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1 Simulation Studies

In order to assess the viability of our proposed method, we conduct two simulation

studies. The results are presented in this Section.
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1.1 Simulation Study 1

For D ⊂ R2, we consider D, a finite set of equally spaced grid points in D. For

all s ∈ D, we randomly generate true location, scale, and shape fields (µ(s), σ(s),

and ξ(s) respectively) using a Gaussian process with Matérn covariance structure.

Based on these fields we also obtain RL(s), the true 100 year return level at s. For

the nth simulation (n = 1, . . . , N) we simulate Za(s) (a = 1, . . . , A), independent

realizations from a max-stable process with unit Fréchet margins for l randomly se-

lected s ∈ D. For a set of randomly selected locations L ⊂ D, we transform to

GEV (µ(s), σ(s), ξ(s)) margins for each s ∈ L using the probability integral transfor-

mation

Ya(s) = G−1µ(s),σ(s),ξ(s)[F (Za(s))],

where F is the unit Fréchet distribution function and Gµ(s),σ(s),ξ(s) is the distribution

function for a random variable that has the GEV (µ(s), σ(s), ξ(s)) distribution. For

all s ∈ L, we obtain the series of maxima (Y1(s), . . . , YA(s)) and use the procedure

outlined in our manuscript to estimate µ(s), σ(s), ξ(s), and RL(s) for all s ∈ D

using λ ∈ Λ = {λ1, . . . , λr} for r <∞. For each n and each choice of λ, we calculate

SSE
(n)
λ =

∑
s∈D

[RL(s)− R̂L
(n)

λ (s)]2

where RL(s) is the true 100 year return level at s, and R̂L
(n)

λ (s) is the estimated

100 year return level for the nth simulated data set based on λ. For each λ ∈ Λ,

we calculate the 0.25 quantile, the 0.5 quantile, the 0.75 quantile, and the mean of

SSE
(1)
λ , . . . , SSE

(N)
λ .

In our simulation study, we choose A = 100, l = 50, N = 5001, D to be a

1We note that there were convergence issues on three of the 500 simulations, and these three
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50 × 50 grid of points on [0, 10]2, and simulate from the Schlather max-stable pro-

cess with powered exponential covariance model Schlather (2002). We take Λ =

{0, 0.5, 1.0, 1.5, 2.0,∞}, where λ = 0 corresponds to the sparse banded covariance

matrix and λ =∞ corresponds to using the unadjusted bootstrap covariance matrix.

The randomly generated location, scale, and shape fields are given in Figure 1, along

with the resulting 100 year return level. The results of this simulation study are sum-

marized in Table 1. These results suggest that it may be possible to improve return

level estimates by choosing a sensible λ.

Table 1: For each procedure in Simulation Study 1, we present the 0.25 quantile, the
0.5 quantile, the 0.75 quantile, and the mean of SSE

(1)
λ , . . . , SSE

(N)
λ for all λ ∈ Λ.

Banded λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0 BS Cov Mat
25% 23937.67 21994.63 22041.15 22043.21 23307.09 55728.17
50% 37537.99 37106.37 36324.92 36298.84 37954.90 167390.83
75% 67169.95 64154.69 64062.09 65644.18 72238.34 440925.37

Mean 58223.92 58035.93 55097.87 58026.86 64704.03 1144228.14

1.2 Simulation Study 2

For D ⊂ R2, we consider D, a finite set of equally spaced grid points in D. For all

s ∈ D, we randomly generate true fields θ1(s), . . . , θ5(s). We use a Gaussian process

with Matérn covariance structure to generate θ1(s), θ3(s), θ5(s) and θ2(s), θ4(s) are

linear trend surfaces. These five fields are used to create the location, scale, and shape

values at s via

µt(s) = θ1(s) + t θ2(s)

log σt(s) = θ3(s) + t θ4(s)

ξ(s) = θ5(s),

were omitted.
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Figure 1: For Simulation Study 1, the top left panel gives the true location field, the
top right panel gives the true scale field, the bottom left panel gives the true shape
field, and the bottom right panel gives the true 100 year return level values.

where t = 1, . . . , T . Based on these fields we also obtain RL(s), the true 100 year

return level at s for t = t′. For the nth simulation (n = 1, . . . , N) we simulate Za(s)

(a = 1, . . . , A), independent realizations from a max-stable process with unit Fréchet

margins for l randomly selected s ∈ D. For a set of randomly selected locations

L ⊂ D, we transform to GEV (µ(s), σ(s), ξ(s)) margins for each s ∈ L using the
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probability integral transformation

Ya(s) = G−1µ(s),σ(s),ξ(s)[F (Za(s))],

where F is the unit Fréchet distribution function and Gµ(s),σ(s),ξ(s) is the distribution

function for a random variable that has the GEV (µ(s), σ(s), ξ(s)) distribution. For

all s ∈ L, we obtain the series of maxima (Y1(s), . . . , YA(s)) and use the procedure

outlined in our manuscript to estimate θ1(s), . . . , θ5(s) for all s ∈ D using λ = λ′.

For each n and each field, we use the method outlined in our manuscript to obtain

estimated fields θ̂
(n)
1 (s), . . . , θ̂

(n)
5 (s).

In our simulation study, we choose A = 100, l = 50, T = 50 λ′ = 0.5, N = 500, D

to be a 50× 50 grid of points on [0, 10]2, and simulate from the Schlather max-stable

process with powered exponential covariance model Schlather (2002). The randomly

generated fields are given in the left panels of Figure 2. For all s ∈ D, the pointwise

median estimated surfaces are given in Figure 2. We note that the pointwise median

surfaces seem to estimate the true surfaces reasonably well, with the exception of the

shape parameter, which seems to be underestimated throughout D.

2 Figures

In order to reduce the length of the manuscript, several figures have been moved to

this Section.
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Figure 2: In the left panels, we plot the true surfaces θ1 to θ5 (top to bottom) used in
Simulation Study 2. In the right panels, we plot the corresponding pointwise median
estimated surfaces.
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Figure 3: We plot the estimated 100-year return levels (in cm) for low SST (top),
high SST (middle), and 2017 SST (bottom).
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Figure 4: We plot the lower endpoints (left column) and upper endpoints (right
column) of the pointwise 90% confidence intervals for the 100-year return levels (in
cm). The top row corresponds to low SST, the middle row corresponds to high SST,
and the bottom row corresponds to 2017 SST. Confidence intervals are generated via
the simulation based method.
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Figure 5: We plot the upper (L) and upper (R) endpoints for the pointwise 90% con-
fidence intervals for the ratio of 100-year return levels (high versus low). Confidence
intervals are generated via the simulation based method.
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Figure 6: We plot the upper (L) and upper (R) endpoints for the pointwise 90% con-
fidence intervals for the ratio of 100-year return levels (2017 versus low). Confidence
intervals are generated via the simulation based method.
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Figure 7: Based on output from our fitted model, we plot the estimated probability
of observing a seven-day hurricane season precipitation total in excess of 70 cm for
low SST (top panel), high SST (middle panel), and 2017 SST (bottom panel).
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Figure 8: Based on output from our fitted model, we plot the estimated probability
of observing a seven-day hurricane season precipitation total in excess of 53.4% of
each location’s annual average precipitation (corresponding to 70 cm in Houston) for
low SST (top panel), high SST (middle panel), and 2017 SST (bottom panel).
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