ0{Φ−1(P2)− Φ−1(P1)}+ E {z̃P2 − zP2} − E {z̃P1 − zP1} . (23)

Equation (23) might be used as a basis for network design. Suppose we are choosing locations for a
network whose purpose is to predict a quantity Y0. For example, the observations Y1, ..., Yn might
be measurements of atmospheric particulate matter at n air pollution monitors, and Y0 might be the
average (or a population-weighted average) over a region, that could be used as a predictor of human
health effects. In this context, it is desirable to estimate Y0 as accurately as possible, but because
precise measurement is not possible, a prediction interval for Y0, based on spatial interpolation
from Y1, ..., Yn, is desirable as a means of reflecting uncertainty in the interpolation. Based on the
results of Section 4, we propose a Bayesian prediction interval to minimize the coverage probability
bias. When choosing among different possible layouts of the network, we propose minimizing (23)
for given P1 and P2.

The structure of (23) is in two parts. If we were solely interested in the first term, we would
choose the design to minimize σ0, the predictive standard error of Y0 assuming θ is known. In
recent research such as Zhu (2002), this known as a “predictive criterion” for network design. The
second and third terms in (23) account for the error due to estimation of θ. Choosing the design
to optimize parameter estimation leads to so-called estimative criteria for design. The merit of
(23) is that it is a combined criterion that accounts for both estimation and prediction. Using (22)
to approximate (23) provides a practical means of evaluating this design criterion. It remains to
investigate its practical implications.

6 Frequentist corrections to plug-in prediction intervals

A major focus of our results up to this point has been that the plug-in approach to prediction inter-
vals typically underestimates the variability of the predictive distribution, and Bayesian methods
may correct for that by reducing the coverage probability bias. But the disadvantages of the plug-in
procedure are well known, and previous research has led to corrections derived from a frequentist
perspective. It is therefore natural to ask to what extent the properties of Bayesian procedures
compare with those of frequentist corrections to the plug-in approach.

The best known frequentist correction was derived by Harville and Jeske (1992) and also by
Zimmerman and Cressie (1992). Starting with the identity

E
{
(λ̂T Y − Y0)2

}
= E

{
(λT Y − Y0)2

}
+ E

{
(λ̂T Y − λT Y )2

}
, (24)

these authors used a first-order Taylor expansion to write the second term in (24) approximately
as

E
{
(θ̂i − θi)(θ̂j − θj)λT

i Y Y T λj

}
(25)

and then, effectively assuming θ̂ independent of Y , replaced (25) by

n−1κi,jλT
i V λj .

9



The corrected expression for (24) is then

E
{
(λ̂T Y − Y0)2

}
≈ σ2

0 + n−1κi,jλT
i V λj . (26)

One possible approach to a predictive distribution would simply use (26) in place of σ2
0 for the

predictive variance, but otherwise assume normality. Thus, in place of ẑ = λ̂T Y + σ̂0Φ−1(P ), we
write

z∗P = λ̂T Y +
√

σ̂2
0 + n−1κ̂i,j λ̂T

i V̂ λ̂jΦ−1(P )

= ẑP +
1

2nσ0
κ̂i,j λ̂T

i V̂ λ̂jΦ−1(P ) + op(n−1) (27)

where, as usual, hats over various terms indicate that the terms in question are to be evaluated at
the REML estimator θ̂. For theoretical calculations based on (27), we can ignore this distinction
(i.e. assume κi,j , λi, etc., are evaluated at the true θ) since this will not affect the Op(n−1) properties
of the procedure.

In the notation of (16), this amounts to replacing the quantity S (which we have called S1, in the

case of the plug-in predictor) by S1 − φ(Φ−1(P ))Φ−1(P ) · κi,jλT
i V λj

2σ2
0

, where we have also used (46).

Therefore by (17), the asymptotic coverage probability bias is increased by n−1φ(Φ−1(P ))Φ−1(P ) ·
κi,jλT

i V λj

2σ2
0

. Thus (18) becomes

nE{ψ(z∗P ; Y, θ)− ψ(zP ; Y, θ)}
≈ φ(Φ−1(P ))Φ−1(P )

{
κi,jκk,` σ0`

σ0

(
κik,j +

1
2
κijk

)

+
1
2
κi,j

(
σ0ij

σ0
− σ0iσ0j

σ2
0

Φ−1(P )2
)

− 1
2nσ2

0

κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)}
. (28)

In other words, the Harville-Jeske-Zimmerman-Cressie correction eliminates one of the bias terms
in (18), but leaves the rest intact, including the one that is dominant as P → 1.

Abt (1999) derived an improved version of (25) that does not assume θ̂ and Y independent. As
shown in Section 8.6, a more refined approximation to (25) is

n−1κi,jλT
i V λj + n−2κi,jκk,`

(
λT

j V
∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
, (29)

a result that is presumably equivalent to Abt’s though a precise correspondence between (29) and
Abt’s result has not been established.

Therefore, a more refined version of the Harville-Jeske-Zimmerman-Cressie correction would
replace σ2

0 by

σ2
0 + n−1κi,jλT

i V λj + n−2κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)

10



in the construction of the prediction interval. By the same argument as led to (28), the coverage
probability bias is now

nE{ψ(z∗P ; Y, θ)− ψ(zP ; Y, θ)} ≈ φ(Φ−1(P ))Φ−1(P )
{

κi,jκk,` σ0`

σ0

(
κik,j +

1
2
κijk

)

+
1
2
κi,j

(
σ0ij

σ0
− σ0iσ0j

σ2
0

Φ−1(P )2
)

. (30)

This still does not eliminate the dominant (as P → 1) term in (18).
Therefore we consider a different approach: instead of trying to refine (18) using previously

defined modifications, we use (18) to suggest a new one. This is similar in spirit to the asymptotic
frequentist approach to prediction problems of Barndorff-Nielsen and Cox (1996). Consider the
estimator

z†P = ẑP − n−1Φ−1(P )
{

κ̂i,j κ̂k,`σ̂0`

(
κ̂ik,j +

1
2
κ̂ijk

)

+
1
2
κ̂i,j

(
σ̂0ij − σ̂0iσ̂0j

σ̂0
Φ−1(P )2

)
− 1

2σ̂0
κ̂i,j λ̂T

i V̂ λ̂j

− 1
2nσ̂0

κ̂i,j κ̂k,`

(
λ̂T

j V̂
∂Ŵ

∂θi
V̂

∂Ŵ

∂θk
V̂ λ̂` + λ̂T

j V̂
∂Ŵ

∂θk
V̂

∂Ŵ

∂θi
V̂ λ̂`

)}
. (31)

In (16), we now have S = S1 + φ(Φ−1(P ))Φ−1(P )
σ0

{
κi,jκk,`σ0`

(
κik,j + 1

2κijk

)

+1
2κi,j

(
σ0ij − σ0iσ0j

σ0
Φ−1(P )2

)
− 1

2σ0
κi,jλT

i V λj− 1
2nσ0

κi,jκk,`
(
λT

j V ∂W
∂θi V ∂W

∂θk V λ` + λT
j V ∂W

∂θk V ∂W
∂θi V λ`

)}
.

After combining this with (18) we now find (by construction) that all the second-order coverage
probability bias terms cancel and therefore (31) has coverage probability bias 0, to Op(n−1).

Thus we conclude that there are two ways to achieve an estimate of the predictive distribution
with second-order coverage probability bias of 0. The first is the Bayesian predictive distribution
based on the matching prior found by solving (20). The second approach is direct, by (31). As a
practical matter, direct application of (31) seems to be the simpler approach to compute, and would
seem to render it unnecessary to solve the differential equation (20) in practice. Nevertheless, the
existence of a matching prior is important because it shows that the artificial-looking predictor (31)
is equivalent to a Bayesian predictor, which provides further justification of our overall emphasis
on Bayesian methods.

7 Relationship to design criteria of Zhu and Stein

Considering the discussion of the previous section, suppose z†P is an estimate of the P -quantile
of the predictive distribution, for which the second-order coverage probability bias is 0. As just
noted, such an estimate may be calculated directly from (31), or indirectly by solving (20) for the
matching prior and computing a Bayesian predictive distribution. If the first approach is taken,
then a combination of (21) with (31) leads to

nE{z†P − zP } ≈ Φ−1(P )
{

1
2
κi,j σ0iσ0j

σ0
Φ−1(P )2 +

1
2σ0

κi,jλT
i V λj

+
1

2nσ0
κi,jκk,`

(
λT

j V
∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)}
. (32)
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It may easily be checked that we get the same result from (22) if we use the matching prior defined
by (20).

Equation (32) has an interesting interpretation. The second term corresponds to the Harville-
Jeske-Zimmerman-Cressie correction to the prediction variance, and the third term is Abt’s refine-
ment. If we assume that Abt’s refinement is negligible in comparison with the main term of the
Harville-Jeske-Zimmerman-Cressie correction (Abt’s own simulations supported this), then we may
ignore the third term in (32).

To apply (32) to the length of a prediction interval, we must combine it with (23). Assume
P1 = P, P2 = 1 − P for an equal-tailed prediction interval. Then the length of the prediction
interval is

2σ0Φ−1(P )

[
1 + n−1

{
1
2
Φ−1(P )2κi,j σ0iσ0j

σ2
0

+
1
2
κi,j λT

i V λj

σ2
0

}]
(33)

so if we square (33), ignoring the multiplier 2Φ−1(P ), we want to minimize

σ2
0 + n−1κi,jλT

i V λj + n−1Φ−1(P )2κi,jσ0iσ0j . (34)

This has an interesting parallel with the approach of Zhu and Stein (2004). They defined quantities
V1 = σ2

0 + n−1κi,jλT
i V λj and V2 = n−1 ∂σ2

0
∂θi κi,j ∂σ2

0
∂θj = 4σ2

0n
−1κi,jσ0iσ0j in the present notation.

They interpret V1 as the Harville-Jeske-Zimmerman-Cressie approximation to the prediction error
variance and V2 as a term reflecting the uncertainty of estimating σ2. In practice, V2 is replaced
by V2

σ2
0

to achieve scale invariance. As a combined criterion, Zhu and Stein suggested V3 = V1 + V2

2σ2
0

but also suggested that other linear combinations of V1 and V2

σ2
0

could be considered.
Equation (34) is equivalent to

V3 = V1 +
Φ−1(P )2

4
· V2

σ2
0

(35)

which, surprisingly, is of the same structure as the Zhu-Stein criterion, and could even coincide
with it (if we chose P such that Φ−1(P ) =

√
2). Equation (35) carries the implication that the

optimal design might depend on the coverage probability of the prediction interval. This, however,
may not be unreasonable: the closer P gets to 1, the more critical the “estimative” properties of
the design become, and this affects the weightings in (35).

In summary: if we apply a second-order correction to the coverage probability bias, either
directly through (31) or indirectly with a matching prior, then (35) becomes a suitable design
criterion, paralleling that of Zhu and Stein (2004).

8 Detailed derivations

8.1 Proof of Lemma 1

Following the derivation of Harville (1974), the restricted likelihood may be defined as the density
of U = AT Y , where A is an n× (n−q) matrix of rank n−q such that AT X = 0, AT A = I, AAT =
I−X(XT X)−1XT . Also let η̂ = (XT V −1X)−1XT V −1Y be the generalized least squares estimator
of η. As shown by Harville, the transformation Y → (U, η̂) has Jacobian |XT X|−1/2, so

f(Y ) = |XT X|−1/2e`n(U) · (2π)−q/2|XT V −1X|1/2 exp
{
−1

2
(η̂ − η)T XT V −1X(η̂ − η)

}
.

12



Equation (5) follows at once (Harville’s result). For (6), consider the variable T = Y0 − λT Y .
The conditional distribution of T given Y is normal with mean xT

0 η + wT V −1(Y −Xη) − λT Y =
−(xT

0 − wT V −1X)(η̂ − η) and variance v − wT V −1w. Therefore, the joint density of Y and Y0 is

|XT X|−1/2f(U, η̂, T ) = |XT X|−1/2e`n(U) · (2π)−q/2|XT V −1X|1/2 exp
{
−1

2
(η̂ − η)T XT V −1X(η̂ − η)

}
·

(2π)−1/2(v − wT V −1w)−1/2 exp
[
− 1

2(v − wT V −1w)
{T + (xT

0 − wT V −1X)(η̂ − η)}2
]
.

The result (6) follows by standard manipulations.

8.2 Derivatives of `n(θ)

This section concerns the evaluation of the quantities Ui, Uij , Uijk, that are needed in (11) and
subsequently.

From (2) we have, ignoring constants not depending on θ,

`n = −1
2

log |V | − 1
2

log |XT V −1X| − 1
2
Y T WY

= −1
2

log |V | − 1
2

log |XT V −1X| − 1
2
eαeβwαβ

where the matrix W = V −1 − V −1X(XT V −1X−1)XT V −1 has entries {wαβ} and we exploit the
fact that Y T WY = eT We where e = Y −Xη has entries eα, 1 ≤ α ≤ n. Note that we use greek
letters to denote individual components of the observation vector to avoid confusion with letters
i, j, k, ... that are used for components of θ, but the summation convention applies the same way.

Exploiting identities such as ∂ log |V |
∂θi = tr

(
V −1 ∂V

∂θi

)
(Mardia, Kent and Bibby (1979), Sections

A.2.3 and A.9) and with some algebraic manipulation, we deduce

Ui =
1
2
vαβ

∂wαβ

∂θi
− 1

2
eαeβ

∂wαβ

∂θi
, (36)

Further differentation leads to

Uij =
1
2

∂vαβ

∂θj

∂wαβ

∂θi
+

1
2
vαβ

∂2wαβ

∂θi∂θj
− 1

2
eαeβ

∂2wαβ

∂θi∂θj
, (37)

Uijk =
1
2

∂2vαβ

∂θj∂θk

∂wαβ

∂θi
+

1
2

∂vαβ

∂θj

∂2wαβ

∂θi∂θk
+

1
2

∂vαβ

∂θk

∂2wαβ

∂θi∂θj

+
1
2
vαβ

∂3wαβ

∂θi∂θj∂θk
− 1

2
eαeβ

∂3wαβ

∂θi∂θj∂θk
. (38)

We also note the identities

∂W

∂θi
= −W

∂V

∂θi
W, (39)

∂2W

∂θi∂θj
= W

∂V

∂θi
W

∂V

∂θj
W + W

∂V

∂θj
W

∂V

∂θi
W −W

∂2V

∂θiθj
W, (40)

∂3W

∂θi∂θj∂θk
= −W

∂V

∂θi
W

∂V

∂θj
W

∂V

∂θk
W −W

∂V

∂θi
W

∂V

∂θk
W

∂V

∂θj
W −W

∂V

∂θj
W

∂V

∂θi
W

∂V

∂θk
W
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−W
∂V

∂θj
W

∂V

∂θk
W

∂V

∂θi
W −W

∂V

∂θk
W

∂V

∂θi
W

∂V

∂θj
W −W

∂V

∂θk
W

∂V

∂θj
W

∂V

∂θi
W

+W
∂2V

∂θi∂θj
W

∂V

∂θk
W + W

∂2V

∂θi∂θk
W

∂V

∂θj
W + W

∂2V

∂θj∂θk
W

∂V

∂θi
W

+W
∂V

∂θi
W

∂2V

∂θj∂θk
W + W

∂V

∂θj
W

∂2V

∂θi∂θk
W + W

∂V

∂θk
W

∂2V

∂θi∂θj
W

−W
∂3V

∂θi∂θj∂θk
W (41)

which greatly aid the computation of (36)–(38), given that it is usually straightforward to differ-
entiate the components of V analytically but much harder to do so for W .

In this section, we also indicate how to calculate the quantities κij , κijk, κij,k introduced in
Section 4. In Uij and Uijk, the last two terms are respectively n1/2Zij , n

1/2Zijk and the remainder
are respectively nκij , nκijk. Thus κij and κijk are calculated directly from (37) and (38), using also
(39)–(41). For κij,k, we have

nκij,k =
1
4
E

{(
vαβ

∂2wαβ

∂θi∂θj
− eαeβ

∂2wαβ

∂θi∂θj

) (
vγδ

∂wγδ

∂θk
− eγeδ

∂wγδ

∂θk

)}

=
1
4
(vαγvβδ + vαδvβγ)

∂2wαβ

∂θi∂θj

∂wγδ

∂θk

=
1
2
vαγvβδ

∂2wαβ

∂θi∂θj

∂wγδ

∂θk
(42)

where in the middle of the calculation we used

E{eαeβeγeδ} = vαβvγδ + vαγvβδ + vαδvβγ . (43)

8.3 Asymptotics for the inverse predictive distribution function

Since ψ∗(z∗P ; Y ) and ψ(zP ; Y, θ) both equal P , we have

0 = ψ∗(z∗P ; Y )− ψ(zP ; Y, θ)
= ψ∗(z∗P ; Y )− ψ∗(zP ; Y ) + ψ∗(zP ; Y )− ψ(zP ; Y, θ)

= (z∗P − zP )ψ∗′ +
1
2
(z∗P − zP )2ψ∗′′ + n−1/2R + n−1S + op(n−1) (44)

= (z∗P − zP )ψ′ + n−1/2(z∗P − zP )R′ +
1
2
(z∗P − zP )2ψ′′

+n−1/2R + n−1S + op(n−1). (45)

Here, (44) is a combination of (15) with Taylor expansion of ψ∗ (we assume z∗P −zP is of Op(n−1/2)
so that terms of order (z∗P − zP )3 and higher may be neglected); while (45) follows on assuming
that (15) may be differentiated term by term with respect to z.

We solve (45) in two stages: setting equal to 0 the Op(n−1/2) terms (z∗P − zP )ψ′ + n−1/2R,
we deduce the first-order approximation z∗P − zP = −n−1/2R/ψ′ + op(n−1/2). Next, assuming
z∗P − zP = −n−1/2R/ψ′ + n−1ε and substituting back in (45) to solve for ε, we deduce (16).

To deduce (17) from (16), we take a two-term Taylor expansion

ψ(z∗P ; Y, θ)− ψ(zP ; Y, θ) = (z∗P − zP )ψ′ +
1
2
(z∗P − zP )2ψ′′ + op(n−1)
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substituting the expansion of z∗P − zP from (16) and neglecting all terms smaller than Op(n−1).

8.4 Proof of (18) and (19)

First we give explicit formulae for the derivatives of ψ. Recall that ψ(z ; Y, θ) = Φ
(

z−λT Y
σ0

)
. we

write φ(z) = 1√
2π

e−z2/2 for the standard normal density and note φ′(z) = −zφ(z). Calculating
various derivatives of ψ and substituting z = zP = λT Y + σ0Φ−1(P ), we have

ψ′ =
1
σ0

φ(Φ−1(P )), (46)

ψ′′ = − 1
σ2

0

Φ−1(P )φ(Φ−1(P )), (47)

ψi = −
{

λT
i Y

σ0
+

σ0i

σ0
Φ−1(P )

}
φ(Φ−1(P )), (48)

ψij = −
{

λT
ijY

σ0
− σ0jλ

T
i Y

σ2
0

− σ0iλ
T
j Y

σ2
0

+
σ0ij

σ0
Φ−1(P )− 2σ0iσ0j

σ2
0

Φ−1(P )

}
φ(Φ−1(P ))

−
{

λT
i Y

σ0
+

σ0i

σ0
Φ−1(P )

} {
λT

j Y

σ0
+

σ0j

σ0
Φ−1(P )

}
Φ−1(P )φ(Φ−1(P )), (49)

ψ′i =

[
−σ0i

σ2
0

+

{
λT

i Y

σ0
+

σ0i

σ0
Φ−1(P )

}
· 1
σ0

Φ−1(P )

]
φ(Φ−1(P )). (50)

To evaluate the expectation of (17) we need the expectations of R, RR′
ψ′ and S, where R =

κi,jZiψj , S = S1 = κi,jκk,`ZikZjψ` + 1
2κi,rκj,sκk,tκijkZrZsψt + 1

2κi,jκk,`ZiZkψj`.
First we consider E{R}. Noting that n1/2Zi = Ui is given by (36) and ψi is given by (48), we

have E{Ui} = E{YαUi} = 0 for any α, hence E{R} = 0.
Next, consider

E

{
RR′

ψ′

}
= E

{
κi,jZiψjκ

k,`Zkψ
′
`

ψ′

}

= κi,jκk,`φ(Φ−1(P )) ·

·E
[
ZiZk

{
λT

j Y

σ0
+

σ0j

σ0
Φ−1(P )

} {
σ0`

σ0
−

(
λT

` Y

σ0
+

σ0`

σ0
Φ−1(P )

)
Φ−1(P )

}]
(51)

combining (46), (48) and (50).
To evaluate (51), we need expressions for E{ZiZkYε} and E{ZiZkYεYζ} where Yε and Yζ are

arbitrary components of Y . By (36),

E{ZiZkYε} =
1
n

E{UiUkYε}

=
1
4n

E

{(
vαβ

∂wαβ

∂θi
− eαeβ

∂wαβ

∂θi

) (
vγδ

∂wγδ

∂θk
− eγeδ

∂wγδ

∂θk

)
Yε

}

= κi,k(Xη)ε (52)
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where we write Yε = (Xη)ε+eε and exploit the fact that all terms including eε translate to odd-order
moments of zero-mean Gaussian variables and are therefore 0.

Similarly, we have

E{ZiZkYεYζ} =
1
n

E{UiUkYεYζ}

=
1
4n

E

{(
vαβ

∂wαβ

∂θi
− eαeβ

∂wαβ

∂θi

) (
vγδ

∂wγδ

∂θk
− eγeδ

∂wγδ

∂θk

)
YεYζ

}

= κi,k(Xη)ε(Xη)ζ

+
1
4n

E

{(
vαβ

∂wαβ

∂θi
− eαeβ

∂wαβ

∂θi

) (
vγδ

∂wγδ

∂θk
− eγeδ

∂wγδ

∂θk

)
eεeζ

}
. (53)

For the second term in (53), we need moments of up to sixth order, recalling (43) and

E{eαeβeγeδeεeζ} = vαβvγδvεζ + vαβvγεvδζ + vαβvγζvδε + vαγvβδvεζ + vαγvβεvδζ + vαγvβζvδε

+vαδvβγvεζ + vαδvβεvγζ + vαδvβζvγε + vαεvβγvδζ + vαεvβδvγζ + vαεvβζvγδ

+vαζvβγvδε + vαζvβδvγε + vαζvβεvγδ. (54)

Combining (43) and (54), we have

E{(vαβ − eαeβ)(vγδ − eγeδ)eεeζ} = vαγvβδvεζ + vαγvβεvδζ + vαγvβζvδε + vαδvβγvεζ + vαδvβεvγζ

+vαδvβζvγε + vαεvβγvδζ + vαεvβδvγζ + vαζvβγvδε + vαζvβδvγε.

Hence (53) reduces to

E{ZiZkYεYζ} = κi,k(Xη)ε(Xη)ζ +
1
4n

∂wαβ

∂θi

∂wγδ

∂θk
(vαγvβδvεζ + vαγvβεvδζ + vαγvβζvδε

+vαδvβγvεζ + vαδvβεvγζ + vαδvβζvγε + vαεvβγvδζ + vαεvβδvγζ + vαζvβγvδε + vαζvβδvγε)

= κi,k(Xη)ε(Xη)ζ + vεζκi,k +
1
n

{
V

∂W

∂θi
V

∂W

∂θk
V

}

εζ
+

1
n

{
V

∂W

∂θk
V

∂W

∂θi
V

}

εζ
(55)

where
{
·
}

εζ
denotes the (ε, ζ) entry of the matrix enclosed in brackets, and we have used the fact

that 1
2n

∂wαβ

∂θi vαγ
∂wγδ

∂θk vβδ = 1
2n

∂wαβ

∂θi vαδ
∂wγδ

∂θk vβγ is one of several equivalent expressions for κi,k.
We use (52) and (55) to simplify (51). We write λT

j Y = λε
jYε where λε

j is the εth component
of λj . We also note that because λT X = xT

0 (independent of θ), we also have λT
j X = 0. Because

of this, the terms involving (Xη)ε or (Xη)ζ in (52) and (55) become 0 when substituted into (51).
We write

E

{
RR′

ψ′

}
= κj,` σ0j

σ0

σ0`

σ0
φ(Φ−1(P ))Φ−1(P )(1− Φ−1(P )2)

−κi,jκk,`φ(Φ−1(P ))Φ−1(P )
λε

jλ
ζ
`

σ2
0

[
vεζκi,k +

1
n

{
V

∂W

∂θi
V

∂W

∂θk
V

}

εζ
+

1
n

{
V

∂W

∂θk
V

∂W

∂θi
V

}

εζ

]

= κj,`φ(Φ−1(P ))Φ−1(P )
{

σ0jσ0`

σ2
0

(1− Φ−1(P )2)− 1
σ2

0

λT
j V λ`

}

−κi,jκk,`φ(Φ−1(P ))Φ−1(P )
1

nσ2
0

(
λT

j V
∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
. (56)
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Continuing the calculation of (17), we must next evaluate E{S1}, which is the sum of three
terms:

E
{
κi,jκk,`ZikZjψ`

}
, (57)

1
2
E

{
κi,rκj,sκk,tκijkZrZsψt

}
, (58)

1
2
E

{
κi,jκk,`ZiZkψj`

}
. (59)

First consider (57). By (36), (37) and (48), this reduces to the expectation of

−κi,jκk,`φ(Φ−1(P ))ZikZj

{
λT

` Y

σ0
+

σ0`

σ0
Φ−1(P )

}
.

In this expression, all the terms involving Y have expectation 0, for essentially the same reasons as
in (51), so (57) reduces to

−κi,jκk,`φ(Φ−1(P ))Φ−1(P )
σ0`

σ0
κik,j . (60)

Next consider (58). By (36) and (48), this is the expectation of

−1
2
κi,rκj,sκk,tκijkφ(Φ−1(P ))ZrZs

{
λT

t Y

σ0
+

σ0t

σ0
Φ−1(P )

}
.

Once again the terms involving Y have expectation 0, and the rest reduce to

−1
2
κi,rκj,sκk,tκijkφ(Φ−1(P ))Φ−1(P )

σ0t

σ0
κr,s

= −1
2
κi,jκk,`κijkφ(Φ−1(P ))Φ−1(P )

σ0`

σ0
. (61)

Finally we evaluate (59). By (36), (49), this is the expectation of

−1
2
κi,jκk,`ZiZk ·

·
[{

λT
j`Y

σ0
− σ0`λ

T
j Y

σ2
0

− σ0jλ
T
` Y

σ2
0

+
σ0j`

σ0
Φ−1(P )− 2σ0jσ0`

σ2
0

Φ−1(P )

}
φ(Φ−1(P ))

+

{
λT

j Y

σ0
+

σ0j

σ0
Φ−1(P )

} {
λT

` Y

σ0
+

σ0`

σ0
Φ−1(P )

}
Φ−1(P )φ(Φ−1(P ))

]
. (62)

Once again the linear terms in Y have expectation 0. Those terms in (62) that do not depend on
Y have expectation

−1
2
κj,`φ(Φ−1(P ))Φ−1(P )

{
σ0j`

σ0
− 2

σ0jσ0`

σ2
0

+
σ0jσ0`

σ2
0

Φ−1(P )2
}

. (63)

The quadratic terms in Y within (62) reduce to

−1
2
κi,jκk,`φ(Φ−1(P ))Φ−1(P )

λε
jλ

ζ
`

σ2
0

ZiZkYεYζ
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and after taking expectations using (55), that becomes

− 1
2σ2

0

κj,`φ(Φ−1(P ))Φ−1(P )λT
j V λ`

− 1
2nσ2

0

κi,jκk,`φ(Φ−1(P ))Φ−1(P )
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
. (64)

Thus, (59) is the sum of (63) and (64).
Based on (17), the approximation to nE{ψ(ẑP ; Y, θ)− ψ(zP ; Y, θ)} is (56) minus the sum of

(60), (61), (63) and (64). After collecting terms together, we get the result (18).
To derive (19), we start with (18) and add

E{S1 − S2} = E

{
−1

2
κijkκ

i,jκk,`ψ` − 1
2
ψijκ

i,j − ψiQjκ
i,j

}
. (65)

We need the expectations of ψi and ψij . However from (48), (49),

E{ψi} = −σ0i

σ0
φ(Φ−1(P ))Φ−1(P ),

E{ψij} =
{
−σ0ij

σ0
+

2σ0iσ0j

σ2
0

− σ0iσ0j

σ2
0

Φ−1(P )2 − 1
σ2

0

λT
i V λj

}
φ(Φ−1(P ))Φ−1(P ).

Hence we evaluate (65). Adding the result to (18), we deduce (19).

8.5 Derivation of (21) and (22)

From (16) and the fact that E{R} = 0, we have

nE{z∗P − zP } ≈ E

{
RR′

ψ′2
− S

ψ′
− 1

2
R2ψ′′

ψ′3

}
. (66)

The first two terms are the same as in (18) or (19), multiplied by 1
ψ′ = σ0

φ(Φ−1(P ))
. The third term

in (66) is

1
2

σ0Φ−1(P )
φ(Φ−1(P ))2

E{R2} =
1
2
σ0Φ−1(P )κi,jκk,`E

{
ZiZk

(
λT

j Y

σ0
+

σ0j

σ0
Φ−1(P )

) (
λT

` Y

σ0
+

σ0`

σ0
Φ−1(P )

)}
.

As in several calculations in Section 8.4, all linear terms in Y have expectation 0. The terms that
do not depend on Y reduce to

1
2
Φ−1(P )3κi,jκk,`κi,k

σ0jσ0`

σ0
=

1
2
Φ−1(P )3κi,j σ0iσ0j

σ0

which the quadratic terms in Y reduce to

1
2
Φ−1(P )κi,jκk,`λε

jλ
ζ
`E{ZiZkYεYζ}.
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Using (55), this becomes

1
2
Φ−1(P )κi,j λT

i V λj

σ0
+

1
2nσ0

Φ−1(P )κi,jκk,`
(

λT
j V

∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
.

Hence

E

{
−1

2
R2ψ′′

ψ′3

}
=

1
2
Φ−1(P )3κi,j σ0iσ0j

σ0
+

1
2
Φ−1(P )κi,j λT

i V λj

σ0

+
1

2nσ0
Φ−1(P )κi,jκk,`

(
λT

j V
∂W

∂θi
V

∂W

∂θk
V λ` + λT

j V
∂W

∂θk
V

∂W

∂θi
V λ`

)
. (67)

Finally, combining (67) with (66) and the previous calculations of (18) and (19), we deduce (21)
and (22).

8.6 Derivation of (29)

Using θ̂i − θi ≈ n−1/2κi,kZk, write (25) as n−1κi,kκj,`λε
iλ

ζ
jE{ZkZ`YεYζ}. Then apply (55). After

some rearrangement of terms, equation (29) follows.

9 Summary and Conclusions

In this paper, we have considered the properties of predictive inference in spatial statistics, or
more generally Gaussian processes whose mean is a combination of linear regressors and whose
covariance is parametrically specified. We use REML estimators for the covariance parameters and
linear predictors (universal kriging) to derive a predictive distribution for an unobserved variable of
interest. Direct application of the REML estimator leads to the “plug-in” approach. As an alter-
native to that, we propose a Bayesian predictive distribution with arbitrary smooth prior density.
We also compare with previous frequentist corrections due to Harville and Jeske, and Zimmerman
and Cressie, and their refinement suggested by Abt. We compute the coverage probability bias
associated with the P -quantile of the predictive distribition, and also the expected length of a
prediction interval, suggesting that the latter may be used as a criterion for network design.

The key results of the paper are (18) and (19) for the coverage probability bias of the plug-in
and Bayesian predictive distributions, and the results (21) and (22) which (together with (23))
define the expected length of a prediction interval. From the point of view of coverage probability
bias, although there does not appear to be any universal comparison that Bayesian predictors are
better than the plug-in approach, it does appear that in the tails of the predictive distribution,
the Bayesian approach is superior, regardless of the prior. However, our results also suggest the
existence of a matching prior, solving (20), for which the second-order coverage probability bias is
0. Previous frequentist corrections do not have this property, but we use our second-order results
to suggest a new frequentist correction, equation (31), which does.

If we use an estimator of the predictive distribution for which the second-order coverage prob-
ability bias is 0, then the expected length of the prediction interval takes a particularly clear-cut
form. When interpreted as a criterion for network design, we derive a combined “estimative” and
“predictive” criterion parallelling recent work of Zhu and Stein. However the relative weights of
the two components depend on P , i.e. on the coverage coefficient of the prediction interval. This
appears to be a novel feature of the present approach.
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The results are restricted to linear regressions and the REML estimator. Initial calculations
suggest that because of the loss of orthogonality properties that the present paper has exploited, the
results would be considerably more complicated in the case of nonlinear regressions or the ordinary
maximum likelihood estimator. We have also not considered numerical consequences of our results,
either for Bayesian inference or for network design, nor have we examined algorithms for finding
network designs under the new criteria. All these remain promising possibilities for future research.
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