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Abstract

Maximum likelihood and related techniques are generally considered the best method for

estimating the parameters of spatial models, but exact computation of the likelihood is slow

when the number of data points is large. For Gaussian models with parametrically specified

covariance function, we consider three alternatives to the exact maximum likelihood estimates

that are easier to compute. Statistical properties of these estimators are evaluated in two

ways, (a) comparing the asymptotic variance of the proposed estimator with that of MLE, (b)

assessing how well standard errors computed from the observed information approach (treating

the approximate likelihood as if it were an exact likelihood) correspond to the true standard

deviations of the estimators. The information sandwich approach is extensively used as out

principal theoretical tool for answering these questions. We evaluate the estimators theoretically

and by simulation, and consider the application of the method to spatial estimation of rainfall

trends across the south-central U.S. Among our three alternatives to exact MLE, the “hybrid

method” emerges as the one with the best all-round properties.
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1 Introduction

As environmental data sets become larger and more complex, there is a need to develop statistical

analysis techniques that handle large data sets efficiently. For example, the current U.S. climato-

logical network maintained by the National Climatic Data Center has over 5,000 stations, and even

larger data sets are being created by satellite, radar and other remote sensing devices. Statistical

techniques developed in the days when most data sets were much smaller than this cannot usually

be applied without modification.

Although there are by now many different stochastic models for spatial processes, those based

on Gaussian random fields are among the oldest but still also some of the most commonly applied,

see e.g. Journel and Huijbregts (1978), Ripley (1981, 1988), Cressie (1993), Stein (1999), Chilès

and Delfiner (1999), Smith (2001). Apart from their direct applicability in many contexts, these

models are also used as one of the building blocks in hierarchical analyses of spatial data (Diggle

et al. 1998, Banerjee et al. 2004).

In this paper, we restrict ourselves to models of the form

Y ∼ N [Xη, Σ(θ)], (1)

where Y is an N × 1 vector of observations, X is an N ×P matrix of covariates, η is a P × 1 vector

of unknown regression coefficients, and Σ(θ) is the N ×N covariance matrix, expressed in terms of

a finite-dimensional parameter vector θ. We use η for the vector of regression coefficients, rather

than the more conventional β, to avoid confusion with the block notation introduced in Section 2.

If the process is stationary and isotropic, the covariance σij between any two components Yi and

Yj is a function of the Euclidean distance dij between the two observation locations, of which two

examples are the exponential covariance function,

σij = σ2 exp
(
−dij

ρ

)
(2)

in which θ = (σ, ρ), σ being a scaling constant and ρ the range parameter, and the Matérn covariance

function

σij =
σ

2ν−1Γ(ν)

(
2ν1/2dij

ρ

)ν

Kν

(
2ν1/2dij

ρ

)
, (3)

where Kν is a modified Bessel function, Γ is the gamma function, and the parameter θ = (σ, ρ, ν)

represent the scale, range and shape of the spatial covariance structure. Our general approach,

however, does not require stationarity; models for nonstationary processes such as those of Sampson
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and Guttorp (1992), Higdon et al. (1999) or Fuentes and Smith (2001) may be treated the same

way provided the covariance matrix Σ is expressible in terms of a finite-dimensional parameter θ.

Among statistical estimation techniques, for parametric models such as (1) it is natural to

consider maximum likelihood and related techniques such as restricted maximum likelihood or

REML estimation. Older alternatives, such as estimation based on the sample variogram (Cressie

1993, Chilès and Delfiner 1999), are still widely applied by geoscientists, but the sampling properties

of these methods are a matter of speculation in large data sets. Maximum likelihood methods have

been known for more than twenty years, e.g. Kitanidis (1983), Mardia and Marshall (1984), and

despite some issues such as multimodality (Warnes and Ripley 1987, Mardia and Watkins 1989)

are widely accepted. In hierarchical models it is natural to apply Bayesian methods (Diggle et al.

1998, Banerjee et al. 2004) but these also require calculation of the likelihood function. Therefore,

calculating the likelihood function for spatial models such as (1) is of critical importance.

For large data sets, the most critical part of the likelihood calculation is to evaluate the determi-

nant and inverse of the covariance matrix. Theoretically, it is possible to evaluate the determinant

and inverse of an N ×N matrix in O(N2.81) steps (Aho et al. 1974), but most practical algorithms

such as Cholesky decomposition require O(N3) steps. This can be prohibitive if N is large. This

motivates us to look for approximations to the likelihood function that require fewer than O(N3)

steps to evaluate, but that still have reasonable statistical properties.

One such scheme was proposed by Vecchia (1988), and may be summarized as follows. Suppose

the data vector Y consists of N observations, denoted Y1, ..., YN . The ordering of observations is

arbitrary. Using p to denote a generic (conditional or unconditional) density, the exact joint density

may be written

p(Y ) = p(Y1)
N∏

i=2

p(Yi | Y1, ..., Yi−1). (4)

Vecchia’s idea was as follows: suppose in (4) the conditional density p(Yi | Y1, ..., Yi−1) is replaced

by p(Yi | Si),where Si is some subset of the observations Y1, ..., Yi−1. If |Si| is not too large, it should

be possible to calculate p(Yi | Si) relatively quickly for each i, and hence derive a computationally

efficient approximation to p(Y ). In Vecchia’s proposal, each Si consisted of a number of near

neighbors of Yi, though the precise choice of Si was arbitrary.

Recently Stein et al. (2004) generalized Vecchia’s idea in a number of ways. They developed a

variant of the method to approximate the restricted likelihood function in place of the likelihood

function itself. They argued that, rather than evaluate conditional densities one observation at
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a time, it might be more efficient to do it in blocks, evaluating conditional densities of the form

p(Yi, Yi+1, ..., Yi+k | Si). They showed that it is not necessarily best to choose Si consisting only

of near neighbors of the observation or observations whose conditional density is being evaluated,

since in some contexts, observations further away may have more predictive power. Finally, they

developed an “information sandwich” approximation for the covariance matrix of the resulting

estimator, similar to what we do in Section 3 below. Although the work of Stein et al. is a

considerable improvement on Vecchia’s original idea, it still suffers from some ad hoc features,

including both the ordering of the observations and the selection of conditioning sets Si.

Our approach is based on a different idea for approximating the likelihood. Suppose the obser-

vation locations are grouped into blocks of roughly the same size. We describe three methods of

approximating the likelihood based on blocks:

1. Big blocks method. For each block, compute the block mean. The big blocks likelihood is just

the joint density of the block means.

2. Small blocks method. For each block, compute the joint density of all observations in that

block. The small blocks likelihood is the product of joint densities for all the blocks, in effect

treating the blocks as if they were mutually independent.

3. Hybrid method. Start with the big blocks likelihood. For each block, compute the joint density

of observations in that block, conditional on the block mean. The hybrid likelihood is the

big blocks likelihood multiplied by the product of the conditional densities for the blocks. In

effect, the hybrid likelihood assumes that the deviations from each block mean, conditional

on the block mean itself, are independent across blocks.

The term “big blocks” is intended to convey that the method captures the large-scale properties

of the process, but that small-scale (within-block) information is ignored. Similarly, the “small

blocks” method captures within-block properties but ignores the between-block dependence. The

hybrid method is intended to combine the best features of both methods, hence the name. It

is a natural conjecture that the hybrid method is the best of the three, but as we shall see, the

comparison is not so simple; from the point of view of efficiency of statistical estimation, the small

blocks method is often as good as, or even slightly superior to, the hybrid method, and there are

even some situations (admittedly rarer) where the big blocks method is the best of the three.

Before discussing the statistical justification of these methods, we comment briefly on the com-

putational savings to be expected from using any of these methods. Suppose the N observations
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are divided into B blocks of roughly K observations per block, so that N ≈ KB. (In specific

calculations to be given later in the paper, we shall generally assume N = BK and each block

has exactly K observations, but this is not necessary for the practical application of the method.)

Recall that the evaluation of the exact joint density of a set of N observations requires O(N3)

steps.

For the big blocks method, it requires O(BK) steps to compute all the block means, and

O(B2K2) steps to compute all the block covariances. The final evaluation of the likelihood requires

O(B3) steps. Thus, evaluation of the big blocks likelihood requires O(B2K2 + B3) computational

steps.

For the small blocks method, each block likelihood requires O(K3) steps, and this is repeated

B times, requiring O(BK3) steps in total.

In the hybrid method, the calculation of conditional block likelihoods is no more computationally

intensive than the calculation of unconditional block likelihoods for the small blocks method, so

the total calculation is the sum of those required for the big blocks and small blocks method,

O(B2K2 + B3 + BK3) steps.

If B grows at a rate between O(N1/2) and O(N2/3), then all three of these approximate likeli-

hoods may be computed in O(N2) steps. This differs from the Vecchia and Stein et al. methods,

where the computational time can be made arbitrarily close to O(N) by choosing the conditioning

sets small enough, but even a reduction of computation time from O(N3) to O(N2) is a significant

saving in large data sets, and greatly extends the potential for fitting Gaussian random field models.

The rest of the paper is laid out as follows. Section 2 defines notation and gives further details

of the methods. In this section we also describe some extensions of the method such as REML

estimation, estimating the regression parameters η, and spatial interpolation (kriging). Section 3

is the main theoretical development of the paper, presenting an application of the “information

sandwich” method to assess the statistical properties of the three methods when they are applied

to stationary data on a lattice. Section 4 gives numerical results from the theoretical comparisons

of Section 3. Section 5 discusses a practical example, and finally, Section 6 gives a summary of the

paper and our conclusions.
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2 Details of the methods

Ignoring irrelevant constants, the negative log likelihood function for the model (1) is

`(η, θ) =
1
2

log |Σ(θ)|+ 1
2
(Y −Xη)T Σ(θ)−1(Y −Xη). (5)

If θ and hence the covariance matrix Σ(θ) are known, the usual point estimator of η is the gener-

alized least squares estimator, η̂ = (XT Σ−1X)−1XT Σ−1Y , with covariance matrix (XT Σ−1X)−1.

Therefore, it is usual to concentrate on the estimation of θ, which may be done in two ways. First,

if we minimize (5) with respect to η, we obtain the negative log profile likelihood of θ, which modulo

a constant is

`P (θ) =
1
2

log |Σ(θ)|+ 1
2
G2(θ), (6)

where G2(θ) = Y T {Σ−1−Σ−1X(XT Σ−1X)−1XT Σ−1}Y is the generalized residual sum of squares.

The value of θ that minimizes `P (θ) is the maximum likelihood estimator or MLE of θ.

The second approach is to consider not the full joint density of Y but the joint density of a

set of orthogonal contrasts to X. This leads to the restricted likelihood or REML procedure. An

alternative formulation, which turns out to be equivalent, is to place a uniform prior density on η

and integrate the likelihood derived from (5) with respect to η, which leads to the restricted log

likelihood function

`R(θ) =
1
2

log |Σ(θ)|+ 1
2

log |XT Σ(θ)−1X|+ 1
2
G2(θ), (7)

where G2 is the same as in (6). The REML estimator is then the value of θ that minimizes (7)

(Cressie 1993, Smith 2001, Stein et al. 2004).

For the moment we focus just on (5), assuming η is known (in which case, without loss of

generality, we assume η = 0). The extensions to (6) and (7) are considered in Section 2.1.

We denote individual observations by Roman indices such as Yi, Yj , and blocks by Greek indices,

such as bα to denote the αth block. In general we do not assume all blocks are the same size, and

let Kα denote the number of observations in block bα. Let Ȳα denote the αth block mean, i.e.

Ȳα =
1

Kα

∑

i∈bα

Yi.

For blocks bα, bβ, we have

Cov(Ȳα, Ȳβ) =
1

KαKβ

∑

i∈bα

∑

j∈bβ

σij . (8)
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Let Σbb denote the B ×B matrix whose (α, β) entry is given by (8), and let aαβ denote the (α, β)

entry of Σ−1
bb . Then the approximate negative log likelihood that is minimized by the big blocks

estimator (assuming η = 0) is

`bb(θ) =
1
2

log |Σbb(θ)|+ 1
2

∑

α,β

ȲαȲβaαβ (9)

For the small blocks estimator, let Σsb(α) denote the covariance matrix of {Yi, i ∈ bα}. For

indices i and j within the same block bα, let cij denote the entry of Σ−1
sb(α) that corresponds to

position (i, j). Thus the approximate negative log likelihood to be minimized in this case is

`sb(θ) =
1
2

B∑

α=1

log |Σsb(α)|+
1
2

B∑

α=1

∑

i∈bα,j∈bα

YiYjcij . (10)

For the hybrid estimator, we need to compute the conditional joint density of each block given

the block mean. To avoid degeneracies, we write each bα = b′α ∪ b′′α where |b′′α| = 1, and let Σ′sb(α)

denote the unconditional variance of Yi, i ∈ b′α, given Ȳα. In other words, Σ′sb(α) is the same as

Σsb(α) with one row and column removed. Then the joint distribution of {Yi, i ∈ b′α} and Ȳα is

multivariate normal with mean 0 and covariance matrix



Σ′sb(α) τα

τT
α σ2

bb(α)




where σ2
bb(α) = V ar{Ȳα} and τα is the vector with entries τi = Cov(Yi, Ȳα), i ∈ b′α. From standard

formulae for conditional multivariate normal distributions, the conditional distribution of {Yi, i ∈
b′α} given Ȳα is normal with mean ταȲα/σ2

bb(α) and covariance matrix

Σhyb(α) = Σ′sb(α) −
τατT

α

σ2
bb(α)

.

Let us write τα/σ2
bb(α) = φ(α)(θ), Σhyb(α) = Σhyb(α)(θ) to emphasize the dependence on the param-

eter vector θ. Let Σ−1
hyb(α) have entries dij(θ), indexed by the coefficients i, j ∈ b′α. Similarly, φ(α)

has entries φi(θ), i ∈ b′α. Then the estimating function to be minimized by the hybrid estimator is

`hyb(θ) =
1
2

log |Σbb|+ 1
2

∑
α

log |Σhyb(α)|+
1
2

∑

α,β

ȲαȲβaαβ

+
1
2

∑
α

∑

i,j∈b′α

(Yi − φiȲα)(Yj − φj Ȳα)dij . (11)
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2.1 Regression coefficients, REML estimation, and kriging

The discussion so far has focussed solely on the approximation of the simplest form of log likelihood,

when the regression parameter η is either absent or known. However the same difficulties, associated

with manipulating a large covariance matrix, also affect the estimation of η, the correction to the log

likelihood associated with REML estimation (7), and spatial prediction and interpolation (kriging).

In particular, all three require calculation of Σ−1.

Because each of the three approximate likelihoods (9), (10) and (11) is, apart from a constant,

the negative log density of a multivariate normal distribution, each may be expressed in the form

`(θ) = −1
2

log |R|+ 1
2
Y T RY (12)

where the matrix R has entries rij , 1 ≤ i ≤ N, 1 ≤ j ≤ N . For example, in the case of (11) we

have |R| = − log |Σbb| −
∑

α log |Σhyb(α)|, and the individual entries are given by

rij =





aαβ

KαKβ
if i ∈ bα, j ∈ bβ, α 6= β,

aαα
K2

α
+ d̄·· if i = j ∈ b′′α,

aαα
K2

α
+ d̄·· − d̄i· if i ∈ b′α, j ∈ b′′α,

aαα
K2

α
+ d̄·· − d̄i· − d̄j· + dij if i, j ∈ b′α,

(13)

where

di· =
1

Kα

∑

j∈b′α

dijφj ,

d·· =
1

K2
α

∑

i,j∈b′α

dijφiφj .

Comparison of (11) with (5) shows that the role of R in our approximate likelihood calculations

may be equated with that of Σ−1 in the exact likelihood. This suggests that R may be taken more

generally as an approximation to Σ−1. In particular:

1. Estimation of regression coefficients. The exact GLS estimator is η̂ = (XT Σ−1X)−1XT Σ−1Y ,

with covariance matrix (XT Σ−1X)−1. We propose replacing Σ−1 by R to get an approximate

GLS estimator.

2. REML estimation. Formula (6) requires that we estimate log |Σ|, log |XT Σ−1X| and G2. We

approximate log |Σ| by − log |R|, as previously noted. Both log |XT Σ−1X| and G2 depend on

Σ on through Σ−1; in each case, we propose substituting R for Σ−1 to obtain an approximate

value.
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3. Kriging. Suppose we are interested in predicting or interpolating a value of the random field

Y0 with mean xT
0 η and variance σ2

0. Suppose τ is the vector of cross-correlations between

Y0 and Y . We assume x0, σ2
0 and τ are known, though each may be a function of the

unknown parameter vector θ. According to the theory of universal kriging (Ripley 1981,

Cressie 1993, Chilès and Delfiner 1999, Stein 1999, Smith 2001), the best linear predictor of

Y0 is Ŷ0 = λT Y , where λ = Σ−1τ + Σ−1X(XT Σ−1X)−1(x0 −XT Σ−1τ), and the associated

mean squared prediction error is σ2
0−τT Σ−1τ +(x0−XT Σ−1τ)T (XT Σ−1X)−1(x0−XT Σ−1τ).

We propose evaluating both of these formulae approximately, by substituting R for Σ−1.

3 Application of the “Information Sandwich” to assess statistical

properties of the estimators

This section and the next focus on theoretical properties of the methods. For certain special cases of

spatial processes defined on a one- or two-dimensional lattice, we have been able to calculate rigorous

asymptotic efficiencies (Caragea and Smith 2005). Here, we adopt a more intuitive approach based

on the “information sandwich” formula for asymptotic variances of estimators defined by estimating

equations. We concentrate on the case where the regression parameter η is known (without loss of

generality, η = 0) and focus on the estimation of the spatial covariance parameters θ.

For stationary processes on a lattice, there are already known ways of approximating the likeli-

hood efficiently (e.g. Whittle (1954), Guyon (1982)) or of simplifying the exact likelihood compu-

tations (Zimmerman 1989). The reason we are confining our theoretical calculations to lattices is

that we believe stationary lattice processes form a sufficiently rich test-bed of examples that we can

use to evaluate the properties of our estimators, combined with the fact that it is possible greatly

to speed up the Information Sandwich calculations in the case of a stationary lattice process. For

actual applications, we do not envision that they be confined to processes on a lattice (see Section

5 for a practical example).

The theoretical discussion focusses on two questions:

Problem 1. What are the efficiencies of our approximate maximum likelihood procedures, as

assessed by the ratios of the variances of our parameter estimates to those ofr maximum

likelihood? (This is also known as relative efficiency, but in this paper, we omit the word

“relative”.)
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Problem 2. Suppose we estimated the variances of the parameter estimates by the “direct method”

of inverting the observed information matrix, ignoring the fact that we are not using the true

likelihood function. What are the ratios of the estimation variances calculated by this method

to the true estimation variances?

Both questions may be answered (approximately) through an application of the “information

sandwich” (IS) method to characterize the sampling variability of our three approximate maximum

likelihood estimators. The general principles of the IS approach have been discussed by numerous

authors such as Heyde (1997), and were also extensively used by Stein et al. (2004).

Our viewpoint of Problem 2 above is different from that of Stein et al. (2004). They ar-

gued against estimating standard errors simply by inverting the approximate observed information

matrix; instead, they proposed a variant on the IS formula for that problem, using a sampling tech-

nique to evaluate a subset of the terms in cases where exact evaluation of the IS formula was too

cumbersome. Our viewpoint is that most spatial statisticians would not want to go to that much

trouble; if we are viewing our estimators as approximate maximum likelihood estimators, then it is

natural to want to reap the other benefits of a maximum likelihood approach, including automatic

calculation of the standard errors. We view our results on Problem 2 as providing some justifica-

tion for this viewpoint, while at the same time, in cases where the information matrix approach

substantially underestimates the true variances, providing some caution about the limitations of

this approach.

3.1 Outline of the IS approach

We assume a stationary Gaussian process {Yi, i = 1, ..., N}, where i is a two-dimensional index,

written (i1, i2) when we want to distinguish the two components, with 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2,

where N = N1N2. Suppose N = BK where B = B1B2 is the number of blocks, arranged as a

B1×B2 array, and suppose each block consists of K = K1K2 observations, arranged as a K1×K2

array. We assume EYi = 0 and write σij(θ) = E{YiYj}, assumed to depend only on i − j by

stationarity. We write θr, θs, etc., for the individual components of θ.

In applying the information sandwich formula to an estimator defined by minimizing the esti-

mating function S = S(Y1, ..., YN ; θ), we write H(θ) for the matrix with (r, s) entry

E

{
∂S

∂θr

∂S

∂θs

}
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and W (θ) for the matrix with (r, s) entry

E

{
∂2S

∂θr∂θs

}
.

The approximate covariance matrix of the estimator θ̃, that minimizes S, is then W (θ)−1H(θ)W (θ)−1.

Before proceeding to a detailed discussion of individual estimators, we note three general points:

1. Cov{YiYj , YkY`} = σikσj` +σi`σjk. This is used in computing variances of quadratic forms in

the Y variables.

2. As is well known from elementary likelihood theory, under mild regularity conditions we have

E

{
∂

∂θr
log f(Y ; θ)

}

θ=θ0

= 0

whenever f is the density of a random vector Y with true parameter θ0. This property

may also be expressed by saying that the set of first-order partial derivatives of the log

likelihood form an unbiased set of estimating equations for θ. Each of our proposed estimating

functions S = `bb, `sb and `hyb is a sum of negative log conditional or unconditional likelihood

functions for different portions of the data, and therefore has the same unbiasedness property,

E{∂S/∂θr} = 0 at the true value θ = θ0.

3. If Y ∼ N [µ(θ), Σ(θ)] and the parameters θ are estimated by maximum likelihood, then the

Fisher information matrix has (r, s) entry

∂µT

∂θr
Σ−1 ∂µ

∂θs
+

1
2
tr

(
Σ−1 ∂Σ

∂θr
Σ−1 ∂Σ

∂θs

)
, (14)

see, e.g. Smith (2001), Section 6.5.3. Noting again that each S can be written as a sum of

negative log likelihood for different portions of the data, it follows at once that the entries of

W (θ) can be expressed as a sum of terms of the form (14).

Once these formulae have been evaluated we apply them as follows:

Problem 1. The efficiency of the estimators compared with maximum likelihood is computed by

comparing the approximate covariance matrix W−1HW−1 with the inverse of the true Fisher

information matrix, say W−1
0 . In particular, the ratios of the diagonal entries of the two

matrices are the approximate efficiencies of the individual parameter estimators compared

with exact MLE.
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Problem 2. The ratios of the diagonal entries of W−1HW−1 are compared with those of W−1

to determine to what extent the variances would be incorrectly estimated if we used the

direct method (inverting the approximate observed information matrix) as opposed to the

IS method. In this context, a ratio greater than 1 would indicate that the direct method

underestimates the true sampling variance of the approximate MLE. We don’t do this for the

big blocks estimator, because in that case there is no need to distinguish the IS and direct

methods: the big blocks estimator uses the exact likelihood based on the block means, and

the IS method coincides with W−1 in this case.

3.2 Big blocks estimator

As in Section 2, we denote by Σbb the covariance matrix of the block means. It follows that the

(r, s) entry of the Fisher information matrix is

1
2
tr

(
Σ−1

bb

∂Σbb

∂θr
Σ−1

bb

∂Σbb

∂θs

)
. (15)

The inverse of the matrix with entries (15) is therefore the approximate variance-covariance matrix

of the big blocks estimator.

3.3 Small blocks estimator

Let Σsb denote the covariance matrix of {Yi, i ∈ bα}, which is independent of α by stationarity and

regularity of the lattice. Since the log likelihood (10) is a sum of log likelihoods for the individual

blocks, it follows from (14) that

E

{
∂2S

∂θr∂θs

}
=

B

2
tr

(
Σ−1

sb

∂Σsb

∂θr
Σ−1

sb

∂Σsb

∂θs

)
(16)

so we use (16) to define the matrix W (θ).

To compute the matrix H(θ), let us write

Tα,r =
1
2

∑

i∈bα,j∈bα

YiYj
∂cij

∂θr
+

1
2

∂

∂θr
log |Σsb|

which has mean 0 by Property 2 of Section 3.1. By (10), ∂`sb
∂θr

=
∑

α Tα,r. We also note that

Cov(Tα,r, Tβ,s) =
1
4

∑

i∈bα,j∈bα,k∈bβ ,`∈bβ

∂cij

∂θr

∂ck`

∂θs
(σikσj` + σi`σjk) (17)
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which (for given α, β, r, s) can be computed in O(K4) steps. We also note that, by stationarity

of the process and regularity of the blocks, (17) depends on the block indices α and β only through

their vector difference α− β. This property is critical in defining the next step.

Consider a specific configuration of (α, β) for which the coordinates satisfy β1 = α1 + χ1, β2 =

α2 + χ2, 1 − B1 ≤ χ1 ≤ B1 − 1, 1 − B2 ≤ χ2 ≤ B2 − 1. Within the B1 × B2 array of blocks, this

configuration occurs (B1 − |χ1|)(B2 − |χ2|) times. Therefore

Cov




B∑

α=1

Tα,r,
B∑

β=1

Tβ,s


 =

B∑

α=1

B∑

β=1

Cov (Tα,r, Tβ,s) (18)

=
B1−1∑

χ1=1−B1

B2−1∑

χ2=1−B2

(B1 − |χ1|)(B2 − |χ2|)Cov (T0,r, Tχ,s) (19)

which, in combination with (17), requires a total of O(K4B) calculations for each (r, s) pair.

Formulae (17) and (19) together define the (r, s) entry of the matrix H(θ). Since (16) defines

the matrix W (θ), the desired asymptotic covariance matrix for the small blocks estimator then

follows from the information sandwich formula, W (θ)−1H(θ)W (θ)−1.

Note that the computational saving from writing the formula in the form (19), as compared

with evaluating (18) directly, is to reduce a sum over B2 terms to one over (2B1 − 1)(2B2 − 1)

terms. For example, in the case B1 = B2 = 9, considered in one of our main examples below, the

computational saving is a factor of (81/17)2, or about 23. Given that the formula typically takes

several minutes to compute even via (19), this is a significant practical saving.

3.4 Hybrid estimator

The estimating function for the hybrid estimator is given by (11). For the case of a stationary

process on the lattice, we note two simplifications: (a) the matrix Σhyb(α) is the same for all blocks

and will henceforth be written Σhyb; (b) the coefficients φi, φj , dij depend only on the position of

coordinates i and j within the αth block, and not otherwise on α.

To compute the (r, s) entry of W (θ) in this case, we again apply Property 3 of Section 3.1 (first

conditionally on each Ȳα, and then taking the expectation with respect to Ȳα) to get

1
2
tr

(
Σ−1

bb

∂Σbb

∂θr
Σ−1

bb

∂Σbb

∂θs

)
+ Bσ2

bb

∂φT

∂θr
Σ−1

hyb

∂φ

∂θs
+

B

2
tr

(
Σ−1

hyb

∂Σhyb

∂θr
Σ−1

hyb

∂Σhyb

∂θs

)
. (20)

The remaining task is to compute covariances of ∂S/∂θr and ∂S/∂θs where

∂S

∂θr
=

1
2

∑

α,β

ȲαȲβ
∂aαβ

∂θr
−

∑
α

∑

i,j∈b′α

∂φi

∂θr
Ȳα(Yj − φj Ȳα)dij
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+
1
2

∑
α

∑

i,j∈b′α

(Yi − φiȲα)(Yj − φj Ȳα)
∂dij

∂θr
+

∂

∂θr

{
1
2

log |Σbb|+ B

2
log |Σhyb|

}
. (21)

Let

Ur =
1
2

∑

α,β

ȲαȲβ
∂aαβ

∂θr
,

T ∗α,r = −
∑

i,j∈b′α

∂φi

∂θr
Ȳα(Yj − φj Ȳα)dij +

1
2

∑

i,j∈b′α

(Yi − φiȲα)(Yj − φj Ȳα)
∂dij

∂θr
.

Then the matrix H(θ) has entries of the form

Cov


Ur +

∑
α

T ∗α,r, Us +
∑

β

T ∗β,s


 . (22)

The expression (22) is the sum of four terms:

1. Cov(Ur, Us) is of the form

1
4

∑

α,β,γ,δ

∂aαβ

∂θr

∂aγδ

∂θs

{
Cov(Ȳα, Ȳγ)Cov(Ȳβ, Ȳδ) + Cov(Ȳα, Ȳδ)Cov(Ȳβ, Ȳγ)

}
. (23)

2. Cov(Ur, T
∗
β,s) is of the form

1
2

∑

γ,δ

∂aγδ

∂θr
Cov


Ȳγ Ȳδ,




−

∑

i,j∈b′
β

∂φi

∂θs
Ȳβ(Yj − φj Ȳβ)dij +

1
2

∑

i,j∈b′
β

(Yi − φiȲβ)(Yj − φj Ȳβ)
∂dij

∂θs






 .

(24)

3. Cov(Us, T
∗
α,r) is computed the same way as (24).

4. Using the same trick as for the small blocks estimator, we write

Cov




B∑

α=1

T ∗α,r,
B∑

β=1

T ∗β,s


 =

B1−1∑

χ1=1−B1

B2−1∑

χ2=1−B2

(B1 − |χ1|)(B2 − |χ2|)Cov
(
T ∗0,r, T

∗
χ,s

)
. (25)

Finally, we put (23), (24) and (25) together to deduce H(θ). Since we also have W (θ) de-

fined from (20), the approximate covariance matrix of the hybrid estimator is then defined by the

information sandwich formula.

4 Results

In this section, we apply the calculations of Section 3 to three examples.
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Our first example is a one-dimensional time series of AR(1) form, denoted by Yi = Yi−1 + θei

with ei independent N(0, 1). This is of course an artificial example, since for this model the MLE

is computable analytically, but it is used by Caragea and Smith (2005) as an example for which the

asymptotic efficiency of all three methods is computable analytically. We let N = 500 observations

divided into B = 50 blocks of size K = 10. Table 1 shows the asymptotic efficiency of the estimation

of θ, as well as the IS/direct ratios, calculated by the method of Section 3. The efficiencies are

low for the big blocks method except when θ is near 1, but they are above 90% for both the small

blocks and hybrid methods. Also shown are the IS/direct ratios, which are very close to 1 except

when θ = ±0.75.

θ Big Blocks Small Blocks Hybrid Small Blocks Hybrid

Efficiency Efficiency Efficiency IS/Direct IS/Direct

–0.750 .00538 .92595 .92267 1.25 1.26

–0.250 .08999 .91329 .91373 1.002 1.003

–0.010 .15983 .90182 .90280 1.000 1.000

0.010 .16684 .90182 .90281 1.000 1.000

0.250 .27301 .91329 .91409 1.002 1.001

0.750 .73896 .92595 .91800 1.246 1.177

Table 1. Efficiency of estimators for AR(1) model with B = 50, K = 10.

The next example is designed to compare our theoretical results with simulations, for the

particular case of a spatial process with exponential covariances on a 20× 20 lattice. We assume

the distance between neighboring lattice points is 1, and a range of either 0.5 or 1.5. We also

assume square blocks with either B = 100, K = 4 or B = 25, K = 16.

For this example, we have computed approximate efficiencies for all three estimators, using the

IS formula, as well as the IS/Direct ratios for the small blocks and hybrid methods. Corresponding

simulation results are in parentheses, computed from 5000 replications. In the case of the IS/Direct

ratios, the simulated results represent the mean of the ratios between the true variance of the

estimator (estimated from Monte Carlo replications) to the variance that is estimated using the

approximate information matrix — this is the real quantity of interest, that the IS/Direct ratio

is trying to approximate. We have also computed standard errors for these quantities to take

account of Monte Carlo variability in the simulations; these are not shown in the table, but overall

they confirm that the differences between theoretical and simulated results can be attributed to
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Monte Carlo variability. We have not attempted more extensive simulation studies because of the

computational expense that they involve.

In Table 2, the IS/Direct ratios are generally between 1 and 2, though it is notable that in cases

where the ratios are substantially greater than 1 (those with true range 1.5), the IS/Direct ratio

is closer to 1 for the hybrid method than for the small blocks method, which may be a reason to

prefer the hybrid method. As far as efficiency is concerned, there is not much to choose between

the small blocks and hybrid methods.

True range B, K Method Efficiency Efficiency IS/Direct IS/Direct

and scale for range for scale for range for scale

0.5,1 100, 4 BB .172 (.124) .118 (.134) N/A N/A

0.5,1 100, 4 SB .572 (.503) 1.000 (.999) 1.02 (0.89) 1.04 (1.06)

0.5,1 100, 4 HYB .665 (.611) 1.000 (.998) .997 (0.89) 1.03 (1.04)

1.5,1 100, 4 BB .467 (.426) .778 (.754) N/A N/A

1.5,1 100, 4 SB .779 (.776) .949 (.966) 1.63 (1.50) 2.10 (1.92)

1.5,1 100, 4 HYB .813 (.784) .964 (.955) .98 (.91) 1.15 (1.07)

0.5,1 25, 16 BB .011 (0.015) .003 (.011) N/A N/A

0.5,1 25, 16 SB .818 (.797) 1.000 (.999) 1.01 (.95) 1.02 (1.03)

0.5,1 25, 16 HYB .823 (.800) 1.000 (.998) 1.01 (.95) 1.02 (1.03)

1.5,1 25, 16 BB .090 (.061) .085 (.056) N/A N/A

1.5,1 25, 16 SB .886 (.887) .937 (.954) 1.39 (1.33) 1.52 (1.41)

1.5,1 25, 16 HYB .880 (.842) .935 (.925) 1.23 (1.22) 1.23 (1.29)

Table 2. Efficiency of estimators for exponential model with unknown range and scale parameters;

20× 20 lattice.

Now we consider a larger spatial lattice, based on a 27× 27 lattice divided into 81 3× 3 blocks.

We consider two models, the exponential and Matérn models of (2) and (3).

Tables 3 and 4 present the results for both models where the range parameter is one of 3, 9

or 27 (assuming the distance between neighboring lattice points is one unit), and in the Matérn

case, the Matérn scale parameter ν is either 1 or 0.1, the latter representing a case where there is

a near-discontinuity in the variogram at the origin.

Here are a few qualitative conclusions we can draw from these tables:
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1. The big blocks estimator is again inefficient for when the true range is small, but improves

dramatically when the range is large; for range 27 (so that the range of spatial covariance is

comparable with that of the data set) the big blocks estimator is sometimes the best of the

three, though not for estimating ν in the Matérn covariance (which is logical, since ν is a

parameter which reflects the small-scale variability of the process).

2. In most cases, the small blocks and hybrid estimators are comparable in efficiency, with

no clear preference for one over the other. The one exception to this is the Matérn model

with ν = 0.1; in this case, the hybrid estimator appears clearly superior to the small blocks

estimator in most cases.

3. The IS/Direct ratios are sometimes much bigger than 1, implying that variance estimators

based on inverting the approximate information matrix will seriously underestimate the true

variances. However, in every instance where this happens, the IS/Direct ratio is much smaller

for the hybrid estimator than for the small blocks estimator. It is still debatable whether a

ratio of 2 of 3 is acceptable in a practical estimator, but the message seems to be that if we

propose to use the direct method to approximate the variance of an estimator, we get a more

accurate approximation in the case of the hybrid estimator.

True range Method Efficiency Efficiency IS/Direct IS/Direct

and scale for range for scale for range for scale

3,1 BB .44704 .87855 N/A N/A

3,1 SB .83511 .87175 2.91 3.44

3,1 HYB .81079 .85079 1.45 1.64

9,1 BB .75813 .93191 N/A N/A

9,1 SB .72408 .73858 10.99 12.70

9,1 HYB .76690 .77747 1.88 1.98

27,1 BB .90026 .95448 N/A N/A

27,1 SB .71722 .71900 32.06 36.38

27,1 HYB .77195 .77435 1.99 2.03

Table 3. Efficiency of estimators for exponential model with unknown range and scale parameters;

27× 27 lattice divided into 3× 3 blocks.

17



True range, Method Efficiency Efficiency Efficiency IS/Direct IS/Direct IS/Direct

scale and shape for range for scale for shape for range for scale for shape

3,1,1 BB .38638 .22566 .00552 N/A N/A N/A

3,1,1 SB .67215 .87884 .47059 1.67 2.64 1.30

3,1,1 HYB .61722 .81863 .47753 1.47 1.80 1.32

9,1,1 BB .38325 .84483 .02399 N/A N/A N/A

9,1,1 SB .58047 .71886 .42485 4.91 9.79 1.78

9,1,1 HYB .62819 .74415 .48413 2.22 2.69 1.75

27,1,1 BB .53529 .88697 .05428 N/A N/A N/A

27,1,1 SB .45077 .59332 .29222 16.28 34.96 3.72

27,1,1 HYB .70594 .77619 .44586 2.43 3.07 2.37

3,1,.1 BB .80723 .06917 .07704 N/A N/A N/A

3,1,.1 SB .53118 .96192 .34166 1.37 1.96 1.02

3,1,.1 HYB .90968 .97333 .77054 1.06 1.09 1.08

9,1,.1 BB .85495 .41777 .10820 N/A N/A N/A

9,1,.1 SB .62836 .86186 .32750 2.31 6.39 1.03

9,1,.1 HYB .90449 .92904 .80421 1.14 1.14 1.11

27,1,.1 BB .89971 .83043 .12496 N/A N/A N/A

27,1,.1 SB .67707 .82933 .31381 3.63 16.83 1.04

27,1,.1 HYB .89021 .89893 .81865 1.24 1.22 1.11

Table 4. Efficiency of estimators for Matérn model with unknown range, scale and shape param-

eters; 27× 27 lattice divided into 3× 3 blocks.
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5 An example

In this section we discuss a practical example, designed to illustrate how well the methods perform

in a real-data context.

In recent years, climatologists have taken great interest in possible trends in rainfall frequencies

and amounts (Karl and Knight 1998). Next to the steady rise in temperatures known as global

warming, rainfall trends form one of the best indicators of global climate change. However (as

with temperature changes) the actual measured trend varies considerably at different locations.

The present example is part of a larger investigation involving spatial interpolation of precipitation

trends.

For this study, we have taken 540 rainfall stations across several states in the south-central US;

the stations are shown in Fig. 1, where for later comparison we have subdivided them into four

subsets corresponding to different subregions. The stations are taken from a larger dataset complied

by the National Climatic Data Center; for this example, the number of stations was chosen to be

near the upper limit of what is easily computable by exact maximum likelihood.

At each station, monthly totals were taken from 1965 to 1985. A linear trend was estimated

by simple linear regression using the model yt = at + bm(t) + et where yt is observed rainfall total

in month t, a is the coefficient of linear trend, m(t) is the month during which t falls (Month 1

is January, Month 2 is February, etc.), b1, ..., b12 are 12 individual month effects and et is random

error. Only the estimated trends â for each station are used in the subsequent spatial analysis; a

plot of these is shown in Fig. 2. The plot suggests some spatial coherence in the trends, but does

not suggest any systematic spatial pattern that might be modeled by including an Xη component in

(1); in subsequent analysis, we consider only models in which Xη is reduced to a constant unknown

mean, but we explore different possibilities for the spatial dependence matrix Σ(θ).

Some initial investigations were undertaken into the correct form of spatial model. Latitudes

and longitudes (measured in degrees) were used to define the spatial coordinates of each station.

Plots of the sample variogram (see, e.g., Cressie (1993) for discussion of variograms) suggested the

typical pattern found in geostatistics, with a variogram increasing at small distances but levelling

off to a “sill”, that could be fitted using the exponential or Matérn models, (2) or (3). Directional

variograms are often used as a diagnostic for anisotropy; in this case, there was no evidence that the

variogram increased more rapidly in one direction than another. Comparison of different parametric

models suggested that the exponential model (2) fitted as well as any, but that it was necessary to
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include a “nugget effect”. Hence the actual model fitted was

σij =

{
eα if dij = 0,

(1− φ)eα−dij/ρ if dij > 0,
(26)

where α is the log-sill (log transformation taken to improve numerical stability), ρ is the range and

φ ∈ [0, 1] the nugget:sill ratio.

There remains some doubt, however, about whether a single model of the form (26) fits the

data throughout the region of interest. To investigate this issue, separate models were also fitted

to each of the four subregions indicated in Fig. 1. The initial discussion is based on a single model

fitted to all 540 stations, but subsequently we consider the effect of dividing the region into four

subregions.

Method α ρ φ

MLE –4.32091 (0.20199) 0.82742 (0.24412) 0.40134 (0.06670)

SB –4.51278 (0.17630) 1.28372 (0.45045) 0.48709 (0.06527)

HYB –4.40432 (0.20204) 0.95808 (0.30594) 0.43953 (0.06726)

Table 5. Estimates of the three parameters in model (26), fitted to the full dataset, by exact

maximum likelihood (MLE) and the small blocks (SB) and hybrid (HYB) methods; the latter were

based on a subdivision into 60 blocks of size 9. Standard errors are in parentheses. In the case of

the SB and HYB methods, standard errors were computed by the direct method, i.e. inversion of

the approximate observed information matrix.

Table 5 shows the exact maximum likelihood estimator (MLE) for model (26), together with

the small blocks (SB) and hybrid (HYB) estimators, when the region is divided into 60 blocks

of size 9. Also shown are standard errors (for SB and HYB, computed by the “direct” method).

We did not consider the big blocks method because in this example, with the estimated range

parameter ρ much smaller than the diameter of the region, it seemed obvious that this would not

be competitive. Table 5 suggests that both the SB and HYB estimates are close to the MLE,

though in this example, HYB is closer to MLE than SB for all three parameters. The standard

error estimates are also comparable across all three estimation methods.

One can argue that the real purpose of such a study is not how well we can estimate the

spatial model parameters, but how well it is possible to interpolate the random field using those

parameters. To investigate this, Fig. 3 shows the result of spatial interpolation (kriging) using all

three estimators, including the nugget effect. For ease of plotting, the interpolation is performed
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on a 30× 30 grid. The three interpolated surfaces, appear, visually, almost identical.

To investigate further the effect of the different interpolation schemes, a cross-validation proce-

dure was carried out. Each station in turn was deleted and its value predicted from the remaining

stations. A cross-validated mean squared prediction error was computed. This was repeated for

each of the three estimation methods. As a straw-man comparison, we also performed the same

exercise where the “interpolator” at each station was just the sample mean across all stations; we

should expect all the kriging methods to perform much better than this.

Results are shown in Fig. 4. The cross-validated mean squared error surfaces are very similar

for each of the three kriging methods, but somewhat different for the sample mean interpolator.

The overall cross-validated mean squared prediction errors (CVMSE) are .02151 for the sample

mean interpolator, .01511 for the MLE-based kriging interpolator, .01522 for the SB-based kriging

interpolator, .01515 for the HYB-based kriging interpolator. We can see that when assessed by

CVMSE, the three kriging methods are almost identical and, as expected, substantially better

than the sample mean interpolator.

Finally, we return to the question of whether the four subregions indicated in Fig. 1 are

comparable, in the sense that the same spatial model (26) would fit to each. Of course, it would be

possible to consider more than four subregions, or different definitions of the subregions, but since

our primary purpose is to check on the overall stationarity of the model, we felt this comparison

would be adequate for that.

Table 6 repeats the calculation of Table 5, but separately in each subregion. For one thing, this

allows us to extend the comparison of parameter estimates using the MLE, SB and HYB methods.

For example, combining Tables 5 and 6, there are 15 possible comparisons of parameter and region

for which we can compare the three point estimates; in 11 of the 15 cases, the difference between

HYB and MLE is smaller than the difference between SB and MLE. This confirms the impression

created by the theoretical results, that overall HYB seems superior to SB, but it’s not a totally

one-sided comparison. We may also look at the standard errors of the three methods; in most cases,

these are comparable.

As for the differences in parameter estimates among subregions, there is some evidence in

Table 6 that they may be significant. This was further investigated by likelihood ratio tests; for

each ordered pair of subregions, the MLE from the first subregion was inserted into a likelihood

ratio test of the second subregion, to determine whether the parameter estimates were significantly

different from the MLE for the second subregion. The resulting approximate χ2
3 statistics ranged
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Subregion Method α ρ φ

1 MLE –4.83174 (0.46974) 0.77205 (0.49036) 0.49362 (0.15897)

1 SB –5.02242 (0.70732) 0.32748 (0.24417) 0.51695 (0.32663)

1 HYB –5.17059 (0.64551) 0.46043 (0.37098) 0.58790 (0.25137)

2 MLE –4.38368 (0.33252) 0.33361 (0.14714) 0.15454 (0.23716)

2 SB –4.52754 (0.35235) 0.40298 (0.21228) 0.22286 (0.24908)

2 HYB –4.34438 (0.29689) 0.29654 (0.12450) 0.07623 (0.24124)

3 MLE –4.24219 (0.39113) 0.56362 (0.27827) 0.45358 (0.15595)

3 SB –4.60346 (0.47527) 1.66048 (1.91256) 0.61359 (0.14966)

3 HYB –4.25600 (0.42109) 0.47405 (0.24954) 0.45278 (0.19369)

4 MLE –4.40387 (0.39751) 0.62726 (0.38096) 0.46345 (0.14972)

4 SB –4.45706 (0.37389) 0.65396 (0.38465) 0.48804 (0.15131)

4 HYB –4.37124 (0.41044) 0.78797 (0.56558) 0.46578 (0.13622)

Table 6. Similar to Table 5, but estimated computed separately on each subregion.

from 1.5 to 38.2; in 8 of the possible 12 cases, there were statistically significant at the .05 level.

Nevertheless, when applied to the cross-validated prediction errors, the prediction errors associated

with global method (fitting a common model to all subregions) were comparable with those for a

local method in which a separate model was fitted to each subregion as a preliminary to kriging.

Only in subregion 2 was there a slightly larger discrepancy between the two sets of prediction errors

(Fig. 5). This suggests that, while there may indeed be a discrepancy among the four subregions

as measured by likelihood ratio tests for the parameter estimates, the practical effect of this on

prediction is very slight, and so justifies our overall analysis based on a stationary model.

6 Summary and Conclusions

We began by defining three estimators, “big blocks”, “small blocks” and “hybrid”, all of which

start by dividing a set of N observations into B blocks of approximate size K, where BK ≈ N .

Computational efficiency is maximized when B is between N1/2 and N2/3.

These estimators have been compared both in terms of their statistical efficiency, as measured

by the ratio of the variance of our proposed estimator to that of the corresponding MLE, and by

the IS/Direct ratio, which is the ratio of variance as estimated by the information sandwich formula
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to the direct method based on the information matrix alone. If this ratio is much larger than 1,

the variance of the estimator is seriously underestimated by using the direct method.

Comparisons of efficiencies suggest that the big blocks estimator is poor except when the range

of the spatial covariance function is comparable with the range of the sampling locations. The

efficiencies of the small blocks and hybrid estimators appear comparable in most circumstances,

with the curious exception of the Matérn model with small shape parameter, when the hybrid

method appears clearly superior.

In these models, the IS/Direct ratio is often close to 1 but in some cases is much bigger than

1. However, in all cases where the IS/Direct ratio was much bigger than 1, it was much smaller for

the hybrid estimator than for the small blocks estimator. This provides another practical reason

for using the hybrid estimator: even if it does not provide much advantage (over the small blocks

estimator) in terms of statistical efficiency, it appears that the direct method of estimating variances

is more satisfactory for the hybrid estimator than it is for the small blocks estimator.

A real-data example based on rainfall trends suggests that the hybrid estimator is very often,

but not invariably, closer to the true MLE than the small-blocks estimator, while the three sets

of standard errors (using the direct method) are comparable. The quality of predictions produced

by the three methods, assessed by a cross-validated mean squared prediction error, was almost

identical for this example.

In summary, the small-blocks and hybrid methods both appear to be good substitutes for the

MLE across a very wide range of theoretical and practical examples. The big blocks method appears

to be useful in practice only when the range of spatial covariances is comparable with the diameter

of the region. As for the comparison between the small blocks and hybrid methods, in many cases

the two are comparable in terms of efficiency, but the hybrid method is superior in the sense that

estimated standard errors from inverting the approximate observed information matrix are closer to

the true standard errors than those derived by the small blocks method. We therefore recommend

the hybrid method as a good all-round alternative to exact maximum likelihood.
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Figure 1. The study region; 540 stations divided into four subregions.
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Solid circles represent positive trends
Circles represent negative trends

Size of circles represents magnitude of trends

Figure 2. Estimated linear trends in rainfall monthly totals, 1966–1984, fitted pointwise to each

station.
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Maximum Likelihood Small Blocks

Hybrid

Figure 3. Interpolated trend fitted using exact maximum likelihood as well as the small blocks

and hybrid approaches; exponential covariance model with nugget.

28



Sample Mean, CVMSE=0.02151 Maximum Likelihood, CVMSE=0.01511

Small Blocks, CVMSE=0.01522 Hybrid, CVMSE=0.01515

Figure 4. Cross-validated mean squared prediction errors for the sample-mean predictor and for

kriging using each of the three estimators.
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Figure 5. Comparison of local and global prediction errors for each subregion. Global prediction

error based on model (26) fitted to all four subregions; local prediction error based on separate

model for each subregion.
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