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0.1 Introduction

Climate-change detection and attribution is an important area in the cli-
mate sciences, specifically in the study of climate change. Statements such
as “It is extremely likely that human influence has been the dominant cause
of the observed warming since the mid-20th century” are frequently found in
the Assessment Reports of the Intergovernmental Panel on Climate Change
(IPCC). These types of statements are largely based on to the synthesis of
results from detection and attribution studies [6]. Broadly speaking, the goal
of climate-change detection and attribution methods is to differentiate if ob-
served changes in variables quantifying weather (e.g., temperature or rainfall
amounts) are consistent with processes internal to the climate system or are
evidence for a change in climate due to so-called external forcings [24]. Ex-
ternal forcings are often categorized into natural and anthropogenic (human-
caused) forcings, where solar and volcanic activity are examples of natural
forcings and increased greenhouse gas emissions and land use change are ex-
amples of anthropogenic forcings. Figure 1 shows a typical example of a detec-
tion and attribution study for long-term temperature change. In this example,
natural forcings alone can not explain the observed temperature-change, but
a combination of human-caused and natural forcings can.

One key challenge is that (for planet Earth) we can only observe a sin-
gle realization of climate over space and time. This fact makes it intrinsically
difficult to detect changes and to attribute them to specific forcings without
further constraining information. This is where climate models play on im-
portant role, as they can be used to test the evolution of pathways under
different forcings scenarios. The prevailing paradigm is that the climate sys-
tem is a chaotic system, meaning that minute initial condition changes can
lead to varying outcomes, and our observed climate is one specific realiza-
tion of that system. The variability associated with the chaotic nature of the
system, referred to as internal variability, is typically estimated from control
runs, which are are climate model runs without any external forcings. [34]
provide a more detailed conceptual overview of the problem of climate change
detection and attribution from a statistical point of view.

Climate model output needs to be calibrated to agree with observed
weather, in that the climate models might be biased or be scaled differently
than the observations. For example, this means that it is very difficult to di-
rectly compare the global average temperature today to that of, say, 100 years
ago, and be able to attribute the increase in temperature to specific forcing
scenarios obtained from climate models. What is used (in place of absolute
changes) are the patterns of changes in the climate in response to a given forc-
ing, which are referred to as fingerprints [35]. This way, the focus is less on
whether an increase in global average temperatures is more consistent with
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FIGURE 1
Example of a detection and attribution study, reproduced from FAQ 10.1,
Figure 1 IPCC 2013: The Physical Science Basis. Time series of global and
annual-averaged surface temperature change from 1860 to 2010. The top left
panel shows results from two ensemble of climate models driven with just nat-
ural forcings, shown as thin blue and yellow lines; ensemble average tempera-
ture changes are thick blue and red lines. Three different observed estimates
are shown as black lines. The lower left panel shows simulations by the same
models, but driven with both natural forcing and human-induced changes
in greenhouse gases and aerosols. (Right) Spatial patterns of local surface
temperature trends from 1951 to 2010. The upper panel shows the pattern of
trends from a large ensemble of Coupled Model Intercomparison Project Phase
5 (CMIP5) simulations driven with just natural forcings. The bottom panel
shows trends from a corresponding ensemble of simulations driven with natu-
ral + human forcings. The middle panel shows the pattern of observed trends
from the Hadley Centre/Climatic Research Unit gridded surface temperature
data set 4 (HadCRUT4) during this period.

the observed temperatures, but whether observed changes are greater in a
specific region than in another, i.e. how well the patterns of change match.
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The most commonly employed framework to address this problem is linear
regression, where the observed change is the response variable and a linear
combination of the patterns corresponding to the specific external forcing
scenarios (obtained from climate models) are the explanatory variables. The
inferential goal is the determination of the regression coefficients associated
with the different forcings. Their estimated values and uncertainty ranges
establish if a change has been detected and to which combination of scenarios
it can be attributed.

A different area, discussed in Section 0.4, is extreme event attribution. The
focus of extreme event attribution is on assessing specific events such as, for
example, an extreme flood. The main goal is to determine if anthropogenic
influences have changed the probability of occurrence or magnitude for this
particular event. A concept commonly used within this framework is the Frac-
tion of Attributable Risk (FAR), which is defined as FAR = (p1 − p0)/p1,
where p1 is the probability of an extreme event with anthropogenic forcings,
and p0 without. [56] and [41] provide recent reviews and we provide a more
statistically focussed review here.

Another area, which we will not discuss any further, is the fact that dis-
tributions can change in many ways. The simplest, and most commonly con-
sidered case, is a change in the mean. But changes in other characteristics of
climate, such as the variance, the magnitude or frequency of extreme values,
and even changes in the dependence structure over time (e.g., higher likeli-
hood of droughts due to an extended period of no rain) are important and of
interest. Here, we will only discuss work focused on changes in the mean.

0.2 Statistical model description

Regression-based climate-change detection and attribution can be viewed as a
multivariate spatial or spatio-temporal regression problem, where we express
an observed signal as a linear combination of different forcings scenarios. For
global studies, the observations and forced responses are typically available as
gridded quantities, which are often further aggregated to coarser grids (e.g.,
to a 2.5◦ × 2.5◦ grid, resulting in 144× 72 = 10, 368 grid cells or to a 5◦ × 5◦

grid, resulting in 72× 36 = 2, 592 grid cells). Observations and corresponding
forced responses are often averaged in time, e.g. decadal averages, or expressed
as estimated slope coefficients from a simple linear regression in each grid cell.
Estimating slope coefficients is a straightforward way to smooth out short-
term climate variability, which is overlaid on the longer-term trend we are
trying to detect. For example, the quantity describing the observations could
be slope coefficient estimates based on 30 years of temperature or rainfall
observations.

Hence, let y = (y1, . . . , yn)′ be a vector of the true quantity describing the
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observations at the n grid cells, and the vectors x1, . . . ,xJ the analogous (true)
quantities that would have occurred under the J different forcing scenarios.
Let X = (x1, . . . ,xJ), and define the n × n covariance matrix characterizing
the internal climate variability (without any forcing) as C. We can then write
the commonly assumed linear regression model in the form of a conditional
distribution,

y|X,β,C ∼ Nn
( J∑
j=1

βjxj ,C
)
, (0.1)

where Nn denotes an n-variate normal or Gaussian distribution.
Within this context, climate change detection is viewed as testing whether

each of the βj is equal to zero or not. Assuming that x1 corresponds to the
anthropogenic forcing, the conclusion that β1 6= 0 implies that human-caused
climate change (with regard to the specific observed quantity as defined) has
been detected. Attribution extends this framework by testing if the βj are
equal to unity, under the assumption that the mean responses for each forcing
have been removed and that the responses are additive [e.g., 49]. Under the
assumption of normality, the maximum-likelihood estimate for β is identical to
the generalized-least-squares estimate, which is the solution approach typically
pursued within the climate science community.

On first glance, this problem seems trivial. The challenge is, however, that
in practice, y, X, β, and C are all unknown. With the exception of β, all
these unknown quantities are high-dimensional, and our means to learn more
about them are rather limited and modeling choices have to be made. Modern
understanding further acknowledges that the observations are unknown as
well, and can only be observed with measurements errors. Reconstructed and
observational data sets are nowadays often provided in the form of ensembles,
which allows for the estimation of an observational error covariance matrix to
be incorporated in the modeling procedure. The following section describes the
development of solution approaches leading up to the most recent formulation
using Bayesian hierarchical modeling.

0.3 Methodological development

Climate-change detection and attribution methods have been developed by a
variety of groups in the climate science and, to a lesser degree, in the statistics
community and notations have varied accordingly. In this section, we apply
the notation used in the corresponding original literature.
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0.3.1 The beginning: Hasselmann’s method and its enhance-
ments

The original name for detection and attribution was the optimal fingerprint
method [22, 25]. The idea was that human-caused greenhouse gas emissions
would not only result in increased temperature overall, but would exhibit
distinctive patterns or fingerprints, and with careful analysis, these could be
detected in the observational signal. In contrast, other possible causes of warm-
ing, such as increases in solar output, would result in quite different patterns.
If we were able to detect a pattern that was closer to that associated with
greenhouse gases than with changes in solar output, that could be taken as
evidence that greenhouse gases, rather than solar variations, were the cause
of the changes we saw. The patterns to be expected were taken from climate
models in which the different possible forcing factors could be separated into
different model runs.

As originally formulated by Hasselmann [21], the setting was as follows:

1. The overall signal (for example, the change over time in a modeled
temperature field) is represented by an n-dimensional vector Φ̄;

2. The estimated change from observation data is written Φ;

3. We assume Φ − Φ̄ ∼ N (0,C) (multivariate normal with mean 0
and covariance matrix C);

4. C estimated from data but treated as known;

5. The null hypothesis H0 : Φ̄ = 0 is tested using a χ2 test.

As Hasselmann showed through a detailed example, this formulation is too
simple without further structure on the signal. For example, the amplitude of
signal required to be detected at a given level of significance increases with the
dimension of the signal itself. Therefore, it is desirable to make use of further
information on the anticipated form of the signal.

To bring this idea into the analysis, Hasselmann assumed we could write
the signal as a linear combination of individual signals (the fingerprints).
Therefore, we write Φ̄ = BΨ̄ where B is a n × p matrix of known basis
functions (interpreted as a p-dimensional “signal”). A revised estimate Φ̃ is
chosen to minimize |Φ̃−Φ|2. This in turn is used to construct a revised χ2 test
statistic. A key part of the method is expansion in principal components. In
the climate literature, principal components are known as Empiricial Orthog-
onal Functions or EOFs. Hasselmann anticipated that it might in practice be
necessary to restrict to a small number of leading EOFs (he suggested between
5 and 20).

The initial paper of Hasselmann was followed by a number of extensions
and ramifications in the 1990s, e.g. [22, 23]. North and Stevens [39] presented
a particularly simple derivation of the main results using linear algebra and
the elementary theory of linear models. Even at this time, however, it was also
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implicit that a reduction in dimension (for example, restricting the signal to
the leading EOFs) was needed to make the method applicable in practice.

The method started to influence the broader climate community with a se-
ries of papers in the mid-1990s applying these ideas to large climate datasets,
see in particular [25, 52]. For example, Hegerl et al. [25] used a guessed green-
house gas signal from a climate model, information about natural climate
variability derived from control runs, and global near-surface temperature
temperature observations. The null hypothesis, that changes in observed tem-
peratures could be explained by natural variability, was rejected with a p-value
< 0.05. However, they acknowledged considerable uncertainty about natural
variability and did not take into account signals from other forcing factors
such as solar variation.

The parallel paper by Santer and co-authors [52] focussed on the verti-
cal structure of temperatures through the atmosphere. One particular issue
here is the contrast between warming of the troposphere and cooling of the
stratosphere, a pattern that one would expect to be particularly indicative
of greenhouse gas warming, whereas other conceivable sources of atmospheric
warming, for example if solar radiation were generally increasing, would not
lead to such a characteristic vertical pattern of temperature changes. In this
paper, they enhanced their conclusions by incorporating other signals besides
greenhouse gases (they included stratospheric ozone in their model, as well
as sulfate aerosols — small particles in the atmosphere, generally caused by
human industrial processes, that have the effect of cooling the atmosphere and
thereby partially mitigating the greenhouse gas effect). They also compared
results from two climate models to examine the sensitivity of their results to
model-dependent uncertainties, and, like [25], used control runs from climate
models to assess natural variability, a key step in formulating a statistical sig-
nificance test. They concluded “it is likely that this trend is partially due to
human activities, though many uncertainties remain, particularly relating to
estimates of natural variability.”

0.3.2 The method comes to maturity: Reformulation as a
regression problem; random effects and total least
squares

Levine and Berliner [34] showed how Hasselmann’s equations could be refor-
mulated as a linear regression problem. The same formulation was proposed
independently by Allen and Tett [3] with an observational signal y regressed
on a finite number of covariates x1, ...,xJ representing J signals (for example,
greenhouse gases, sulfate aerosols, solar variation, volcanoes) that were sup-
posed to be derived from a climate model. Allen and Stott [4, 2] made the
important extension of treating the signals themselves as random quantities,
while a paper by Huntingford et al [29] showed how to extend the methodol-
ogy to multiple climate models. The methodology defined in these papers is
at the core of many present-day detection and attribution studies. The next
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part of our review therefore develops the methodology in these papers in some
detail, though we refer to the original papers for full details.

First we outline the paper [3]. The model assumed by them was of the
form

y = Xβ + u (0.2)

where

• y is vector of observations (` × 1, where ` is the number of grid cells —
several thousand in a typical climate model);

• X is matrix of J response patterns (` × J — here J is typically small, for
example 4 if the response patterns correspond to greenhouse gases, sulfate
aerosols, solar variability and the effects of volcanic eruptions — the first
two of these are referred to as anthropogenic forcing factors and the latter
two as natural forcing factors;

• u is “climate noise”, assumed normal with mean 0 and covariance matrix
C;

• We assume there exists a normalizing matrix P such that PCPT = I,
C−1 = PTP.

Then the model (0.2) may be rewritten

Py = PXβ + Pu (0.3)

where noise Pu has covariance matrix I.
The Gauss-Markov Theorem implies that the optimal estimator in (0.3) is

β̃ = (XTPTPX)−1XTPTPy

with covariance matrix

V (β̃) = (XTC−1X)−1.

A confidence ellipsoid for β may be derived from the distributional relationship

(β̃ − β)T (XTC−1X)−1(β̃ − β) ∼ χ2
J .

The main difficulty in this elegant construction stems from the dimension
of the sampling space. Evidently we need an estimate of the covariance matrix
C, and the established method [25, 52] is to use control runs of the climate
model, but in its general form C is an `×` matrix, and in the best-case scenario
we would not have more than about 2,000 years of control-run simulations
from which to estimate C. We could have a have a vector of n independent
“noise” simulations yN and then estimate Ĉ = 1

nYNY
T
N , but typically n << `

so Ĉ is singular.
To resolve this issue, in practice the following steps are followed:



10

• Restrict to κ EOFs with largest variance (equivalent to replacing P by Pκ,
consisting of the κ eigenvectors of C with largest eigenvalues);

• The set of control runs is split into two, one part being used to estimate C
and the other part to estimate β and the associated variance estimates and
tests of significance;

• These estimates lead to an estimate Ṽ (β̃) with ν degrees of freedom, where
ν corresponds to the effective sample size of the control runs. The concept
of effective sample size is closely related to the problem of testing for the
mean or a trend in an autocorrelated process, which is covered in detail in
Chapter 27 of this volume. Allen and Tett referred to the paper by Zwiers
and von Storch [60] which has been widely cited in the climate literature.

The end result of these manipulations is a formal test statistic for the signifi-
cance of β,

(β̃ − β)T Ṽ (β̃)−1(β̃ − β) ∼ JFJ,ν

which is readily adapted to testing just a subset of the components of β or
some linear combination of those components.

The final methodological development of Allen and Tett was a procedure
for testing the fit of the statistical model. Define

ũ = y −Xβ̃.

Then

r2 = ũTC−1ũ ∼ χ2
κ−J .

With independent control runs

ũT Ĉ−1ũ ∼ (κ− J)Fκ−J,ν approximately.

This can be used as a diagnostic on the model fit and also to guide the
choice of κ.

0.3.3 Accounting for noise in model-simulated responses: the
total least squares algorithm

The next major methodological development was due to Allen and Stott [4, 2].
They recognized that a flaw in model (0.2) was that it treated the components
of the X matrix as known, whereas in practice, these components (the outputs
of a climate model with different forcing factors) are subject to their own
random errors due to the internal variability of the climate system. As a first
approximation, these random errors should have distributions similar to those
of the control runs, so it would be reasonable to assume they have the same
means and covariances.
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Allen and Stott [4] rewrote (0.2) as follows. First, note that the term Xβ in

(0.2) may also be written
∑J
j=1 xjβj where xj is the model-generated signal.

Second, assume each observed xj is a perturbation of some “true signal” and
can therefore be rewritten xj−uj where xj is the true signal and uj a random
error. This leads to the model

y =

J∑
j=1

(xj − uj)βj + u0 (0.4)

where u0,u1, ...,uJ are assumed to be random errors with a common distri-
bution, N (0,C) in the typical case that we are considering.

To fit the model (0.4), an appropriate algorithm is not ordinary least
squares (OLS), but Total Least Squares (TLS), which we discuss next.

According to (0.4), the distribution of y is normal with mean
∑
j xjβj and

covariance (1 +
∑
j β

2
j )C so the likelihood function is proportional to

|C|−1/2(1 +
∑
j

β2
j )−`/2 exp

{
−1

2

(y −
∑
j xjβj)

TC−1(y −
∑
j xjβj)

(1 +
∑
j β

2
j )

}
.

Therefore, one possible estimator of β, assuming C known, would choose
β1, ..., βJ to minimize

(y −
∑
j xjβj)

TC−1(y −
∑
j xjβj)

(1 +
∑
j β

2
j )

+ ` log(1 +
∑
i

β2
j ). (0.5)

However, there is a practical difficulty with including the second term in (0.5),
which arises from the determinant part of the multivariate normal density: it
depends critically on the dimension of the signal `, and as we have already
seen, in practice the estimation is carried out in only a low-dimensional subset
of the true sampling space.

In fact, the model (0.4) and the estimator (0.5) are special cases of the
general errors in variables (EIV) regression formulation due to Gleser [14], who
proposed a generalized least squares algorithm minimizing only the quadratic
exponent part of the likelihood function, ignoring that part that arises from
the determinant. One argument made by Gleser to support this procedure was
that it was less dependent on the errors having an exact multivariate normal
distribution.

Applied in this context, Gleser’s formulation would choose β1, ..., βJ to
minimize just the first term of (0.5), in other words

Q =
(y −

∑
j xjβj)

TC−1(y −
∑
j xjβj)

(1 +
∑
j β

2
j )

. (0.6)

The solution of (0.6) is the TLS estimator of β.
Allen and Stott [4] discussed several variants of TLS, but noted that “the
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differences [among different approaches] are likely to be much less important
than the impact of neglecting response-pattern noise altogether.” In the simple
case of a single regressor x the formula amounts to minimizing the sum of
squares of perpendicular distances from the data points to the best-fit line,
instead of the the sum of squares of vertical distances which is the standard
OLS procedure. In this form, the method apparently originated in a paper of
Adcock [1].

To see that minimizing (0.6) is in fact equivalent to the Allen-Stott solu-
tion, we note the following. After applying a pre-whitening operator, Allen and
Stott sought constants v0, v1, ..., vJ to minimize (v0y−

∑J
j=1 vjxj)

TC−1(v0y−∑J
j=1 vjxj) subject to the constraint

∑J
j=0 v

2
j = 1, and then defined βj =

vj/v0 for j = 1, ..., J . However, the two are the same for the following rea-
son. Fix v0 and write vj = βjv0 for j = 1, ..., J . Then Allen and Stott
minimized v20(y −

∑
j βjxj)

TC−1(y −
∑
j βjxj) subject to the constraint

1 =
∑J
j=0 v

2
j = v20(1 +

∑J
j=1 β

2
j ) which implies v20 = 1/(1 +

∑J
j=1 β

2
j ), re-

ducing to (0.6).

0.3.4 Combining multiple climate models

A further extension of this framework was introduced by Huntingford and co-
authors [29] to allow for the possibility of multiple climate models. The key
assumption here is that, in addition to the internal noise variability between
successive runs of any given model, there is also an “inter-model variability”
between the output of one model and another. The covariance matrix for the
inter-model variability of signal j (denoted Gj in the discussion to follow) is
assumed to be different from the covariance of the internal variability, and is
therefore estimated from the model runs. The result is a model that depends
on multiple random components but which may also be estimated by errors
in variables (EIV) methodology, extending the TLS concept.

In more detail, Huntingford et al. extended model (0.4) into

y =

J∑
j=1

(x̄j − uj − vj)βj + u0 (0.7)

where x̄j is the mean over all M climate models and vj is an additional noise
term that represents the variability among models around x̄j . In effect, vj is
treated as an additional random effect with mean 0 and a covariance matrix
which we write here as Gj (different for each forcing variable j). Huntingford
et al. proposed a specific algorithm to estimate Gj from ensembles of the
individual model runs.

The uj terms in (0.7) are again assumed to be dominated by the internal
variability component of the noise; however, since in this case it is explicit
that climate model runs are averaged — we assume a total of M climate
models, where the mth climate model has Km ensemble members, but the
model averages x̄j are assumed to be the unweighted averages of the M model



13

averages — the natural assumption is to assume uj ∼ N [0, κC] where

κ = M−2
∑M
m=1K

−1
m .

This is an instance of the general EIV algorithm where coefficients
β1, ..., βJ and denoised values y∗, x∗1, ...,x

∗
J are chosen to minimize

Q∗ = (y − y∗)TC−1(y − y∗) +

J∑
j=1

(xj − x∗j )
T (Gj + C)−1(xj − x∗j ) (0.8)

subject to the constraint

y∗ =

J∑
j=1

x∗jβj . (0.9)

Huntingford et al. [29] cited a paper by Nounou et al. [40] for the algorithm
used to solve (0.8). Hannart et al. [19] pointed out that the method of [40]
does not actually solve the correct version of the EIV problem; instead, they
proposed an alternative method due to Schaffrin and Wieser [53].

In practice, the whole optimization takes place in the space of PCs of
the internal variability and restricted to the first r components, where r is
relatively small; thus, C in (0.8) may be replaced by Ir and the Gj ’s are r× r
sample covariance matrices based on the departures of the individual model
runs from the inter-model average.

0.3.5 Recent advances

Recent years have seen a number of new technical developments, especially
regarding the estimation of the matrix C, or incorporating the uncertainty of
C into general inference statements about detection and attribution.

It was noted already in Section 0.3.2 that the sample estimate of the matrix
C is typically singular, due to the limited number of control runs available.
The traditional approach to this is to restrict attention to κ EOFs, which
is equivalent to a low-rank approximation to the covariance matrix. As an
alternative, [48] considered a shrinkage estimator of the form

αĈ + γI, (0.10)

where Ĉ is the sample covariance matrix and I denotes the identity matrix.
This is known as the Ledoit-Wolf estimator and is one of the earliest examples
of how to improve the properties of a high-dimensional covariance matrix by
regularization [33].

Specifically, [48] used the Ledoit-Wolf estimator to construct an optimal
test for detection, and showed it is more powerful than the standard test
based on restriction to leading EOFs. They also argued the method was more
efficient in the sense that the estimator could be based on small samples of
model runs, avoiding the need for long control runs.
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[49] extended this approach to attribution. Recall from Section 0.3.2 that
the conventional approach to attribution uses two independent estimates of C,
one for the initial prewhitening and the second for estimation of β and associ-
ated covariance estimates and tests. [49] also used two independent estimates,
with the Ledoit-Wolf estimator being used for prewhitening but then a regular
covariance matrix estimator (without regularization) for the estimation and
testing part of the procedure. The latter was primarily motivated by trying
to keep the resulting statistical tests and confidence limits relatively simple
though ultimately they still recommended Monte Carlo procedures. The meth-
ods were worked out both for the Ordinary Least Squares case (Section 0.3.2)
and for Total Least Squares (Section 0.3.3).

An entirely different formulation of the detection and attribution problem
was given in [50]. Noting that the conventional approach treats the shape of
the responses xj as known but the magnitudes βj as unknown, they questioned
why that should be a natural assumption, and whether it was more logical to
test whether both the shape and magnitude of the climate model response were
correct. However, they continued to recognize that both the observations and
the climate model responses are subject to error. They also preserved the key
assumption of additivity that has been a feature of every approach discussed
in this chapter. With those points in mind they proposed relating observed
Y,X1, ..., XJ and “true” Y ∗, X∗1 , ..., X

∗
J by the equations

Y ∗ =

J∑
j=1

X∗j ,

Y = Y ∗ + εY , εY ∼ N (0,ΣY ),

Xj = X∗j + εXj , εXj ∼ N (0,ΣXj ), j = 1, ..., J,

where an additional twist is that they assume the covariance matrices ΣY
and ΣXj to be known. This assumption appears to have been made largely to
permit exact distributional calculations, and they acknowledged that in prac-
tice it would be necessary to use a plug-in approach with empirical covariance
estimates. Thus, while these developments may well lead to more satisfactory
estimation and testing procedures, the full accounting for covariance matrix
uncertainty in a context that also allows for climate model variability is still
an open problem.

A different approach to these issues was started by Hannart [18], who pro-
posed a hierarchical regression approach, which accounts for uncertainty in
the climate covariance matrix by making inference on the covariance matrix
and on β in a single statistical model. Specifically, the climate covariance
matrix C was assumed to follow an inverse-Wishart prior and subsequently
integrated out. In contrast to (0.10), this allowed shrinkage toward target ma-
trices other than the identity, for example covariance matrices that account
for spatial dependence. By carrying out the integral with respect to C an-
alytically, the resulting inference procedure is computationally feasible even
without pre-reduction of the dimension of the data.
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Katzfuss and co-workers [31] considered an empirical Bayesian hierarchical
framework in the context of regression-based detection and attribution. The
Bayesian hierarchical formulation ensures that all uncertainties represented
by the model are propagated to inference on the regression coefficients of in-
terest. Returning to the traditional expansion of C in terms of EOFs, their
model used a Bayesian model averaging approach to probabilistically infer
the optimal number κ of EOFs, instead of choosing a fixed truncation value
as in previous approaches. In addition, their model took into account that
not only X but also the observations y are typically not precisely known.
More precisely, they accounted for uncertainty in y due to a finite number of
incomplete and noisy measurements as represented by an ensemble of observa-
tions. Their Bayesian hierarchical model was fitted using an efficient Markov
chain Monte Carlo (MCMC) procedure that also integrated out analytically
all high-dimensional quantities.

Another interesting issue is the treatment of the unknown true mean forc-
ing signals X. The standard practice in most recent approaches [e.g., 18] is to
profile (i.e., maximize) out the signals. In contrast, [31] integrated out X under
the assumption of an improper uniform prior. Eliminating unknown nuisance
quantities via integration is the standard procedure in Bayesian inference. In
the statistics literature on (the simpler) errors-in-variables regression [e.g.,
38, 8], it has been noticed that maximization (called a functional approach)
can ignore uncertainty and lead to inconsistent estimation of variance parame-
ters. A preliminary simulation study in a simplified detection-and-attribution
setting indicated that, for small sample size, integrated likelihood can be con-
servative with lower power, while the profile likelihood can lead to false pos-
itives, but more comprehensive simulations are needed. Also explored should
be the effect of an informative spatial or spatio-temporal prior on the unknown
signals X, as opposed to the uniform prior used in [18, 31].

0.4 Attribution of extreme events

0.4.1 Introduction

A different kind of question related to detection and attribution concerns the
attribution of extreme events. As a concrete example, the extremely active
hurricane season in the summer of 2017 led to widespread devastation across
the Caribbean, Puerto Rico and the southern United States. A natural ques-
tion is to what extent such events may be considered to have been “caused
by” climate change, where one must be extremely careful about what exactly
is meant by “caused by”. As an example, as at the time of writing of this chap-
ter, three papers have been published analyzing the influence of anthropogenic
climate change on the extreme precipitations produced by Hurricane Harvey
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at the end of August 2017 [42, 51, 12]. However, the 2017 hurricane season
is only one of numerous instances of extreme weather events in recent years
where questions have naturally arisen about the influence of anthropogenic
climate change. In response, an extensive literature has grown up.

The subject is usually considered to have begun with the paper of Stott,
Stone and Allen [55] which analyzed the European heatwave of 2003. This
heatwave produced temperatures more than 10oC above the seasonal norm
for several consecutive days across much of Central Europe and, by some es-
timates, was responsible for as many as 70,000 excess deaths. The paper [55]
argued that the probability of such an event was increased by a factor of 4
(with a 90% lower confidence bound of 2) compared with a hypothetical coun-
terfactual world without greenhouse-gas warming. Other papers analyzing the
2003 heatwave such as [5, 54, 30] supported the claim of a strong anthro-
pogenic influence on this event. Later papers such as [26, 43, 20] generally
supported the anthropogenic influence on a variety of extreme events though
using a wide range of methodologies. However, not every paper in this field
conveyed the same message. For example Dole and co-authors [10] argued that
the 2010 heatwave that badly affected western Russia was most likely a nat-
ural event associated with a blocking pattern in the atmosphere, though they
did not address the possibility that the frequency of blocking patterns could
itself be increasing as a result of global warming. Hoerling and co-authors [27]
made similar arguments in discussing the 2011 Texas drought/heatwave, not-
ing that “the principal factor contributing to the heat wave magnitude was
a severe rainfall deficit during antecedent and concurrent seasons related to
anomalous sea surface temperatures ... that included a La Niña event” while
the human-induced contribution to the probability of a new temperature was
much smaller.

The wide variety of methods being used for these assessments, as well as
occasional disputes over the results, led the National Academy of Sciences to
commission a review of the whole field. Their report [41] appeared in 2016.
Our own review follows some of the structure of the National Academy report,
though necessarily with much condensation, and focuses specifically on the
statistical issues these questions raise.

0.4.2 Framing the question

There are so many different ways of defining the problem that the National
Academy report [41] devoted a whole chapter to the “framing question”. We
follow their approach here, and focus on the specifically statistical issues that
they raise.

Many researchers beginning with [55] have used the “fraction of at-
tributable risk” as the primary quantity of interest. Given a specific extreme
event, let p1 be the probability of that event under a scenario that includes
all known forcing factors that influence climate, and p0 the counterfactual
probability of the same event under natural forcings only (including random
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internal variation). Climate models are needed here because p0 can only be
estimated from a model; typically, parallel runs of a climate model (or several
climate models) are used so that p0 and p1 can be estimated in a way that
makes comparisons possible.

The Fraction of Attributable Risk (FAR) is defined to be

FAR = 1− p0
p1
. (0.11)

The reason for the name is that, in the typical case where p1 > p0, we can
partition the total probability of the event (p1) into two components, p0 for
the natural contribution and p1−p0 for the anthropogenic contribution. Thus
(0.11) represents the fraction that may be “attributed” to the human influence.

However, FAR is not the only measure used. Another is the risk ratio

RR =
p1
p0

(0.12)

which, although equivalent to (0.11) in the sense that either formula can be
transformed into the other, in some respects has a more natural interpretation
— for example, the RR represents the proportion by which insurance claims
from extreme weather events would be expected to rise in a world subject
to anthropogenic forcings compared with one that is not. Another argument
is that RR corresponds to statements of risk that are common in medical
research, such as “smoking increases the probability of lung cancer by a factor
of X”, page 34 of [41].

Our own preference is in favor of RR, and this is reinforced by several
arguments made in [41]. For example:

1. FAR can be misleading when it is very close to 1 — for example,
FAR=0.99 might not seem much different from FAR=0.999 but the
latter represents a ten times greater risk ratio;

2. The “fractional” interpretation of FAR only makes sense when it is
between 0 and 1 — indeed, FAR is often truncated at 0, especially
in confidence intervals — but there is actually nothing pathological
about the possibility that p0 > p1. Indeed, [41] make the argument
that there would probably be many more reported instances with
p0 > p1 were it not for the implicit bias that such events are unlikely
to be observed. It is better to put things on an even footing and treat
the cases RR > 1 and RR < 1 as equally interesting and important,
at least until the weight of evidence suggests to the contrary;

3. Tests and confidence intervals — an inherent issue with estimat-
ing extreme event probabilities is that they are very uncertain, so
confidence intervals (or Bayesian credible intervals) tend to be very
wide. In the language of hypothesis testing, a formal test of the null
hypothesis p0 = p1 may well result in acceptance of that hypothesis.
The Academy report [41] cautions against concluding “there is no
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effect” in these cases. To quote the report (p. 35), “Failure to reject
the null hypothesis of no effect should not be regarded as evidence
in favor of there being no effect.” Although one could make a simi-
lar assertion with respect to FAR, the issue is more clear-cut when
framed in terms of RR.

In recent years, there have been a number of attempts to reformulate
detection and attribution in the language of causality research. A particularly
influential paper was by Hannart and co-authors [17].

According to the classical theory of Hume [28], quoted by [17], “We may
define a cause to be an object followed by another, where, if the first object
had not been, the second never had existed.” In the language of events, an
event X may be said to cause an event Y if Y cannot occur in the absence of
X, or in other words, Y =⇒ X. This immediately suggests some probabilistic
relationships. [17] review the modern theory of causal inference including the
use of graphical relationships to represent causality in system of interacting
variables.

Suppose we have (0,1)-valued random variables X and Y where in the
present context X = 1 is associated with the presence of an anthropogenic
effect and Y = 1 with the occurrence of an extreme climate event. We may also
define Yx to be the value Y would take ifX were fixed at x. In a world of perfect
causality where Y = 1 if and only if X = 1, we would have Y0 = 0, Y1 = 1.

In this context, [17] following [46], defines

PN = Pr {Y0 = 1 | Y = 1, X = 1} ,
PS = Pr {Y1 = 1 | Y = 0, X = 0} ,

PNS = Pr {Y0 = 0, Y1 = 1} .

Here PN is referred to as “the probability of necessary causation”, PS as “the
probability of sufficient causation”, and PNS as “the probability of necessary
and sufficient causation”. This subdivision into “necessary” and “sufficient”
causation is the main new feature of their approach.

Under two additional assumptions, monotonicity and exogeneity (of X)
they show that the above expressions reduce to

PN = max

{
1− p0

p1
, 0

}
,

PS = max

{
1− 1− p1

1− p0
, 0

}
,

PNS = max {p1 − p0, 0} ,

Here, monotonicity is the property that Y1 ≥ Y0 with probability 1, while
exogeneity of X essentially means that X is external to the system, in other
words, not changed by any of the other variables being observed.

Thus when p1 ≥ p0, PN corresponds exactly to the FAR. PS and PNS are
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new measures which do not seem to have been used previously in the extreme
event attribution context.

[17] goes on to consider the implications of these definitions for the Euro-
pean heatwave of 2003. Assuming the same climate variables and probability
calculations as [55], for which p0 was estimated to be 1

1000 and p1 to be 1
250 ,

the probability of necessary causation is 0.75, equal to the FAR discussed ear-
lier. However, PS and PNS are both of the order of 0.003, implying very low
evidence for sufficient causation.

However, they also consider other interpretations of the data for which the
distinction between PN and PS is less clear-cut. The calculations of [55] were
based on temperature anomalies with respect to 1961–1990 averages exceed-
ing the threshold of 1.6oC (the second largest summer-mean anomaly in the
dataset). However, had the threshold been set substantially lower, both p0
and p1 would be larger and hence so would be both PS and PNS. For thresh-
olds in the lower tail of the distribution, we find PS close to 1; as stated by
[17], “anthropogenic CO2 emissions are virtually certainly a sufficient cause,
and virtually certainly not a necessary cause, of the fact that the summer of
2003 was not unusually cold.” They also point out that when referred to a
much longer time period than one year, even if we (unrealistically) assume
stationarity in time, an event of the form “the threshold will be exceeded at
least once in the next hundred years” (rather than for one specific year) will
lead to much larger p0 and p1 and therefore a higher probability for sufficient
causation as well as necessary causation.

In summary, the use of causal inference methods in climate research is
still a new field but it is growing. Ebert-Uphoff and Deng [11] used Bayesian
networks to examine the causal relationships among four large-scale climate
circulation indexes and, very recently, Hannart and Naveau [16] have proposed
an ambitious reformulation of traditional detection and attribution theory in
the language of causal inference. We expect to see much more research of this
nature in the next few years.

0.4.3 Other “Framing” Issues

Here, we review more briefly several other framing issues discussed by [41]

1. Choice of climate variable. The action of the 2003 European
heatwave focussed on a few days in early August on a region of
western Europe that included most of France, parts of Germany,
Switzerland and northern Italy, but did not extend as far west as
the Iberian peninsula or into Scandinavia or Eastern Europe. Yet
[55] took as their climate variable of interest the annual summer
(June, July, August) temperature means over a large geographical
area (30oN to 50oN latitude, 10oW to 40oE longitude). There were
a few motivations for defining an event over a substantially larger
spatial and temporal scale than the one observed. For example, one
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concern was selection bias, discussed further below — focussing on
a climatic variable that had very locally extreme behavior in the
observational record would attract the criticism that the event had
been specifically selected for this reason, whereas by choosing a
more generic spatial and temporal scale, the focus was more on the
appearance of extreme events in general than this one particular
event. However, another reason was that [55] recognized that an
extreme event attribution analysis was unlikely to be successful if
the considered variables were not well represented in climate models.

Subsequent extreme event analyses have generally focussed on
smaller spatial regions, and sometimes smaller time windows as well,
than [55], but the general principle remains, that it is better to ex-
pand the spatial and temporal coverage to reduce concerns about
selection bias and to focus on variables that are well represented
in climate models. [41] noted some other considerations: (a) differ-
ent physical variables, e.g. some analyses of the California drought
found no anthropogenic effect if precipitation levels were consid-
ered on their own but did find an effect when low precipitation was
combined with high temperature: (b) where attribution analysis is
based primarily on observations, such as comparing recent records
with those of an earlier period, it is important that the observa-
tions should be of high quality and consistently measured over the
whole time period; (c) robustness of results — “a robust attribution
analysis would show that results are qualitatively similar across a
range of event definitions, acknowledging that quantitative results
are expected to differ somewhat because of difference of definition.”

2. Changes in frequency or changes in magnitude? The discus-
sion of p0 and p1 assumed that the interest is in changes of frequency
for an event of fixed magnitude, but one can ask a parallel question
with frequency and magnitude interchanged. For example, given a
historical estimate of the 100-year return value1 for a given climatic
variable, how would that estimate change if the underlying climate
conditions changed? That question, for example, underlies the pro-
duction of flood risk maps by the Federal Emergency Management
Agency (FEMA). [51] give examples of both types of calculations.

3. Conditioning. One of the most contentious issues in this field in
recent years has been the desirability of conditioning as a vital com-
ponent of the analysis. Trenberth and colleagues [57] argued that
when an extreme event depends on the presence of some feature
of large-scale atmospheric circulation, it may be problematic to try
to attribute the circulation event itself to anthropogenic effects,
but, conditional on the appearance of the circulation pattern, other

1that value which is exceeded in any given year with probability 0.01
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variables that affect the development of an extreme event, such as
SST, may be much more clearly attributable to human influence.
Examples that they gave included Superstorm Sandy, that caused
widespread flooding over New York and New Jersey in 2012, and the
Colorado floods of 2013. Therefore, they suggested, the entire anal-
ysis should be conducted conditionally on the presence of whatever
large-scale circulation feature initiated the event of interest.

With reference to the Colorado floods, a specific example of this
kind of analysis was given by Pall and co-workers [44]. The flooding
events in question happened during September 2013, and caused
over $2 billion damage and nine fatalities. However, the authors
noted, “the unusual hydrometeorology of the event...challenges
standard frameworks [for attribution]... because they typically
struggle to simulate and connect the large-scale meteorology asso-
ciated with local weather processes.” Consequently, these authors
developed an approach that was part statistical, part dynamical
based on simulations of the local weather conditioned on observed
synoptic-scale meteorology. The key meteorological point seems to
be that warmer air holds more moisture (the Clausius-Clapeyron
relationship) and therefore exacerbates the magnitude of precipita-
tion events within a developing weather system. The authors looked
at this from both a “frequency” and “magnitude” point of view, con-
cluding that the magnitude of the extreme event was increased by
30% as a result of anthropogenic climate change, or conversely, the
probability of an event of the given magnitude, conditional on the
synoptic weather pattern, was increased by a factor of 1.3 compared
with what might have been expected in a pre-industrial world.

For the analysis of [44], it appears that an attempt to take into
account the probability of the triggering synoptic-scale event would
not have been successful because there was no reasonable basis for
determining how this event could have been changed by the anthro-
pogenic influence. In other cases, however, there may be a choice:
do we base the analysis solely on the conditional probabilities or
do we also take into account the probabilities of the conditioning
event? As described by [41], the choice lies between considering

Prf{E | N}
Prc{E | N}

(0.13)

or

Prf{E | N}
Prc{E | N}

× Prf{N}
Prc{N}

=
Prf{E ∩N}
Prc{E ∩N}

. (0.14)

Here E is the event of interest, N is the conditioning event (which
may be El Niño, hence the choice of initial) and Prf and Prc denote
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probabilities in the observed (factual) and counterfactual worlds.
The controversy, such as it is, appears to hinge on the question of
whether it is preferable to base the inferences on (0.13) in place of
(0.14).

In fact, there is a sound statistical argument for conditioning based
on R.A. Fisher’s theory of conditional inference and the related
concept of ancillary statistics. We do not attempt a detailed review
here, since there is a extensive and large literature, but we refer to
[13] for a relatively recent review.

The key point of this theory is that conditional inference is always
indicated when the distribution of the conditioning variable N is
independent of the quantity being estimated, which in this case, is
the influence of anthropogenic climate change on the probability of
the event E. Such a variable N is known as an ancillary statistic.
In meteorological terms, if the event N is not affected by climate
change, then it is valid to use (0.13) in place of (0.14).

As things stand, this may seem a trivial conclusion, because if N is
not influenced by climate change, the second factor on the left side
of (0.14) will be 1 and there is no distinction between (0.13) and
(0.14). However, there is also an extensive theory of approximate or
“local” ancillarity and the overall conclusion is that conditioning is
still appropriate in this case [7].

In practice, the more realistic difficulty is that E and N are physi-
cal measurements, not random variables satisfying some theoretical
distribution, and there may simply not be enough information to
determine whether either or both are different under the factual
and the counterfactual scenarios. Under such circumstances, argu-
ing conditionally on N seems a logical way to proceed.

4. Selection bias. The final “framing” issue we discuss here is that of
selection bias — the idea that the selection of an event to study may
itself bias the conclusions drawn from it. As noted by [41], selection
bias may take various forms, the most pervasive being occurrence
bias, “bias from studying only events that occur.” As noted already,
a partial solution may be to define the climate events of interest on
a sufficiently large temporal and spatial scale that extreme local
fluctuations do not bias the results. [41] conclude that “selection
bias [is] almost inevitable in event attribution applied to individual
events” but caution that “Such selection biases interfere with the
ability to draw general conclusions about anthropogenic influence
on extreme events collectively.”

A possible direction for future methodological development is to
adjust statistical event attribution techniques to account explicitly
for their tendency to focus on local spatial and/or temporal ex-
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tremes, in similar manner to the use of scan statistics in spatial
epidemiology, e.g. [32]. In short, we might adjust the extreme event
probabilities to allow for a selection bias effect, but then proceed as
in earlier analyses with the comparisons of scenarios that do or do
not include the anthropogenic component.

0.4.4 Statistical methods

In this section we do not pursue further the various type of framing issues
but assume the problem is essentially the basic one that motivated this whole
section: given the interest in a specific event E, and the possibility of esti-
mating the event E from parallel runs of either a climate model (under “all
forcings” versus “natural forcings” scenarios) or an observational dataset (un-
der “present-day” versus “pre-industrial” conditions), how would we actually
estimate the probabilities p1 and p0, the respective probabilities under those
two scenarios? These probabilities may then be used to estimate the FAR, the
RR, or various other measures of interest. We briefly review the main methods
for estimation p1 and p0.

1. Methods based on normal distributions. The simplest meth-
ods assume the underlying variables are normally distributed. This
assumption was common in the early days of the subject [5, 54, 30]
and still surfaces from time to time [47]. In general, we don’t rec-
ommend normal-theory approaches because, even when the overall
distribution is close to normal, as is usually the case with tempera-
tures, deviations from normality in the tails of the distribution can
cause serious biases to the estimated probabilities.

2. Adapting conventional detection and attribution theory.
For example, Min and co-authors [37] fitted the generalized extreme
value (GEV) distribution to extremes in spatially averaged precipi-
tation variables and then used a probability integral transform (if G
is the CDF fitted to a random variable Y and if Φ denotes standard
normal CDF, then Φ−1(G(Y )) is standard normal) to transform
the variables to normality. On the resulting normal scale, they then
applied conventional detection and attribution theory to determine
the statistical significance of the anthropogenic component and to
compute estimates and confidence intervals for the various regres-
sion coefficients. Similar techniques have been used in other papers
such as [61, 59]. Compared with other techniques considered in this
section, these methods do not lead to numerical estimates of p1 and
p0 and hence FAR, RR etc., but in principle they could be: use the
fitted GEV distribution to estimate p1 and then the same transfor-
mation applied to the detection and attribution model without the
anthropogenic component to estimate p0, but this would be a de-
cidedly roundabout method of estimating p0! Overall, this method
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seems less well suited to studying the attribution of a single event
than to understand the anthropogenic influence on extreme events
generally, but that remains an important consideration for climate
research.

3. Methods based on counting exceedances in model simula-
tions. A nonparametric method for estimating p1 and p0 is simply
to count the number of exceedances of the threshold of interest in
parallel all-forcings and natural-forcings model runs. Tests and con-
fidence intervals may then be based on standard statistical theory
for binomial distributions. This method has the considerable advan-
tage of simplicity, when it is applicable; but against that, nonpara-
metric methods cannot be used at all when they involve extrapolat-
ing beyond the range of the climate model data. In practice it seems
to be used in two situations: (i) when the supposed extreme event is
not actually very extreme at all, at least when conditioned on suit-
able large-scale variables [45], (ii) when the analyst has available a
fast-running model for which generating a large ensemble of model
runs is not a problem [12]. The “climateprediction.net” experiment
(https://www.climateprediction.net/) is a citizen science project to
generate very large ensembles of climate model runs through volun-
teers running climate simulation programs on their laptops, but the
emphasis of extreme event attribution analysis in recent years has
switched towards trying to get very fast “operational time” results,
and the time taken to collect large ensembles through a distributed
network would appear to impede that.

4. Methods based on extreme value theory. These methods ap-
pear, perhaps surprisingly, to be state of the art in this field at the
time of writing. For a review of different methods of (univariate)
extreme value analysis, see Chapter 8 of this volume. The methods
may be divided into two broad categories, (i) block maxima meth-
ods, where the Generalized Extreme Value (GEV) distribution is
fitted to maxima over blocks of fixed time length (usually the time
length of a block is taken to be one year, in which case it is also called
the annual maxima method), or (ii) threshold exceedance methods,
in the most common form of which the Generalized Pareto Distribu-
tion (GPD) is fitted to the exceedances over a fixed threshold. The
original paper of [55] used the GPD to characterize the tail distri-
bution of European summer temperatures, but recent applications
have more frequently used the GEV applied to annual maxima. A
significant issue with these methods is how to characterize uncer-
tainty of the extreme-event probabilities calculated from the fitted
distributions — both frequentist (bootstrap) and Bayesian methods
have been applied but there seems to be no universal agreement at
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this time. We do not review these methods further here because
Chapter 8 gives a full account.

0.4.5 Application to precipitation data from Hurricane Har-
vey

We now return to our earlier discussion of Hurricane Harvey, and specifically
the extreme precipitations produced by that event in the region surround-
ing Houston, by reviewing the three papers that we are aware of that have
discussed that event.

1. The World Weather Attribution Project. This project is a
consortium of researchers in The Netherlands, U.K. and U.S.A.
who aim to produce “rapid attributions” of extreme weather events,
sometimes within a week of the event in question. Two recent ex-
amples are [58] for the August 2016 Louisiana floods and [42] for
the flooding associated with Hurricane Harvey. Both studies used
the same statistical methods and covered essentially the same ge-
ographical region, so they used many of the same meteorological
variables as well. The essential idea is to compile several datasets,
both observational and model-based, that use different data sources,
different spatial resolutions and (with the models) different forcing
factors, including historical runs based on all known forcing factors,
pre-industrial control runs and “static” experiments with forcings
fixed at levels corresponding to various points in time (e.g. 1860,
1940, 1990, 2015) in order to compare equilibrium climate behavior
under different forcing scenarios.

The basic method is to fit generalized extreme value distributions
(see Section 0.4.6 below) with adjustment for a covariate which they
typically take as global mean temperature for a given year. In the
notation of (0.15) below, the model of [58] allows both log ηt and
log τt to be linearly dependent on a global temperature variable T ′.
The GEV is fitted to each of the observational and model datasets,
omitting the extreme event that stimulated the study, and the re-
sults compared to evaluate consistency across observations-based
and model-based analyses. Typically, p1 and p0 are evaluated by
setting T ′ to be its value in the present day and its value at some
historical date, e.g. 2017 versus 1900 in [42]. Standard errors and un-
certainty bounds are evaluated largely by bootstrapping, with a spa-
tial block bootstrap recommended in spatially aggregated datasets
to reduce bias due to spatial dependence.

For three-day maxima from 85 stations in the Gulf Coast region,
the estimated return value associated with the 2017 event is around
9,000 years, and a risk ratio of four compared with the correspond-
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ing estimate for 1900. Somewhat lower return level estimates (of the
order 200–800 years) are obtained for events based on the spatial
maximum over a region than for events at a specific location, but
similar risk ratios of the order of 4–6 compared with 1900. In all
cases, the range of uncertainties associated with these estimates is
very wide. Estimates based on model runs typically show somewhat
lower risk ratios but narrower confidence limits, which the authors
interpret as evidence of an anthropogenic effect.

2. Risser and Wehner. These authors [51] provided an alterna-
tive extreme value analysis of precipitations during August 2017.
They computed seven-day maximum precipitation values from rain-
gauges, aggregated over two regions near Houston: a small and large
region of approximately 33,000 km2 and 105,000 km2 respectively.
The GEV was fitted to annual maximum data from 1950–2016 us-
ing a model similar in structure to (0.15) and (0.16) below, but with
two covariates: the Niño 3.4 index as a measure of El Niño activ-
ity, which the authors identify as a natural variation, and annual
global CO2 measurements. They estimated return values for the
2017 event of the order of 30–100 years (larger for the large region
than the small region) and also risk ratios of the order 4–8 (with
lower confidence bounds of the order 1.5–4).

For this paper, a direct “attribution” statement was not possible
because climate model runs were not used, but the authors argued
that an equivalent if somewhat weaker statement could be made in
the language of Granger causality [15]. They argued, in effect, that
confidence intervals for risk ratios with lower bounds > 1 are consis-
tent with Granger causality at a “likely” level of uncertainty (66%
confidence) though not at a “very likely” level (90% confidence). In
this sense, the results provide a valid attribution statement.

3. Emanuel. The third author [12] to have examined Hurricane Har-
vey precipitations took a completely different approach, based on a
model for directly simulating hurricanes and their associated storm
rainfalls. The model relies on global climate model data to gener-
ate the large-scale state of the system and then randomly perturbs
that state to create hurricane-like disturbances. Thus, the approach
is still dependent on global-scale models for the large-scale variables,
but improves significantly on global-scale models in its resolution
of specific hurricane events.

For storm totals at the single point of Houston, Texas, this approach
suggests a return value in excess of 2,000 years, though with huge
uncertainty as very few of the model runs get close to that level of
precipitation. A side comment here is that although this was based
on the “counting exceedances” approach (see Section 0.4.4), an ex-
treme value theory approach might also be productive in reducing
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the uncertainty of estimation at the very end of the observed range
of data. A second calculation based on total rainfall over the state
of Texas suggests an annual exceedance probability of around 1% in
1981–2000, increasing to around 18% in 2081–2100 under the repre-
sentation concentration pathway 8.5 scenario (sometimes called the
“business as usual” scenario, since it assumes no significant slowing
down in the rate of emissions of greenhouse gases).

This paper was the only one of the three to extrapolate future prob-
abilities of a Harvey-type event, but if the 18% estimate is realistic,
for the probability that a Harvey-sized event will occur somewhere
in the Gulf region in any given year, that is a disturbing conclusion.

0.4.6 An example

The following example is more limited than the three studies just cited [42, 51,
12] because it only considers precipitation from one station (Houston Hobby
Airport) but it nevertheless shows that many of the same effects that they cite
as evidence of anthropogenic influence are also present here. In common with
[51], seven-day precipitation totals were calculated each year for the hurricane
season from July–November. We also calculated annual average sea surface
temperatures (SST) for the entire Gulf of Mexico, computed from July of
the year preceding the precipitation year through June of the same year; this
time window was considered most likely to influence the following hurricane
season. Figure 2 illustrates the data. Three points are immediately apparent.
First, the 7-day precipitation total associated with Hurricane Harvey is by far
the largest in history, more than twice the second-largest value. Second, SSTs
have also increased steadily since the 1970s, and the Gulf of Mexico SST mean
for 2016-17 was the largest in history for that variable. Third, based on the
straight line fit in (c), there is some evidence that 7-day precipitation maxima
and SSTs are correlated, though the statistical significance of that is hard to
judge from the plot.

A more formal analysis of the latter point may be based on the Generalized
Extreme Value (GEV) distribution for annual maxima: see Chapters 8 and 31
of the present volume for a detailed discussion of extreme value theory and
the GEV distribution in particular.

If Yt denotes the maximum precipitation value for year t, we assume Yt
follows the GEV distribution in the form

Pr{Yt ≤ y} = exp

[
−
{

1 + ξ

(
y − ηt
τt

)}−1/ξ
+

]
, (0.15)

where the subscript + denotes positive part, ηt and τt are allowed to vary
with year and, in accordance with common practice in this field, the shape
parameter ξ is treated as a constant. Recall that [51] used two covariates, the
Niño 3.4 index and annual global CO2 means. Here, we are assuming that Gulf
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FIGURE 2
Precipitation in Houston and Gulf of Mexico SST. (a) Maximum 7-day precipi-
tation total from Houston Hobby airport, computed from July–November each
year. (b) Gulf of Mexico mean July–June sea surface temperature, each year
from 1948-49 through 2016-17. The fitted trend curve is based on a spline with
4 DF and is consistent with overall Northern hemisphere temperature trends
during this time period. (c) Plot of maximum 7-day precipitation against Gulf
mean SST, with a fitted straight line omitting the 2017 outlier. Public data
sources: Daily precipitation from the Global Historical Climatological Net-
work (National Centers for Environmental Information, U.S.A.); monthly sea
surface temperatures from HadISST (U.K. Meteorological Office.)

of Mexico SST will include any El Niño effect that influences precipitation,
but to be consistent with [51], we also included annual global CO2 means from
the RCP database (https://tntcat.iiasa.ac.at/RcpDb).

The following models are considered: each of ηt and log τt is a linear
function of up to two covariates, where the covariates considered are SSTt
(Gulf of Mexico annual mean SST in year t) and CO2t (global mean CO2 in
year t). For numerical stability, SSTt is expressed as the deviation from 26oC
and CO2t is replaced by 0.01(CO2t − 350). This gives 16 possible models of
which the Akaike Information Criterion chooses the following:

ηt = θ1 + θ4SSTt + θ5CO2t,

log τt = θ2 + θ6SSTt,

ξ = θ3. (0.16)

The fitted parameters are given in Table 0.1.
Next, this model is used to calculate exceedance probabilities in various

years corresponding to the observed 2017 value due to Hurricane Harvey. First,
we smoothed the SST values, using the same smoothing spline as in Figure



29

Parameter Estimate Standard error t-statistic p-value
θ1 4.70 0.29 16.22 0.00
θ2 0.56 0.13 4.25 0.00
θ3 0.15 0.09 1.64 0.10
θ4 3.06 1.49 2.06 0.04
θ5 1.95 0.82 2.36 0.018
θ6 1.24 0.50 2.48 0.013

TABLE 0.1
Table of GEV parameters for Houston Hobby precipitation maxima.

2(b). The reason for smoothing is that we are interested in long-term climatic
effects, not individual-year fluctuations, and smoothing the SSTs seems a log-
ical way to achieve that. Second, the model defined by (0.15) and (0.16) was
refitted using Bayesian methods, assuming a flat prior. The reason for this is
to allow the uncertainty of the estimates to be expressed in terms of poste-
rior distributions. The three curves in Figure 3(a) represent the 17th, 50th
and 83rd percentiles of the posterior density for the exceedance probability in
each year. The reason for the 17th and 83rd percentiles is that the posterior
probability between them is 0.66; according to the Intergovernmental Panel
on Climate Change uncertainty guidelines [36], it is likely that the true value
lies between these bounds2. For the specific occurrence in 2017, the calculation
shows a posterior median exceedance probability of 0.0019 (return value 525
years) with a likely range from 0.00022 to 0.00685 (return values 145 to 4472
years).

Climate model data have been downloaded from the CMIP5 model archive
and used to calculate annual SST means over the Gulf of Mexico. These are
available under three scenarios: (a) historical all-forcings data up to 2005 or
2012; (b) historical natural-forcings data up to 2005 or 2012; (c) future forcings
data under the RCP 8.5 scenario, often called the “business as usual” scenario
because it does not presume any significant effort to slow down greenhouse
gas emissions. All model runs have been converted to anomalies and where
natural-forcings data ended before 2017, we simply assumed the last available
value (for 2005 or 2012) was also valid up to 2017. We combined the all-
forcings and RCP 8.5 data to obtain a continuous record of data from 1949
up to 2080 which was taken as the end-year for this assessment. This exercise
was repeated for four climate models; where multiple ensembles were available
from the same model, we averaged over ensembles.

The model Gulf of Mexico SSTs do not follow the observational data very
closely so, in order to use the regression model fitted previously to observa-
tional SSTs, we proceed as follows. The observational SSTs for 1949–2017 are

2The stronger terms very likely and virtually certain are used for events with probability
at least 0.9 and 0.99, respectively.
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regressed on two covariates: first, the difference between historical-forcings
and natural-forcings climate model runs, and, second, the natural-forcings cli-
mate model runs on their own. The two components together are then used
to define the “all forcings” signal and the second component on its own is
used to define the “natural forcings” signal. Both components are represented
via smoothing splines to give a smooth signal. This exercise is repeated for
each of the four climate models and also with all four models averaged to give
the curves in Figure 3(b). A curious feature of these curves, which we are not
able to fully explain, is that even the natural-forcings curves seem to show an
upwards trend towards the end of the series.

This exercise was repeated to obtain future projections of Gulf of Mexico
SST up to 2080; see Figure 3(c). Since there are no natural-forcings projections
over this time period, only the RCP 8.5 values are shown.

We now repeat the calculation of the probability of a Harvey-sized event
under the circumstances, (a) for 2017 under all forcings, (b) for 2017 under
natural forcings, (c) for 2080 under RCP 8.5. The calculation is repeated for
all four climate models and for the average over the four models; we used the
same posterior density output as before to obtain Bayesian posterior curves.
Finally, we took the ratio of (a) to (b) (relative risk for 2017 under the all-
forcungs and natural-forcings scenario), and the ratio of (c) to (a) (relative
risk for a Harvey-sized event in 2080 compared with 2017). The results are in
Table 0.2.

Model Present Future
Lower Mid Upper Lower Mid Upper

CCSM4 1.5 2.0 3.2 9.0 26.2 133
GISS-E2-R 1.8 2.5 4.8 13.5 43.5 244

HadGEM2-ES 1.6 2.1 3.5 23.6 73.3 415
IPSL-CM5A-LR 1.5 2.0 3.3 10.8 33.8 186

Combined 1.7 2.4 4.4 14.3 46.0 254

TABLE 0.2
Relative risks. The columns labelled “Present” refer to relative risks for the
2017 event under an all-forcings scenario versus a natural-forcings scenario,
computed under four climate models and with all four models combined.
Lower, mid and upper bounds correspond to the 17th, 50th and 83rd per-
centiles of the posterior distribution. The columns labelled “Future” are rela-
tive risks for such an event in 2080 against 2017; same conventions regarding
climate models and percentiles.

For the combined-model results, the relative risk of the Harvey precipi-
tation under all-forcings versus natural-forcings scenarios is estimated as 2.4,
“likely” between 1.7 and 4.4. For all five sets of model results in Table 0.2,
the lower bound exceeds 1, proving that it’s “likely” that anthropogenic con-
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FIGURE 3
Probability Curves and SST Projections. (a) Projected probability (red curve)
and 66% confidence bounds (green curves) for the probability of a Harvey-
sized event at Houston Hobby airport, 1949-2017. (b) Projected SSTs in the
Gulf of Mexico under all-forcings (solid curves) and natural-forcings (dashed
curves) for four climate models, and all four models averaged. (c) Projected
SSTs through 2080, under the RCP 8.5 scenario for four climate models, and
all four models averaged.

ditions affected Harvey. This is consistent with the earlier results reported by
[42, 51, 12].

For the relative risks of a Harvey-sized event in 2080 against 2017, the
posterior means range from 26 to 73, with “likely” bounds ranging from 9
to 415. Evidently, the uncertainty range for future projections is very wide.
Recalling that Emanuel [12] obtained an estimated relative risk of 18 by com-
plete different methods, there seems to be some agreement that a drastic rise
in the frequency of this type of event is to be expected.

Further details of these results will be developed elsewhere.

0.4.7 Another approach

Diffenbaugh and co-authors [9] also sought to quantify the increase of extreme
event probabilities as a result of global warming, though taking a more global
view of the problem in computing probabilities for a number of extreme events
related to extreme temperatures, droughts and extreme rain events. They com-
pared results obtained using both observational data and climate models. A
particular feature of their approach was the use of some standard statisti-
cal goodness of fit procedures (Kolmogorov-Smirnov and Anderson-Darling
tests) to assess the agreement between observational and climate-model data
after first correcting for the difference in means between pre-industrial cli-
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mate model data and detrended observations. They recommend rejecting any
climate model which fails the Anderson-Darling test at a p-value of 0.05.

0.5 Summary and open questions

Climate change detection and attribution refers to a set of statistical tools
to relate observed changes to external forcings, specifically to anthropogenic
influences. While this issue can be viewed in different ways, the most com-
monly applied framework is linear regression. The problem formulation per se
seems straight forward, but the challenges lie in the high dimensionality of the
problem and the large number of unknown quantities in the context of limited
observations. Current methods differ in their complexity of the problem for-
mulation and what assumptions are being made to reduce the dimensionality
of the problem. Most methods implemented so far are of frequentist nature
and Bayesian implementations have only recently appeared on the scene.

While many of the approaches discussed address some of the method-
ological challenges, there is of yet no model framework to address them all
comprehensively. For example, most current frameworks assume the different
model runs to be independent realizations from a common random quantity.
This viewpoint is justifiable in cases where all model runs come from the same
climate model or all come from different climate models, but less so if we have
multiple, and potentially unequal numbers, of replicates from multiple climate
models. In this case a formulation explicitly accounting for inter- and intra-
model variability, as considered by [29], is needed. An analogous issue exists
with control runs coming from different models. Having a way to use them
jointly would drastically increase the amount of information available to esti-
mate internal variability. The assumed covariance structure of observations is
also relatively simple in current methods [e.g., 31], if observational uncertainty
is considered at all. With the advent of observational products now routinely
being provided as ensembles rather than a single data set, which used to
render data-driven observational covariance estimation practically impossi-
ble, more complex covariance structures can be envisioned. Other directions
include joint inference on multiple properties, e.g. different temperature layers
in the atmosphere, and incorporating non-linear interactions.

The alternative field of extreme event attribution is still rapidly growing
and would seem to offer excellent opportunities for involvement by statis-
ticians. For example, although the standard univariate methods of extreme
value theory are becoming standard in this field, none of the references cited
in this chapter has made any use of bi/multivariate or spatial extreme value
theory, though there is extensive statistical theory in both cases as documented
in Chapters 8 and 31 of this volume. Therefore, there are many possibilities
for extensions of the methods as they currently exist.
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